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ABSTRACT 

The main aim of this study is to apply the Morgan-Voyce polynomials for the solution of high-order linear 

differential difference equations with functional arguments under initial boundary conditions. The technique we 

have used is essentially based on the truncated Morgan-Voyce series and its matrix representations along with 

collocation points. Also, by using the Mean-Value Theorem and residual function, an efficient error estimation 

technique is proposed and some illustrative examples are presented to demonstrate the validity and applicability 

of the method.  

Keywords: Morgan- Voyce polynomials, Differential-difference equations, Collocation method, Matrix method, 

Error estimation, Residual function. 

 

 

Yüksek Mertebeden Lineer Diferansiyel Fark Denklemlerinin Hata 

Tahmini ile Morgan-Voyce Yaklaşımı 

ÖZET 

Bu çalışmanın amacı, yüksek mertebeden fonkisyonel argümanlı lineer diferansiyel fark denklemlerinin 

başlangıç sınır koşulları altında Morgan- Voyce polinomlarına bağlı çözümlerini araştırmaktır. Kullanılan metot 

esas olarak kesilmiş Morgan- Voyce serilerinin ve sıralama noktalarına bağlı matris gösterimlerine dayalıdır. 

Ayrıca, Ortalama Değer Teoremi ve rezidüel fonksiyonu ile etkin bir hata tahmini yöntemi verilmektedir. Bazı 

örneklerle metotun geçerlilik ve uygulanabilirliği gösterilmektedir. 

Anahtar Kelimeler: Morgan- Voyce polinomları, Diferansiyel-fark denklemleri, Kolokasyon metotu, Matris 

metotu, Hata tahmini, Rezidüel fonksiyon. 

 

 

 

 

 

Received: 17/01/2016, Revised: 25/01/2016, Accepted: 26/01/2016 

 

Düzce University  

Journal of Science & Technology 

Düzce University Journal of Science & Technology, 4 (2016) 252-263  



253 

 

I. INTRODUCTION 

 

 ifferential-difference equations  1 10 ; which are a class of functional differential equations, 

have been treated as models of some physical phonemena. When a mathematical model is 

developed for a physical system, it is usually assumed that all of the variables, such as space and time, 

are continuous. This assumption leads to a realistic and justified approximation of the real variables of 

the system. However, for some of the physical systems, these continuous variable assumptions can not 

be made. Then differential-difference equations have played an important role in modelling problems 

that appear in various branches of science; such as mechanical engineering, condensed matter, 

biophysics, mathematical statistics and control theory. In recent years, the studies of differential-

difference equations are developed very rapidly and intensively. It is well known that linear 

differential-difference equations have been considered by many authors,and have been used in the 

applications of difference models to problems in biology, physics and engineering. 

Recently, a number of different methods associated with the solution of higher-order differential-

difference equations, which are the inverse scatterining method  1 , Hirota’s bilinear form method 2 , 

Tanh-method 3 , Jacobian elliptic function method  4 , Numerical techniques 5,6 , Taylor 

polynomial methods 11,12  and Chebyshev methods  13,15 , have been given. 

In this study, the basic ideas of the mentioned studies are developed to obtain the approximate 

solutions of high-order linear differential-difference equation with functional arguments (advanced, 

neutral or delayed) and variable coefficients in the form 

                      

( ) ( )

0 0

( ) ( ) ( ) ( ) ( ),
m J

k j

k j

k j

f x y x p x y x g x J m 
 

                                                                        (1)

 

under the  mixed conditions 

1
( ) ( )

0

( ( ) ( )) , 0,1,..., 1
m

k k

lk lk l

k

a y a b y b l m




    .

