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Abstract. The work handles a Fredholm integro-differential equation involv-
ing boundary layers. A fitted second-order difference scheme has been created

on a uniform mesh utilizing interpolating quadrature rules and exponential

basis functions. The stability and convergence of the proposed discretization
technique are analyzed and one example is solved to display the advantages of

the presented technique.

1. Introduction

In the study, we deal with singularly perturbed Fredholm integro-differential
equation (SPFIDE) in the form:

Lv := L1v + λ

l∫
0

M(x, ζ)v(ζ)dζ = f(x), 0 < x < 1, (1)

v(0) = A, v(l) = B, (2)

where L1v = −εv′′ (x)+a(x)v (x), 0 < ε≪ 1 is a singular perturbation parameter, λ
is a given parameter. The functions a(x) ≥ α > 0, f(x) andM(x, ζ) are considered
to be sufficiently smooth and satisfy certain regularity criteria. The solution v(x)
of (1)-(2) has in general boundary layers near x = 0 and x = l.
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Singularly perturbed problems (SPPs) are defined by a small parameter ε mul-
tiplying the highest order derivative term. The solution to them generally involves
boundary or initial layers. To quote a few, the exact solutions of SPPs and their
applications may be found in [15, 18, 21]. SPPs have a wide range of applications
in the fields of population dynamics, nanofluid, neurobiology, fluid dynamics, vis-
coelasticity, heat transfer problems, simultaneous control systems and mathematical
biology etc. It is worth noting that when a small ε parameter is multiplied with the
derivative, the great majority of classic numerical techniques on uniform meshes
are ineffective at solving issues unless the step-size of discretization is drastically
reduced. Thus, as the perturbation parameter ε goes smaller, the truncation error
becomes boundless. To solve SPPs numerically, general approaches are done with
the fitted finite difference method and are widely utilized [9, 12,19,20].

Most engineering applications and scientific disciplines have been expressed by
Fredholm integro-differential equations (FIDEs). Plasma physics, biomechanics,
financial mathematics, artificial neural networks, oceanopraphy, epidemic models,
electromagnetic theory, fluid mechanics, biological and population dynamics pro-
cesses are amongst these (see, e.g., [5, 7, 13]). For this reason, several studies have
been conducted on FIDEs. Solving problems of this type is quite difficult. There-
fore, we require robust and consistent numerical methods [6,8,14,16,23,26](see, as
well as the references therein).

These investigations in relation to FIDEs are just in relation to regular situations.
Numerical examination of SPFIDEs has not been widespread till recently. Finite
difference schemes for solving linear SPFIDEs are constructed in [1, 2]. A second
order numerical tecnique for solving FIDE with boundary layer is developed in
[10,11].

The goal of this work is to propose a uniform convergence numerical technique
to solve linear second-order FIDEs with boundary layers. A numerical technique
that uses suitable interpolating quadrature rules and exponential basis functions is
proposed on a uniform mesh. Error estimates are acquired in the discrete maxi-
mum norm with regard to the perturbation parameter. To corroborate theoretical
estimates, numerical experiments are conducted and the results are presented.

The rest of the contents is organized kind of following. In Section 2, some
properties of solutions (1)–(3) are presented, as well as a finite difference scheme.
In Section 3, the stability and convergence analysis of this scheme are shown. In
Section 4, the numerical results of an example to verify the theoretical estimates
are presented. Finally, the work ends with a summary of the conclusions in Section
5.

2. Discretization Techniques

We have mentioned certain analytical bounds here, which we will use later in
our error analysis.
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Lemma 1. Let a, f ∈ C2[0, l], ∂mM
∂xm ∈ C[0, l]2, (m = 0, 1, 2) and

|λ| < α

max
0≤x≤l

l∫
0

|M(x, ζ)| dζ

.

Then the solution u(x) of the problem (1)-(2) satisfies the following estimates:

∥v∥∞ ≤ C, (3)∣∣∣v(k)(x)∣∣∣ ≤ C

{
1 + ε−

k
2

(
e
−

√
αx√
ε + e

−
√

α(l−x)√
ε

)}
, (k = 1, 2) , 0 ≤ x ≤ 1. (4)

Proof. The proof of Lemma 1 is by like approach as in [2, 10,17]. □

Let ωN be an equidistant mesh on [0, l]:

ωN = {xi = ih, i = 1, 2, ..., N − 1, h = lN−1}, ω̄N = ωN ∪ {x0 = 0, xN = l}.

