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Abstract 

This study presents the dynamic and buckling analysis of the laminated composite thin arch plate frame 
structures employing Classical Plate Theory with Finite Element Analysis. For this purpose, the effects 

of the radius of curvature, aspect ratio, and stacking order of such structures on the first ten natural 

frequencies, mode shapes, critical buckling load, and the first unstable regions are investigated. Besides, 

the two-bay curved plate frame structure is investigated. In order to perform dynamic and buckling 

analyses, a computer code is developed and executed via MATLAB. The results are compared and 

validated with those of ANSYS. It is concluded that the aspect ratio or the stacking order affects the 

dynamic characteristics of the curved plate frame structure considerably while the radius of curvature 

relatively has less impact on such dynamic properties of the structure. 

 

Elyaflı Kompozit Eğri Plaka Çerçevelerin Dinamik ve Burkulma Analizi 

Anahtar kelimeler 

Dinamik Kararlılık; 
Titreşim; Burkulma; 
Kompozit Yapılar; 
Sonlu Elemanlar 

Analizi; Eğri Plaka 

Çerçeveler 

Öz 

Bu çalışma, ince eğri elyaflı kompozit plaka çerçeve yapıların dinamik ve burkulma analizlerini Klasik 

Plaka Teorisi ve Sonlu Elemanlar Analizi ile incelemektedir. Bu amaçla, yapının eğrilik yarıçapının, en-

boy oranının ve elyaf düzeninin ilk on doğal frekans, mod şekilleri, kritik burkulma yükü ve birinci 

dinamik kararlılık bölgeleri üzerine olan etkileri araştırılmıştır. Ayrıca, iki bölütlü yapı da ele alınmıştır. 

Dinamik ve burkulma analizleri MATLAB üzerinden bir bilgisayar kodu aracılığı ile gerçekleştirilmiştir. 

Buradan elde edilen sonuçlar aynı analizlerin ANSYS üzerinden gerçekleştirilmesi ile doğrulanmıştır. 

Sonuçlar olarak yapının en-boy oranının ve laminasyon düzeninin dinamik özellikleri büyük ölçüde 

etkilediği, eğrilik yarıçapının ise diğer parametrelere göre yapının dinamik özellikleri üzerinde daha az 

etki oluşturduğu görülmüştür. 

© Afyon Kocatepe Üniversitesi 

 

1. Introduction 

Curved structures are widely used in the aerospace 

industry due to their effectiveness and existence in 

aero-frames. Additionally, composite materials are 

extensively considered in the aerospace industry to 

improve structural efficiency and lower the weight 

of the aero-structure. Evaluating the dynamic and 

buckling characteristics of such structures is 

essential since vibration and critical loading 

conditions 

may result in damage or complete failure. 

Researchers have been interested in investigating 

the dynamic and buckling properties of various 

structures for many years. Since it is impossible to 

mention all of these works, some studies of those 

are presented as follows. Marjanovic et al. (2017) 

used a dynamic  
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stiffness element based on the first-order shear 

deformation theory and higher-order shear 

deformation theory to perform free vibration 

analysis of composite plates. They investigated the 

effects of the boundary conditions and plate side on 

the thickness and orthotropy ratios on the low and 

high modes of vibration. Serdoun and Cherif (2016) 

investigated the free vibration analysis of composite 

thick rectangular plates using higher-order shear 

deformation theory. (Chen et al. 2017) presented 

the free vibration analysis of composite truss core 

sandwich plates using third-order shear 

deformation theory and zig-zag theory. (Demir et al. 

2017) investigated free vibration analysis of annular 

sector plates using conical shell equations, first-

order shear deformation theory, discrete singular 

convolution, and differential quadrature. (Shankar 

and Mahato 2017) presented the vibration analysis 

of composite plates having delamination and/or 

damages using the finite element method. 

(Tornabene et al. 2018) investigated free vibration 

analysis of laminated plates and shells, considering 

two different approaches, differential quadrature, 

and integral quadrature. (Abulanour et al. 2018) 

studied the free vibration analysis of simply 

supported functionally graded plates using a new 

shear deformation theory that comprises the 

stretching effect. (Vidal et al. 2019) investigated the 

free vibration analysis of laminated composite 

plates by using a variable separation approach. 

(Thakur et al. 2020) employed an efficient C0 finite 

element modeling combined with higher-order non-

polynomial shear deformation theory to investigate 

the natural frequencies and to perform a transient 

analysis of the laminated composite folded plates 

having different fiber angles, fold location, crack 

angle, lamination scheme, and boundary conditions. 

(Rezaiee-Pajand et al. 2020) performed free 

vibration analysis of functionally graded hybrid 

matrix/fiber nanocomposite conical shells 

employing the First-Order Shear Deformation 

Theory. They solved the Donell-type governing 

differential equations by using the Generalized 

Differential Quadrature Method. They investigated 

the effects of the boundary condition, material, and 

geometric properties on the dimensionless 

frequency of the nanocomposite conical shell. (Fang 

et al. 2020) examined the vibration and thermal 

buckling characteristics of rotating nonlocal 

functionally graded nanobeams by using Eringen's 

nonlocal elasticity theory (ENET) and Euler Bernoulli 

Beam Theory. They investigated the effects of the 

hub radius ratio, temperature difference, material 

gradient index, slenderness ratio, dimensionless 

angular velocity, and nonlocal parameters on the 

natural frequencies and critical temperatures that 

cause buckling of the rotating functionally graded 

nanobeams. 