                                         

                                   (2)    

                                             

 

Here ( ), ( )k jf x P x   and   ( )g x    are known functions defined on the interval a x b  ;  

, , ,lk lka b   and l  are appropriate constants;  ( )y x   is an unknown function to be determined. The 

aim of this study is to get the solution of the problem (1) (2)   as the truncated Morgan-Voyce series 

defined by 

0

( ) ( ) ( ), ,
N

N n n

n

y x y x a B x N m a x b


                                                                                      (3)

                                               

 

 

where , 0,1,...,na n N , are unknown coefficients; ( ), 0,1,...,nB x n N , denote the Morgan-Voyce 

polynomials defined by  16 20  

D 
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0

1
( )

n
j

n

j

n j
B x x

n j

  
  

 
                                                                                                               (4) 

or recursively 

1 2( ) ( 2) ( ) ( ), 2n n nB x x B x B x n      

with  0 ( ) 1B x   and 1( ) 2.B x x   

On the other hand, by using (3) or (4), the first four Morgan-Voyce polynomials are given by 

2 3 2

0 1 2 3( ) 1, ( ) 2, ( ) 4 3, ( ) 6 10 4,...B x B x x B x x x B x x x x          and the Morgan-Voyce 

polynomials ( )nB x  are solutions of the following differential equation: 

                        ( 4) ( ) 3( 2) ( ) ( 2) ( ) 0n n nx x B x x B x n n B x        

 

II. METHOD 

A. FUNDAMENTAL MATRIX RELATIONS  

We first consider the solution ( )y x  of Eq.(1) defined by the truncated Morgan-Voyce series (3) 

,which is given in the form 

0

( ) ( ) ( ), .
N

N n n

n

y x y x a B x a x b


     

Then we can convert the finite series (3)  to the matrix form as, for 0,1,..., ,n N   

( ) ( ) ( )B ANy x y x x                                                                                                                      (5) 

so that 

 0 1( ) ( ) ( ) ( )B Nx B x B x B x  

 0 1A
T

Na a a .
 

On the other hand, by using the relation (4), the matrix ( )B x  is obtained as  

( ) ( )  B X Rx x T
                                                                                                                        (6)

                                                                
 

where 

0 1 2( ) [ ]X       
Nx x x x x  
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Also, it is clearly seen from (6) that the relation between the matrix ( )B x  and its derivative 
'( )B x  is 

( ) ( )B X R
Tx x  ( ) T TX x T R  

and that repeating the process 

( ) ( ) ( )( , 0,1,2,...,B X T R
k T kx x k m T

)                                                                                       (7)
                                               

 

where 

0 0 0 0 0 0

1 0 0 0 0 0

0 2 0 0 0 0

0 0 0 ( 1) 0 0

0 0 0 0 0

T

N

N

 
 
 
 

  
 
 
 
 

,      0 1 1 1 1T diag   (unite matrix). 

From the matrix relations (5), (6) and (7), it follows that 

( ) ( ) ( )B ANy x y x x  ( ) TX x R A  

and 

( ) ( ) ( )( ) ( ) ( )B A
k k k

Ny x y x x 
( ) ( )X R A
k Tx  

                                                 ( )( ) , 0,1,...X T R A
T k Tx k  .                                                       (8) 

By substituting  x x     
into the relation (8), we get, 0,1,...,j   

( ) ( ) ( )( )X T R A
j T j Ty x x       

          
           ( ) ( , )( )X D T R A

T j Tx                                                                                        (9)         

1
0 0 0

0

2 3
0 0

1 0

3 4 5
0

2 1 0

1 2 3 2 1

1 2 0

R

N N N N

N N N

  
  

  
    
    
    
 

       
           

 
 
            
       
          
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 so that, for  0, 

 

                   

0 0 0 1 0 2 0

1 0 1 1 1 1

2 0 2 2

0

0 1 2

0 0 0 0

1 2
0

1 1 1

( , ) 2
0 0

2 2

0 0 0

D

N

N

N

N

N

N

N

N

N

       

     

 
   

 





        
        
        
      
      
      
 

     
       

 
 
 

  
 

   

 

B. MORGAN- VOYCE COLLOCATION METHOD 

For constructing the fundamental matrix equation , we first consider the collocation points defined by;  

for 0,1,..., ,i N  

                                                          
,i

b a
x a i

N


   (Standard)