We utilize the following difference approximations for any mesh function q(x) de-
fined on ω̄N :

q
x,i

=
qi+1 − qi

h
, q

x,i
=
qi − qi−1

h
, q

xx,i
=
q
x,i

− q
x,i

h
.

For the equation (1), we begin with the following integral identity:

1

χih

xi+1∫
xi−1

Lv(x)ψi(x)dx =
1

χih

xi+1∫
xi−1

f(x)ψi(x)dx, 1 ≤ i ≤ N − 1, (5)

with the basis functions

ψ(x) =



ψ
(1)
i (x) ≡ sinhγi(x−xi)

sinhγih
, x ∈ (xi−1, xi),

ψ
(2)
i (x) ≡ sinhγi(xi+1−x)

sinhγih
, x ∈ (xi, xi+1),

0, x /∈ (xi−1, xi+1),

where

γi =

√
a(xi)

ε
, χi =

1

h

xi+1∫
xi−1

ψi(x)dx =
2tanh(γih/2)

γih
.

We should remark that the functions ψ
(1)
i and ψ

(2)
i are the solutions to the following

problems:

− εψ′′ + aiψ = 0, xi−1 < x < xi, ψ(xi−1) = 0, ψ(xi) = 1,

− εψ′′ + aiψ = 0, xi < x < xi+1 ψ(xi) = 1, ψ(xi+1) = 0.
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By using the technique of the exact difference approximations [3, 4, 11, 24, 25] (see
also [22], pp. 207-214), it follows that

− ε

χih

xi+1∫
xi−1

ψi(x)v
′′(x)dx+

ai
χih

ai

xi+1∫
xi−1

ψi(x)v(x)dx =

− ε

χi

1 + aiε
−1

xi∫
xi−1

ψ
(1)
i (x)(x− xi)dx

 vxx,i

+
ai
χi

h−1

xi∫
xi−1

ψ
(1)
i dx+ h−1

xi+1∫
xi

ψ
(2)
i dx

 vi = −εθivxx,i + aivi

where

θi =
aiρ

2

4sinh2
(√
ai

ρ
2

) , (
ρ =

h√
ε

)
. (6)

Thus

1

χih

xi+1∫
xi−1

εv′′ (x)ψi (x) dx+
1

χih

xi+1∫
xi−1

a (x) v (x)ψi (x) dx = −εθivxx,i + aivi

+R
(1)
i , (7)

with remainder term

R
(1)
i =

1

χih

xi+1∫
xi−1

[a(x)− a(xi)] v(x)ψi(x)dx. (8)

Furthermore, for the right-side in (5) we get

1

χih

xi+1∫
xi−1

f(x)ψi(x)dx = fi +R
(2)
i , (9)

with remainder term

R
(2)
i =

1

χih

xi+1∫
xi−1

[f(x)− f(xi)]ψi(x)dx. (10)

For integral term that include the kernel function, from (5), we have

λ

χih

xi+1∫
xi−1

dxψi(x)

l∫
0

M(x, ζ)v(ζ)dζ = λ

l∫
0

M(xi, ζ)v(ζ)dζ
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+
λ

χih

xi+1∫
xi−1

dxψi(x)

xi+1∫
xi−1

 l∫
0

∂2M (ξ, ζ)

∂ξ2
v (ζ) dζ

M1 (x, ξ) dξ,

where

M1 (x, ξ) = T1 (x− ξ)− T1 (xi − ξ) + (2h)
−1

(xi+1 − ξ) (xi − x) ,

T1 (λ) = λ, λ ≥ 0; T1 (λ) = 0 λ < 0.

We computed by using composite trapezoidal integration with the remainder term
in integral form for the second integral term in the left side of the identity of (5):

l∫
0

M(xi, ζ)v(ζ)dζ =

N∑
j=0

ℏjMijvj +
1

2

N∑
j=1

xj∫
xj−1

(xj − ξ) (xj−1 − ξ)
(
M (xi, ξ) v (ξ)

)′′
dξ,

where

ℏ0 = ℏN =
h

2
, ℏi = h, 1 ≤ i ≤ N − 1.