When a structure is subjected to a static load, it may 

face a critical phenomenon called buckling. There 

are lots of studies that dealt with the buckling of 

structures such as beams, plates, or frames. Some of 

those are mentioned as follows. (Bourada et al. 

2016) studied buckling analysis of isotropic and 

ortho-tropic plates by introducing a novel four-

variable refined plate theory. (Hao et al. 2017) 

investigated the buckling analysis of composite 

variable stiffness panels considering the Mindlin 

plate theory. (Chikh et al. 2017) presented a thermal 

buckling analysis of cross-ply laminated composite 

plates using a simplified higher-order shear 

deformation theory. (Zghal et al. 2018) studied the 

buckling behavior of functionally graded materials 

and nano-tubes reinforced composite flat and 

curved plates using a double-directors finite 

element shell model. 

 If a structure is subjected to dynamic loads, it is 

parametrically exciting. Therefore, dynamic 

instability may occur even if damping exists. This 

phenomenon occurs because of the amplitudes of 

the response that increase exponentially. Hence 

researchers addressed many studies about the 

dynamic stability of structures due to their 

significance. Some of these studies are presented as 

follows. (Fazilati 2017) performed the stability 

analysis of variable stiffness laminated composite 

plates that have delaminations by using the finite 

strip method. (Samukham et al. 2018) investigated 

dynamic stability analysis of variable angle tow 

composite with delamination placed around a cut-

out under simply supported boundary conditions. 

They used the first-order shear deformation theory 

and finite element method to evaluate the 

governing equations of variable angle tow 
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composite structure. (Shafei et al. 2019) 

investigated the dynamic stability analysis of aniso-

tropic composite materials using the iso-geometric 

analysis based on higher-order shear deformation 

theory. 

In this study, dynamic analysis of laminated 

composite curved thin plate frames is investigated. 

Although there are many studies concerning the 

dynamic analysis of structures, to the best of the 

Authors' knowledge, there are no reported works 

that cover the dynamic properties of laminated 

composite curved frame structures in the literature. 

The effects of the radius of curvature, aspect ratio, 

and fiber orientation on the first ten natural 

frequencies and corresponding mode shapes, 

critical buckling loads, and the first unstable regions 

are investigated. For these purposes, the Classical 

Plate Theory is employed with the Finite Element 

Method.  

 

2. Mathematical Expressions 

Finite element analysis is performed to perform free 

vibration, buckling, and dynamic stability analyses of 

curved plate frames, shown in Fig. 1. Four node 

quadrilateral element shown in Fig. 2, is utilized to 

model the curved plate frame structures. 

Considering the Classical Plate Theory, Each node 

has five degrees of freedom (DOF,) u, v, w, θx, and 

θy. Eq. (1) gives general displacement functions of a 

finite element as a summation of the nodal 

displacements (Petyt 2015). 

Figure 1. A curved plate frame structure 

 

 

Figure 2. Four node quadrilateral element. 

{𝑢} =∑𝑵𝒎𝒊
{𝑢𝑖}

4

𝑖=1

 

{𝑣} = ∑𝑵𝒎𝒊
{𝑣𝑖}

4

𝑖=1

 

{

𝑤
𝜃𝑥
𝜃𝑦
} =∑𝑵𝒃𝒊 {

𝑤𝑖
𝜃𝑥𝑖
𝜃𝑦𝑖

}

4

𝑖=1

, 𝑖 = 1, … ,4 

𝒖(𝒙, 𝒚, 𝒛) = 𝒖𝟎(𝒙, 𝒚) − 𝒛𝜽𝒚,     𝜽𝒚 =
𝝏𝒘𝟎

𝝏𝒙
 

𝒗(𝒙, 𝒚, 𝒛) = 𝒗𝟎(𝒙, 𝒚) − 𝒛𝜽𝒙, 𝜽𝒙 =
𝝏𝒘𝟎

𝝏𝒚
 

𝒘(𝒙, 𝒚, 𝒛) = 𝒘𝟎(𝒙, 𝒚) 

(1) 

where Nm and Nb are the shape functions (Petyt 

2015) for in-plane and out-of-plane displacements, 

respectively. 

𝑵𝒎𝒊
=
1

4
[(1 + 𝜉𝑗𝜉)(1 + 𝜂𝑗𝜂)] 

𝑵𝒃𝒊

=
1

8
[

(1 + 𝜉𝑖𝜉)(1 + 𝜂𝑗𝜂)(2 + 𝜉𝑖𝜉 + 𝜂𝑗𝜂 − 𝜉
2 − 𝜂 + 2)

𝑏(1 + 𝜉𝑖𝜉)(𝜂𝑗 + 𝜂)(𝜂
2 − 1)

−𝑎(𝜉𝑗 + 𝜉)(𝜉
2 − 1)(1 + 𝜂𝑗𝜂)

] 

𝑖, 𝑗 = 1,… , 4 

(2) 

where a, b, ε, and η are the length, width, and 

natural coordinates of the four-node quadrilateral 

element. Eq.(3) gives the strain energy of the finite 

element Ue (Petyt 2015). 

𝑈𝑒 =
1

2
∫{𝜎}𝑘

𝑇{𝜖}𝑑𝑉
𝑉

 (3) 
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where {σ}T denotes the stress components matrix of 

the kth layer and {ϵ} is the strain matrix. 