 

and           

cos ,
2 2

i

b a b a i
x

N

   
   

 
 (Chebyshev-Lobatto)                                                                      (10)

                               

Then, by using the collocation points (10) into (1), we have the system of the equations 

1
( ) ( )

0 0

( ) ( ) ( ) ( ) ( )
m J

k j

k i i j i i i

k j

f x y x p x y x g x 


 

   
 

or briefly the corresponding matrix equation 

( ) ( )

0 0

( , )
m J

k j

k j

k j

F Y PY G 
 

  
    

                                                                                               (11)

                                                 

where 

 0 1( ) ( ) ( )k k k k NF diag f x f x f x , 
0 1( ) ( ) ( )j j j j NP diag p x p x p x   

 

( ) ( )
00 0

( ) ( )
1( ) ( )1 1

( ) ( )

( )( ) ( )

( )( ) ( )
, ( , )

( )( ) ( )

Y Y G

k j

k j

k j

k j
NN N

g xy x y x

g xy x y x

g xy x y x

 

 
 

 

     
     

       
     
     

        

 , 
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On the other hand,by substituting the collocation points (10) into (8) and (9), we obtain the matrix 

relations 

( )

0 0

( )

( ) 1 1

( )

( ) ( )( )

( ) ( )( )
( )

( ) ( )( )

X T R A

X T R A
Y X T R A

X T R A

k T k T

k T k T

k T k T

k T k T

N N

y x x

y x x

y x x

   
   
     
   
   
        

( )

0 0

( )

( ) 1 1

( )

( ) ( ) ( , )( )

( ) ( ) ( , )( )
( , ) ( , )( )

( ) ( ) ( , )( )

X D T R A

X D T R A
Y XD T R A

X D T R A

j T j T

j T j T

j T j T

j T j T

N N

y x x

y x x

y x x

   

   
   

   

   
   

     
   
   

        

so that 

0 0 0

1 1 1

( ) 1

( ) 1

( ) 1

X

X
X

X

N

N

N
N N N

x x x

x x x

x x x

  
  
   
  
  
    

.

 

Therefore the fundamental matrix equation (11) becomes 

0 0

( ) ( , )( )F X T X T R A G
m J

T k T j T

k j

k j

P D  
 

 
  

 
  .

                                                                    (12) 

Now we can find the fundamental matrix form for the conditions (2), by using the relation (8), as 

follows: 

1

0

( ( ) ( ))( ) , 0,1,..., 1X X T R A
m

T k T

lk lk l

k

a a b b l m




                                                                  (13)

 

Then we can write the fundamental matrix equations (12) and (13) corresponding to Eq.(1) and the 

conditions (2), respectively, as follows:

 

WA G  or  ;W G                                                                                                                  (14) 

and 

U Al l  or  ; , 0,1,..., 1Ul l l m                                                                                          (15)  
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where 

W pqw    =
0 0

( ) ( , )( )F X T P XD T R
m J

T k T j T

k j

k j

 
 

 
 

 
   

and 

0 1Ul l l lN
u u u   

1

0

( ( ) ( ))( ) , 0,1,..., 1X X T R
m

T k T

lk lk

k

a a b b l m




    .

 

Consequently, to obtain the solution of Eq.(1) under the conditions (2), by replacing the row matrices 

(15) by the last (or any) m rows of the augmented matrix (14), we have the required matrix 

[ ; ]W G

  

or =WA G

                                                                                                                

(16)

        

 

If 

  

[ ; ] 1W W Grank rank N   , then we can write  
1( )A W G


 

. Thus the matrix A  
(thereby 

the coefficients 0 1, ,..., Na a a ) is uniquely determined. Also, Eq.(1) under the conditions (2) has a 

unique solution.This solution is given by the truncated Morgan-Voyce series (3). 