 

Figure 3. Laminated composite material 

 

For a laminated composite structure, shown in Fig. 

3, the constitutive relation between the stress 

tensor matrix and the material modulus matrix [Q]k 

is given as 

 

{𝜎}𝑘
𝑇 = [𝑄]𝑘{𝜖} (4) 

or 

[

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦

]

𝑘

= [

𝑄11 𝑄12 𝑄16
𝑄12 𝑄22 𝑄26
𝑄16 𝑄26 𝑄66

]

𝑘

[

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

]

𝑘

 (5) 

where  

𝑄11 = 𝑞11𝑐
4 + 2(𝑞11 + 2𝑞66)𝑠

2𝑐2 + 𝑞22𝑠
4 

𝑄12 = (𝑞11 + 𝑞22 − 4𝑞66)𝑠
2𝑐2 + 𝑞12(𝑠

4 + 𝑐4) 

𝑄22 = 𝑞11𝑠
4 + 2(𝑞11 + 2𝑞66)𝑠

2𝑐2 + 𝑞22𝑐
4 

𝑄16 = (𝑞11 − 𝑞12 − 2𝑞66)𝑠𝑐
3

+ (𝑞12 − 𝑞22 + 2𝑞66)𝑠
3𝑐 

𝑄26 = (𝑞11 − 𝑞12 − 2𝑞66)𝑠
3𝑐

+ (𝑞12 − 𝑞22 + 2𝑞66)𝑠𝑐
3 

𝑄66 = (𝑞11 + 𝑞12 − 2𝑞12 − 2𝑞66)𝑠
2𝑐2 + 𝑞66(𝑠

4

+ 𝑐4) 

(6) 

where c and s are cosθ and sinθ in which θ stands for 

the fiber angle. The material stiffness components 

qij (i,j=1, 2, 6) are calculated as 

 

 

𝑞11 =
𝐸𝑥

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
 

𝑞12 =
𝜈𝑥𝑦𝐸𝑥

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
 

𝑞22 =
𝐸𝑦

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
 

𝑞66 = 𝐺𝑥𝑦 

(7) 

where Ex and Ey are the modulus of elasticity in x- 

and y- direction. Gxy is the shear modulus with 

respect to x-, y- direction. νxy and νyx represent the 

strain in x- and y- direction due to the unit strain in 

y- and x- direction, respectively (Petyt 2015) 

Substituting Eqs. (1) and (4) into Eq.(3) gives 

𝑈𝑒 =
1

2
∫{𝜖}𝑇𝑫𝒎{𝜖}𝑑𝐴
𝐴

 (8) 

where {ϵ} denotes the strain components as, 

{𝜖} =

{
 
 
 
 
 
 

 
 
 
 
 
 

𝛿𝑢

𝛿𝜖
𝛿𝑣

𝛿𝜂
𝛿𝑢

𝛿𝜂
+
𝛿𝑣

𝛿𝜖

𝛿2𝑤

𝛿𝜖2

𝛿2𝑤

𝛿𝜂2

𝛿2𝑤

𝛿𝜂𝛿𝜖 }
 
 
 
 
 
 

 
 
 
 
 
 

 (9) 

and Dm is the material stiffness matrix given as, 

𝑫𝒎 = [
𝑨 𝑩
𝑩 𝑪

] (10) 

where A, B, and C are the longitudinal, bending-

longitudinal coupled, and bending stiffness 

matrices, which are 

𝐴 =∑[𝑄]𝑘(𝑧𝑘 − 𝑧𝑘−1)

𝑁𝐿

𝑘=1

 

𝐵 =
1

2
∑[𝑄]𝑘(𝑧𝑘

2 − 𝑧𝑘−1
2 )}

𝑁𝐿

𝑘=1

 

(11) 
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𝐶 =
1

3
∑[𝑄]𝑘(𝑧𝑘

3 − 𝑧𝑘−1
3 )

𝑁𝐿

𝑘=1

 

where NL is the number of layer and zk is the 

thickness of the kth layer. The strain energy can be 

written in matrix form as 

𝑈𝑒 = {𝑞𝑒}
𝑇𝒌𝒆{𝑞𝑒} (12) 

where {qe} is, 

{𝑞𝑒} =∑[𝑢𝑖  𝑣𝑖  𝑤𝑖  𝜃𝑥𝑖

4

𝑖=1

𝜃𝑦𝑖] (13) 

and ke is the element stiffness matrix (Petyt 

2015).The kinetic energy of the finite element is 

𝑇𝑒 =
1

2
𝜌ℎ∫(�̇�2 + �̇�2 + �̇�2)𝑑𝐴

𝐴

 (14) 

where ρ is the density of the material and h denotes 

the thickness of the finite element. The kinetic 

energy equation can be written in matrix form as 

𝑇𝑒 = {𝑞𝑒}
𝑇𝒎𝒆{𝑞𝑒} (15) 

where me is the element mass matrix (Petyt 2015). 

 

If a structure is subjected to a load as shown in Fig. 

4(a), the phenomenon called buckling may occur. In 

this study, the distributed loading condition is 

assumed as a point loading condition as shown in 

Fig. 4(b) The work done by that load can be 

evaluated as 

𝑉𝑒 =
1

2
∫ (𝑃𝑥 (

𝜕𝑤

𝜕𝑥
)
2

+ 2𝑃𝑥𝑦
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦𝐴

+ 𝑃𝑦 (
𝜕𝑤

𝜕𝑦
)
2

)  𝑑𝐴 

(16) 

where Px, Pxy, and Py represent the applied 

compressive and shear loads regarding the x- and y- 

axis of the transformed coordinate system of ABCD 

and EFGH plates. 

 

Since the equivalent point load is applied along the 

x-direction of the transformed coordinate system of 

the ABCD and EFGH plates, only Px is taken into 

account. Therefore Eq.(16) becomes 

𝑉𝑒 =
1

2
∫ 𝑃𝑥 (

𝜕𝑤

𝜕𝑥
)
2

 𝑑𝐴
𝐴

 (17) 

Eq. (17) can be written regarding Eq.(2) as  

𝑉𝑒 =
1

2
∫∫{𝑞𝑒}

𝑇[𝐵𝐺]
𝑇𝑃𝑥[𝐵𝐺]{𝑞𝑒}𝑑𝜉𝑑𝜂 (18) 

where 

𝐵𝐺 =

[
 
 
 
0 0 01𝑋3
0 0 01𝑋3

03𝑥1 03𝑥1
𝜕𝑁𝑏
𝜕𝑥 3𝑥3]

 
 
 
 (19) 

The work done by the point load can be written in 

matrix form as (Dey and Singha 2006) 

𝑉𝑒 = {𝑞𝑒}
𝑇𝒌𝒈𝒆{𝑞𝑒} (20) 

Substituting Eq.(19) into Eq.(17) gives kge as 

𝒌𝒈𝒆 = [𝐵𝐺]
𝑇𝑃𝑥[𝐵𝐺] (21) 

where Px is the equivalent point load, which is 

assumed as 

𝑃𝑥 = 𝑊𝑎𝑏 (22) 

 

 

Figure 4. (a)The distributed loading condition and (b) the  

equivalent point loading condition of single-bay 

laminated composite curved plate frame structure. 

 

Both the curvature and the frame geometry of the 

structure, shown in Fig. 1, are modeled by flat finite 

elements shown in Fig. 2. Hence the local 

coordinates of each element matrix should be 

transformed when necessary to satisfy all degrees of 

freedom (DOF) of the structure. Hence, to obtain 

the curvature and frame geometry, each element 

matrix is transformed as 
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𝑘𝑒𝑡 = 𝑇
𝑇𝑘𝑒𝑇 

𝑚𝑒𝑡 = 𝑇
𝑇𝑚𝑒𝑇 

𝑘𝑔𝑒𝑡 = 𝑇
𝑇𝑘𝑔𝑒𝑇 

(23) 

where ket, met, and kget are the transformed element 

stiffness, mass, and geometry matrices, 

respectively. T is the transformation matrix, which is 

given as 

𝑻

=

[
 
 
 
 
 
𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛽 0 0 0
0 1 0 0 0 0

−𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽 0 0 0
0 0 0 𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛽
0 0 0 0 1 0
0 0 0 −𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽]

 
 
 
 
 

 
(24) 

where β is the rotation angle around y-axis, as 

shown in Fig.5. 

Figure 5. Transformation of local coordinates. 

 

It is seen from Eq.(20) that the transformation 

matrix requires 6-DOF while there are 5-DOF 

according to the displacement functions given in 

Eq.(1). Therefore the drilling effect (θz) has to be 

considered. However, according to the 

displacement functions of the Classical Plate Theory, 

given in Eq.(1), it is seen that the drilling effect is 

neglected. Hence, θz is added for each node to 

obtain a suitable 6-DOF finite element. During the 

addition process, it is considered that the 

corresponding non-diagonal terms are set to zero 

whereas the diagonal terms of θz are set to be 1000 

times smaller than the minimum value of the 

corresponding element matrix. 

Structural dynamic loadings may cause dynamic 

instability by means of parametric resonance. 

Hence, it is significant to find the unstable and stable 

regions of structures. Dynamic instability problem 

can be solved as an eigenvalue problem. The 

equivalent loading case shown in Fig. 4(b), can be 

considered as a periodic load, P(t). Such a periodic 

load can be formulated in terms of the periodic axial 

compressive load as P(t) = P + Ptcosλt, where λ is the 

excitation frequency, P and Pt denote the static and 

time-dependent periodic compressive load, 

respectively. The static and time-dependent 

periodic compressive load components can be 

written by means of the fraction of the static critical 

buckling load, (Pcr) as 

𝑃(𝑡) = 𝛼𝑃𝑐𝑟 + 𝛽𝑃𝑐𝑟𝑐𝑜𝑠𝜆𝑡 

𝛼 =
𝑃

𝑃𝑐𝑟
 

𝛽 =
𝑃𝑡
𝑃𝑐𝑟

 

(25) 

where α is the static load factor and β is the dynamic 

load factor. The dynamic response of the structure 

can be written in terms of Lagrange’s equation of 

motion in matrix form as 

𝑀�̈� + 𝐾𝑞 − 𝑃(𝑡)𝐾𝑔𝑞 = 0 (26) 

Substituting Eq.(25) into Eq.(26) gives the equation 

of motion as (Bolotin, 1964) 

𝑀�̈� + (𝐾 − 𝑃𝑐𝑟(𝛼 + 𝛽𝑐𝑜𝑠𝜆𝑡)𝐾𝑔)𝑞 = 0 (27) 