C. ACCURACY OF SOLUTIONS AND RESIDUAL ERROR ESTIMATION 

We can easily check the accuracy of the obtained solutions as follows. Since the turncated Morgan- 

Voyce series (3) is approximate solution of (1), when the function ( )Ny x and its derivatives are 

substituted in Eq.(1), the resulting equation must be satisfied approximately; that is, for 

 , , 0,1,..., ,rx x a b r N    

1
( ) ( )

0 0

( ) ( ) ( ) ( ) ( ) ( ) 0
m J

k j

N r k r N r j r N r r r

k j

R x f x y x p x y x g x 


 

       

or 

( ) 10 rk

N rR x


 , ( rk is any positive integer). 

 

If max 10 10rk k  ( k is an positive integer) is prescribed,  then the truncation limit N is increased 

until the difference ( )N rR x  at each of the points becomes smaller than the prescribed 10 k
. 

On the other hand, by means of the residual function defined by ( )NR x  and the mean value of the 

function ( )NR x  on the interval   ,a b , the accuracy of the solution can be controlled and the error 

can be estimated  7 9,14 22  .  If  ( ) 0NR x   when N  is sufficienty large enough, then the error 

decreases. Also, by using the Mean-Value Theorem, we can estimate the upper bound of the mean 

error 
NR  as follows: 
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( ) ( )

b b

N N

a a

R x dx R x dx    and   ( ) ( ) ( ),

b

N N

a

R x dx b a R c a c b     

( ) ( ) ( )

b

N N

a

R x dx b a R c    ( ) ( ) ( )

b

N N

a

b a R c R x dx   
 

⇒ 

( )

( )

b

N

a
N N

R x dx

R c R
b a

 



 

 

III. EXAMPLES  

1. Let us first consider the second order linear delay difference equation with variable coefficients 

( ( ( 23 7
y x)- y x)- y x+2)= - x - 4x -7

4 4
  

under the initial conditions 

(0) 0y   and (0) 0y  . 

The exact solution of the problem is given as 

2(y x) x  

and we seek the solution (y x)  as truncated Morgan- Voyce series for N 3   

2

0

( ) ( )n n

n

y x a B x


  

We have the coefficients from Eq. (1)  

2

0 1 2 0

3 7
( ) , ( ) 0, ( ) 1, ( ) 1, ( ) 4 7

4 4
f x f x f x p x g x x x           

Then, the collocation points for N 3 ; 
0 1 2 3

1 2 1
0, , ,

3 3 3
x x x x     are obtained. And the    

fundamental matrix equation of the problem is defined by 

 

2 1

0 0

( ) ( , )( )W F X T P XD T R
T k T j T

k j

k j

 
 

 
  
 
 

.

 

If these matrices are substituted in (16), it is obtained linear algebraic system. This system yields the 

approximate solution of the problem 

 

( ) 3 2

N

1 1 1
y x = - x + x + x -

338 100 839
. 
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                         Table 1.  The comparison between approximate and exact solutions for the different N values and 

their absolute errors EN. 

 

x 

Exact 

solution 

 

N=3 

 

EN 
 

N=8 

 
EN 

0.0 0.00 0.116E-8 1.16438E-9 0.00 0.0000 

0.1 0.01 0.0100 1.38000E-9 0.01 0.0000 

0.2 0.04 0.0400 1.82000E-9 0.04 0.0000 

0.3 0.09 0.0900 2.46000E-9 0.09 0.0000 

0.4 0.16 0.1600 3.30000E-9 0.16 0.0000 

0.5 0.25 0.2500 4.30000E-9 0.25 0.0000 

0.6 0.36 0.3600 5.50000E-9 0.36 0.0000 

0.7 0.49 0.4900 6.80000E-9 0.49 0.0000 

0.8 0.64 0.6400 8.20000E-9 0.64 0.0000 

0.9 0.81 0.8100 9.60000E-9 0.81 0.0000 

1.0 1.00 1.0000 1.10000E-8 1.00 0.0000 

 

Table 1 shows the solutions of the problem for various N  and their absolute error for the same N  

values. As we see from the Table 1, the error decreases when N value is choosen large enough. Then, 

we have the exact solution 2(y x) x  for the N 8 . Due to this reason, we have the following example 

for different N  values. 