Performing a periodic solution considering the 

period as 2T = π/λ provides practical significance 

since the width of the first unstable regions is 

generally larger than those of the period T, 

according to Bolotin (1964). Therefore, the 

eigenvalue problem of the dynamic stability analysis 

considering 2T period can be written as 

[𝐾 − 𝑃𝑐𝑟(𝛼 ± 0.5𝛽)𝐾𝑔 −
𝜆2

4
𝑀] 𝑞 = 0 (28) 

The eigenvalue problem of dynamic stability 

analysis given in Eq.(28) can be formed into: 

 

(i) An eigenvalue problem of free vibration 

analysis if α = β = 0 and ω = λ/2, where ω is the 

natural frequency of the structure. 
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(ii) An eigenvalue buckling problem or a static 

stability problem if α = 1, β = 0, and λ = 0. 

(iii) An eigenvalue dynamic stability problem if 

all terms exist. 

3. Numerical Results 

This study presents the dynamic and buckling 

analysis of the laminated composite arch plate 

frame structures, shown in Fig. 1.  The geometric 

and material properties of such structures are given 

in Table 1. The effects of the stacking order, the 

radius of curvature (Rxx), and aspect ratio (a/b) on 

the first ten natural frequency values, critical 

buckling loads, and the first unstable regions of the 

structure are investigated. Besides, the two-bay 

curved plate frame structure is examined. The 

analyses are performed under fixed from all ends 

boundary conditions. For simplicity, the stacking 

orders including the fiber angle of each layer are 

denoted as follows. 

C1 = [(00)]4 ,C2 = [(900/00)]2s,C3 = [(00/900)]2s 

C4 = [00/450/ − 450/00],C5 = [00/600/ − 600/00] 

The accuracy of the results is validated by 

performing a convergence analysis considering 

ANSYS results. Fig. 6 shows the convergence analysis 

results considering the 15x15, 20x20, 25x25, and 

30x30 elements for the entire arch plate frame 

structure. It is seen that the structure was 

represented accurately for 30x30 elements. 

However, the accuracy changes for the sixth and 

seventh modes. It is concluded that the 

representation of the considered finite element may 

reduce for bending and torsional modes in which 

the maximum displacement occurs at the curved 

section of the structure (see Appendix A). However, 

such a reduction is not significant and increasing the 

element number may diminish the error rate. Tables 

1 and 2 give the material properties and the 

convergence analysis results of the buckling analysis 

for laminated composite arch plate frame structure 

having C1 stacking order and Rxx = 2a radius of 

curvature. Similar to the natural frequency results, 

the best accuracy is obtained for 30x30 elements. 

Hence, all analyses are performed by using 30x30 

number of elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Free vibration convergence analysis results. 
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Table 1. Material and geometry properties of the    

laminated composite curved frame structures. 

Property Symbol Quantity 

Longitudinal Elasticity Modulus Ex 45 GPa 

Transverse Elasticity Modulus Ey 12 GPa 

Shear Modulus Gxy 7.2 GPa 

Density ρ 2080 kg/m3 

Poisson Ratio ν 0.33 

Geometric Properties of the Structure 

Plate component length and width a,b 1000 mm 

Thickness h 10 mm 

Radius of Curvature Rxx 2a 

 

Table 2. Buckling convergence analysis results. 

Element Number 
Critical Buckling Load (N) 

ANSYS Present Study 

15 x 15 

55617 (15x15) 

55764 

20 x 20 55724 

25 x 25 55662 

30 x 30 55655 

 

3.1. The effect of the stacking order 

The effects of the stacking order on the first ten 

natural frequencies, critical buckling load, and the 

first unstable regions of the laminated composite 

arch plate frame structures are investigated. Five 

stacking orders, namely, C1, C2, C3, C4, and C5, are 

examined. The curvature of the structure is 

considered as Rxx=2a and the aspect ratio is set as 

a/b=1. Table 3 gives the first ten natural frequency 

values of the laminated composite arch plate frame 

structure, having different stacking orders. 

According to the results given in Table 3, the first ten 

natural frequencies are affected considerably by the 

stacking order. This is simply because of the 

difference in the stress components, Qij (i,j=1,2,6), 

of the material. Such a difference took place due to 

the change in stacking order. Another significant 

outcome is the way the natural frequency values 

differ among the stacking orders.   

 

Table 3. The first ten natural frequency values of the 

laminated composite arch plate frame structures having 

different stacking orders. 

Natural 

Frequency (Hz) 
C1 C2 C3 C4 C5 

λ1 6.880 4.114 6.558 6.640 6.589 

λ2 27.960 15.816 26.648 26.976 26.768 

λ3 34.545 23.735 33.512 34.168 33.882 

λ4 44.873 26.539 42.771 43.303 42.966 

λ5 45.060 31.209 43.410 44.047 43.705 

λ6 45.644 31.367 43.506 44.144 43.787 

λ7 49.210 37.784 47.285 48.028 47.645 

λ8 63.898 59.767 64.492 64.390 64.393 

λ9 64.798 67.517 65.289 65.225 65.208 

λ10 100.030 67.575 95.317 96.522 95.762 

 

Figs. 7 and 8 show the laminated composite arch 

plate frame structure’s first unstable regions having 

different stacking orders. As seen in Figs. 7 and 8, 

the unstable region differs as the stacking order of 

the laminated composite frame structure changes. 

The distance of the first unstable regions to the 

origin can be ordered from the closest to farthest as 

C2, C3, C5, C4, and C1, respectively. This is because 

even though the stacking orders are different, the 

fundamental natural frequency values and the 

critical buckling load of the structures having C1, C3, 

C4, and C5 fiber angles do not change remarkably. 

The unstable region becomes narrow for the curved 

frame structure has C2 stacking order when 

compared with other stacking sequences. This is 

because the fiber angles of the first and the last 

layer effects both fundamental natural frequency 

and critical buckling load significantly. As the static 

load factor increases from 0 to 0.5, the first unstable 

regions move toward the origin and become 

narrow. 
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Figure 7. The first unstable regions (α = 0) of the single-bay laminated composite curved plate frame structure having 
different stacking orders. 
 

 

 

 

 

 

 

 

 

 

Figure 8. The first unstable regions (α = 0.5) of the single-bay laminated composite curved plate frame structure 
having different stacking orders. 

 

It is seen that as the structure’s stacking order is set 

as C2, the natural frequency values are considerably 

decreased when compared with other stacking 

orders. On the other hand, the natural frequencies 

C1, C3, C4, and C5 are close to each other. Such a 

situation reveals that the first and last layer’s fiber 

angles impact the natural frequency values. This is 

because of the highest bending moments, and 

consequently, bending stresses occur at that layers. 

Table 4 gives the critical buckling loads of the 

laminated composite arch plate frame structure 

having different stacking orders. According to the 

critical buckling load values given in Table 4, the 

stacking order affected the critical buckling load 

values just the way it affected the first ten natural 

frequency values of the laminated composite arch 

plate frame structures. The critical buckling load 

decreases slightly as the fiber angles of mid-layers 

increase. However, this decrement becomes 

significant when it comes to the first and last layers’ 

fiber angles. 

 

Table 4. The critical buckling load values of the laminated 

composite arch plate frame structures having different 

stacking orders. 

Stacking Order Critical Buckling Load (N) 

C1 55655 

C2 19923 

C3 50558 

C4 51832 

C5 51032 

 

3.2. The effect of the radius of curvature 

The effects of the radius of curvature on the first ten 

natural frequencies, critical buckling load, and the 

first unstable regions are investigated. For this 

purpose, four different radii of curvatures, Rxx=1.5a, 

Rxx=2a, Rxx=2.5a, and Rxx=3a are considered. Table 5 

gives the first ten natural frequency values of the 

single-bay C1 laminated composite arch plate frame 

structure with different curvatures. The aspect ratio 

of the structure is set as a/b=1. 

 

Table 5. The first ten natural frequency values (Hz) of the 

C1 laminated composite curved plate frame structure. 
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Natural 

Frequency (Hz) Rxx=1.5a Rxx=2a Rxx=2.5a Rxx=3a 

λ1 6.823 6.880 6.905 6.908 

λ2 27.914 27.960 27.933 27.920 

λ3 34.575 34.545 34.450 34.387 

λ4 43.776 44.873 45.151 45.180 

λ5 44.741 45.060 45.177 45.195 

λ6 45.445 45.644 46.155 46.589 

λ7 48.161 49.210 50.051 50.563 

λ8 63.458 63.898 63.990 63.984 

λ9 64.964 64.798 64.705 64.622 

λ10 99.178 100.03 100.300 100.290 

 

According to the results given in Table 5, the change 

in the radius of curvature does not affect the first 

ten natural frequencies considerably. Even 

increasing the radius of curvature from Rxx=1.5a to 

Rxx=3a, or decreasing in the opposite way changes 

the natural frequency value up to approximately 1.5 

Hz. The mode shapes given in Appendix A indicate 

that the seventh and eighth modes shift to each 

other as the radius of curvature increases from 1.5a 

to 2a. Other modes remain the same when the 

radius of curvature changes. No matter which 

stacking order is considered, the radius of curvature 

has a negligible effect on the natural frequency 

values of the laminated composite curved plate 

frame structure. 

 Table 6 gives the critical buckling load values for 

four different radii of curvature of the single-bay 

curved plate frame structure. 

 

Table 6. The critical buckling loads of the single-bay C1 

laminated composite arch plate frames. 

Radius of Curvature Rxx Pcr (N) 

1.5a 55974 

2a 56315 

2.5a 56483 

3a 56580 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The first unstable regions of the single-bay laminated composite curved plate frame structure having C1 
stacking order and different radius of curvatures for α = 0 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. The first unstable regions of the single-bay laminated composite curved plate frame structure having C1 
stacking order and different radius of curvatures for α = 0.5 
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According to the critical buckling load values given 

in Table 6, as the radius of curvature of the single-

bay laminated composite curved plate structure 

increases, the critical buckling load increases. 

However, such an increment can be accepted as 

negligible. Therefore, it can be interpreted that the 

change stiffness matrix of the structure in 

accordance with the radius of curvature is small. 

Figs. 9 and 10 show the first unstable regions of the 

single-bay C1 laminated composite arch plate frame 

structures with four different radii of curvatures 

considering two static load parameters α=0 and 

α=0.5. 

It is seen from Figs. 9 and 10 that the radius of 

curvature affects the unstable region of the curved 

plate frame structure slightly. The unstable region 

moves toward the origin as the radius of curvature 

increases. On the other hand, the area of the 

unstable region does not change as the radius of 

curvature differs. The unstable region moves 

toward the origin and becomes narrow as the static 

load factor increases. 