 

2.  Let us find the Morgan- Voyce series solution of the following equation 

( ( (x-1y x)+ y x)+e y x -1)=1  

with (0) 1y  . The exact solution of this problem is 
( )( -xy x) e . Using the same procedure in 

previous example for N 5,10,20 . The matrices form in Eq.(16) are computed. Hence linear 

algebraic system is gained. This system is approximately solved using the Maple18. 

The obtained results are demonstrated in  
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
N=5

N=10

N=20

Exact Solution

 
                                                    (a) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

 

 
N

e
=5

N
e
=10

N
e
=20

 
(b) 

 

Figure 1. (a) Numerical and exact solutions of Example 2 for the different N values. 

 (b) Error functions of the Example 2 for the various EN. 

 

As can be seen in Fig. 1 (a) and (b), some differences between different N  values. Familarly, we see 

that we approximate the exact solution by large N  values. To obtain Fig. 1. (a) and (b) the equations 

can be written down with Matlab2013. 

 
                       

 

 

 

 



262 

 

Table 2. The comparison between approximate and exact solution for the different N values and their absolute 

errors EN. 

 

x 

Exact 

solution 

 

N=5 

 

EN 
 

N=10 

 
EN 

 

N=20 

 
EN 

0.0 1.00000 0.99999 4.00000E-9 1.00000 4.00000E-9 1.00000 7.10000E-18 

0.1 0.90483 0.90928 4.44475E-3 0.90523 3.94605E-4 0.90483 2.66089E-10 

0.2 0.81873 0.82671 7.98690E-3 0.81943 7.09007E-4 0.81873 4.78103E-10 

0.3 0.74081 0.75153 1.07211E-2 0.74176 9.51724E-4 0.74081 6.41782E-10 

0.4 0.67032 0.68304 1.27291E-2 0.67145 1.13006E-3 0.67032 7.62050E-09 

0.5 0.60653 0.62061 1.40823E-2 0.60778 1.25034E-3 0.60653 8.43163E-09 

0.6 0.54888 0.56365 1.48435E-2 0.55012 1.31806E-3 0.54888 8.88830E-09 

0.7 0.49658 0.51165 1.50681E-2 0.49792 1.33806E-3 0.49658 9.02317E-09 

0.8 0.44932 0.46413 1.48047E-2 0.45064 1.31468E-3 0.44932 8.86545E-08 

0.9 0.40656 0.42066 1.40950E-2 0.40782 1.25184E-3 0.40656 8.44171E-08 

1.0 0.36787 0.38085 1.29734E-2 0.36903 1.15322E-3 0.36787 7.77671E-08 

 

Table 2 shows the solutions of the problem for various N  and their absolute error for the same N  

values. Similarly, In the Table 2 the error decreases when N value is choosen large enough. 

 

IV. CONCLUSION 

In recent years, the studies of high order linear delay difference equation have attracted the attention of 

many mathematicians and physicists. A considerable advantage of the Morgan- Voyce method is that 

the approximate solutions are found very easily by using computer programs. Shorter computation 

time and lower operation count results in reduction of cumulative truncation errors and improvement 

of overall accuracy. Illustrative examples are included to demonstrate the validity and applicability of 

the technique, and performed on the computer using a program written in Maple18. To get the best 

approximating solution of the equation, we take more forms from the Morgan- Voyce expansion of 

functions, that is, the truncation limit N must be chosen large enough. Illustrative examples with the 

satisfactory results are used to demonstrate the application of this method. Suggested approximations 

make this method very attractive and contributed to the good agreement between approximate and 

exact values in the numerical example. 
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As a result, the efficiency of the employed method is confirmed. We assured the correctness of the 

obtained solutions by Maple18, it provides an extra measure of confidence in the results. We predict 

that the Morgan- Voyce expansion method will be a promising method for investigating exact analytic 

solutions to linear delay difference equations. The method can also be extended to the functional 

equations with hybrid delay, but some modifications are required. 
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