 

3.3. The effect of the aspect ratio 

The effects of the aspect ratio on the first ten 

natural frequencies, critical buckling load, and the 

first unstable regions of the laminated composite 

arch plate frame structures are examined. Four 

different aspect ratios, a/b=0.5, a/b=1, a/b=1.5, and 

a/b=2 are taken into account. The radius of the 

curvature of the structures is set as Rxx=2a. Table 7 

gives the change in the first ten natural frequency 

values and the critical buckling loads of the single-

bay C1 laminated composite arch plate frame 

structure in accordance with the aspect ratio of the 

structure. 

It is seen from Table 7 that the difference in aspect 

ratio affected certain modes considerably. As the 

aspect ratio increases from 0.5 to 2, the third - tenth 

natural frequencies increase more than 10Hz. For 

the eighth - tenth modes, such an increment differs 

between 50 - 70 Hz. The first and second natural 

frequencies do not change significantly as the 

aspect ratio varies. While these interpretations are 

valid for C3, C4, and C5 stacking orders, the 

structure with C2 fiber orientation behaves 

differently than those of other stacking orders. 

 

Table 7. The first ten natural frequency values of the 

single-bay C1 laminated composite arch plate frames 

having four different aspect ratios 

Natural 

Frequency (Hz) 
a/b=0.5 a/b=1 a/b=1.5 a/b=2 

λ1 6.885 6.880 6.869 6.870 

λ2 27.990 27.960 28.296 27.904 

λ3 29.762 34.545 41.282 44.808 

λ4 41.278 44.873 45.396 45.580 

λ5 44.891 45.060 46.182 48.814 

λ6 45.642 45.644 51.140 57.295 

λ7 45.953 49.210 54.349 59.541 

λ8 46.311 63.898 94.229 99.876 

λ9 47.179 64.798 95.065 120.750 

λ10 54.567 100.030 104.190 125.470 

 

Most of the natural frequencies and corresponding 

mode shapes of the C2 stacking order are obtained 

dissimilar to those of C1, C3, C4, and C5, as seen in 

Table 8 and Appendix B. 

 

Table 8. The first ten natural frequency values of the 

single-bay C2 laminated composite arch plate frames 

having four different aspect ratios 

Natural 

Frequency (Hz) 
a/b=0.5 a/b=1 a/b=1.5 a/b=2 

λ1 4.120 4.116 4.112 4.108 

λ2 16.749 16.725 16.705 16.688 

λ3 19.626 26.390 26.824 26.807 

λ4 26.115 26.846 27.286 27.268 

λ5 26.875 27.308 34.689 43.435 

λ6 27.337 31.613 38.858 46.892 

λ7 28.809 33.378 39.873 47.613 

λ8 34.302 59.861 59.798 59.739 

λ9 34.922 66.908 72.276 72.215 

λ10 51.313 67.379 81.927 82.100 

 

According to results given in Table 3.8, the third and 

fifth - tenth natural frequencies are affected by the 

aspect ratio, considerably. Among these modes, the 

eighth-tenth modes increases between 25-40 Hz as 

the aspect ratio changes from 0.5 to 2. Comparing 

the results obtained for C2 and other stacking 

sequences, it is interpreted that the natural 

frequencies of C2 are affected less than those of C1, 

C3, C4, and C5. Table 9 gives the critical buckling 

load of the single-bay C1 laminated composite arch 

plate frames with various aspect ratios. 
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Table 9. The critical buckling loads of the single-bay C1 

laminated composite arch plate frames having four 

different aspect ratios 

Aspect Ratio (a/b) Pcr (N) 

0.5 111510 

1 55655 

1.5 37033 

2 27720 

It is seen from Table 9 that the critical buckling load 

decreases as the aspect ratio increases. The same 

behavior is observed for all stacking orders. 

 

Figs. 11 and 12 show the first unstable regions of 

such structure as the aspect ratio changes. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. The first unstable regions (α = 0) of the single-bay laminated composite curved plate frame structure having 
C1 stacking order and different aspect of ratios 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. The first unstable regions (α = 0.5) of the single-bay laminated composite curved plate frame structure 
having C1 stacking order and different aspect of ratios 

 

 

It is inferred from Figs. 11 and 12 that the aspect 

ratio of the curved frame structure does not affect 

the instability region considerably. The unstable 

region moves towards the origin as the aspect ratio 

increases. As the dynamic load factor increase, the 

unstable region slightly widens and moves away 

from the origin. 

 

3.4. Two-bay structure 

The first ten natural frequencies, critical buckling 

loads, and the first unstable regions of the 

laminated composite two-bay curved plate frame 

structure shown in Fig.13(a) are evaluated. The 

loading case shown in Fig.13(b) is the same as that 

of the single-bay structure. The radius of curvature 

is chosen as Rxx=2a and the aspect ratio is 

considered as a/b=1. All analyses are performed 

under fixed from all ends of columns. 
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Figure 13. (a)The distributed loading condition and (b) 
the equivalent point loading condition of two-bay 
laminated composite curved plate frame structure 
 

According to the results given in Table 10, the first 

seven natural frequencies of the two-bay structure 

are higher than those of the single-bay structure. 

Contrarily, the eighth - tenth natural frequencies of 

the two-bay structure are lower than those of single 

- bay structure. Similar interpretations made for the 

two-bay curved plate frame structure with C1 

stacking order can be made for other stacking 

orders. Comparing the mode shapes of the two-bay 

structure and single-bay structure with C1 stacking 

order given in Appendices A and C, it is seen that the 

first, second, and fifth modes of the single-bay and 

two-bay structure are identical whereas other 

modes are different. Among those different modes, 

the sixth and eighth modes of the two-bay structure 

are completely different from those of the single-

bay structure while the rest are shifted modes (i.e., 

the third mode of the single-bay structure shifted to 

the fourth mode for the two-bay structure). The 

critical buckling load of the two-bay structure is 

higher than that of the single-bay structure, as 

expected. 

 

Table 10. The first ten natural frequencies and critical 

buckling load of the laminated composite two-bay curved 

plate frame structure 

Natural 

Frequency (Hz) 

Two-Bay 
Structure 

Single-Bay 
Structure 

λ1 7.237 6.880 

λ2 30.478 27.960 

λ3 39.935 34.545 

λ4 45.817 44.873 

λ5 49.265 45.060 

λ6 51.555 45.644 

λ7 52.266 49.210 

λ8 57.355 63.898 

λ9 58.161 64.798 

λ10 61.612 100.030 

Critical Buckling Load 
(N) 

87091 56315 

 

Figs. 14 and 15 show the first unstable regions of the 

laminated composite two-bay and single-bay curved 

plate frame structure with C1 stacking order

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. The first unstable regions (α = 0) of the two-bay and single-bay laminated composite curved plate frame 
structure having C1 stacking order. 
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Figure 15. The first unstable regions (α = 0.5) of the two-bay and single-bay laminated composite curved plate frame 
structure having C1 stacking order. 

 

According to Figs. 14 and 15, the first unstable 

regions of the two-bay structure are closer than 

those of the single-bay structure. The area of the 

first unstable regions of the single-bay and two-bay 

structures are almost the same. The first unstable 

regions move toward the origin as the static load 

factor increases from 0 to 0.5 for both single-bay 

and two-bay structures. 

 

4. Conclusions 

In this paper, dynamic and buckling analysis of the 

laminated composite arch plate frame structures is 

investigated. The first ten natural frequencies, 

critical buckling loads, and the first unstable regions 

are examined considering the radius of curvature, 

aspect ratio, and fiber orientation of these 

structures. Besides, the two-bay structure is 

investigated. The following conclusions are drawn. 

 

• Stacking orders have a considerable effect 

on the natural frequencies, critical buckling load, 

and the first unstable regions. It is seen that the 

fiber angles of the first and last layers have the most 

impact on the dynamic characteristics of the 

structure. On the other hand, the fiber angles of the 

mid-layers also affect the dynamical properties of 

the curved plate frame structure. However, such an 

impact is small when compared with that of the 

fiber angles of the first and last layers. 

• The radius of curvature of the laminated 

composite arch plate frame structures has a 

negligible impact on the first ten natural frequency 

values, the critical buckling load, and the first 

unstable regions. 

• As the aspect ratio increases, all the natural 

frequency values increase, except the first and the 

second frequencies. Similarly, the critical buckling 

load values increase in accordance with the 

increment of the aspect ratio. On the other hand, 

the unstable region does not change significantly. 

Without changing the width, the unstable region 

moves slightly toward the origin as the aspect ratio 

increases. 

• The first seven natural frequencies of the 

two-bay structure are higher than those of the 

single-bay structure, whereas it is the opposite for 

the eighth - tenth natural frequencies. The critical 

buckling load of the two-bay structure is higher than 

that of the single-bay structure, as expected. The 

first unstable regions of the two-bay structure are 

closer to the origin when compared with those of 

the single-bay structure. The area of the first 

unstable regions of these structures is the same. The 

increment of the static load factor moves the 

unstable region toward the origin for both 

structures. 

• The difference in the radius of curvature of 

the laminated plate frame structure does not 

change the mode shapes of the structure. 

Contrarily, the aspect ratio and the stacking order 

affect the mode shapes considerably. The first two 

modes are the same for every stacking order, the 

radius of curvature, and stacking ratio. On the other 

hand, other modes differ with respect to both 
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stacking order and aspect ratio of the curved plate 

frame structure. It is seen from Appendix B that the 

mode shapes of the curved plate frame structure 

having C1, C3, C4, and C5 stacking order are the 

same, except for the third and fourth modes. On the 

other hand, the mode shapes of the structure 

having C2 is different for several modes. Such a 

difference becomes more apparent as the aspect 

ratio of the structure changes. 

• It is seen that the first, second and fifth 

modes of the single-bay and two-bay curved plate 

frame structures are identical. On the other hand, 

the sixth and eighth modes of the two-bay structure 

are completely different from those of the single-

bay structure while the rest are shifted modes (i.e., 

the third mode of the single-bay structure shifted to 

the fourth mode for the two-bay structure). 
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Appendix 

Appendix – A: The First Ten Mode Shapes of the Single-Bay Curved Plate Frame Structure Having Different 

Stacking Orders 
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Appendix – B: The First Ten Mode Shapes of the Single-Bay Curved Plate Frame Structure Having Different 

Aspect Ratios for C1, C2, C3, C4, and C5 Stacking Orders 
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Appendix – C: The First Ten Mode Shapes of the Two-Bay Curved Plate Frame Structure Having C1 Stacking 

Order and a/b=1 Aspect Ratio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