Thus we get

λ

χih

xi+1∫
xi−1

dxψi(x)

l∫
0

M(x, ζ)v(ζ)dζ = λ

N∑
j=0

ℏjMijvj +R
(3)
i , (11)

with remainder term

R
(3)
i =

λ

χih

xi+1∫
xi−1

dxψi(x)

xi+1∫
xi−1

 l∫
0

∂2M (ξ, ζ)

∂ξ2
v (ζ) dζ

M1 (x, ξ) dξ

+
1

2
λ

N∑
j=1

xj∫
xj−1

(xj − ξ) (xj−1 − ξ)
(
M (xi, ξ) v (ξ)

)′′
dξ. (12)

Combining (7), (9) and (11) in (5) we obtain the following difference scheme:

LNvi := −εθivxx,i + aivi + λ

N∑
j=0

ℏjMijvj +Ri = fi, 1 ≤ i ≤ N − 1, (13)

with remainder term
Ri = R

(1)
i +R

(2)
i +R

(3)
i , (14)

where the remainder terms R
(1)
i , R

(2)
i and R

(3)
i are defined by (8), (10) and (12)

respectively.
Based on (13) we achieve the following difference approximate for approximating

(1)-(2):

LNyi := −εθiyxx,i + aiyi + λ

N∑
j=0

ℏjMijyj = fi, 1 ≤ i ≤ N − 1, (15)
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y0 = A, yN = B, (16)

where θi is defined by (6).

3. Error Analysis

For the error function zi = yi − vi (i = 0, 1, ..., N) considering (13) and (15), we
get

LNzi := Ri, 1 ≤ i ≤ N − 1, (17)

z0 = 0, zN = 0, (18)

where the remainder term Ri is defined by (14).

Theorem 1. Let ∂mM
∂xm ∈ C2 [0, l]

2
, (m = 0, 1, 2), M(x, 0) = M(x, l) = 0; a, f ∈

C2 [0, l], a′(0) = a′(l) = 0, and

|λ| < α

max
1≤i≤N

N∑
j=0

ℏj |Mij |

.

Then for the error of the scheme (15)-(16), we have

||y − v||∞,ω̄N
≤ Ch2.

Proof. Applying the discrete maximum principle to discrete problem (17) and (18),
we get

∥z∥∞,ω̄N
≤ α−1

∥∥∥∥∥∥R− λ

N∑
j=0

ℏjMijzj

∥∥∥∥∥∥
∞,ωN

≤ α−1 ∥R∥∞,ωN
+ α−1 |λ| max

1≤i≤N

N∑
j=0

ℏj |Mij | ∥z∥∞,ω̄N
.

Hence

∥z∥∞,ω̄N
≤

α−1 ∥R∥∞,ωN

1− α−1 |λ| max
1≤i≤N

N∑
j=0

ℏj |Mij |

,

which leads to

∥z∥∞,ωN
≤ C ∥R∥∞,ωN

. (19)

Now we estimate the remainder terms R
(1)
i , R

(2)
i and R

(3)
i separately.

First we will show that, for R
(1)
i the estimate∣∣∣R(1)

i

∣∣∣ ≤ Ch2, (20)
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holds. Using relations

v(x) = v(xi) + (x− xi) v
′ (ηi) , ηi ∈ (xi, x) ,

a (x) = a (xi) + (x− xi) a
′(xi) +

(x− xi)
2

2
a′′ (ξi) , ξi ∈ (xi, x)

and
xi+1∫

xi−1

(x− xi)ψi (x) dx = 0,

we take

R
(1)
i =

1

χih

xi+1∫
xi−1

[a(x)− a(xi)] v(x)ψi(x)dx =
a′ (xi) v(xi)

χih

xi+1∫
xi−1

(x− xi)ψi (x) dx

+
a′ (xi)

χih

xi+1∫
xi−1

(x− xi)
2
v′ (ηi (x))ψi (x) dx

+
1

2χih

xi+1∫
xi−1

(x− xi)
2
a′′ (ξi (x)) v (x)ψi (x) dx

≡ a′ (xi)

χih

xi+1∫
xi−1

(x− xi)
2
v′ (ηi (x))ψi (x) dx

+
1

2χih

xi+1∫
xi−1

(x− xi)
2
a′′ (ξi (x)) v (x)ψi (x) dx. (21)

Since a ∈ C2 [0, l], |v (x)| ≤ C and |x−xi| ≤ h for the second term in the right side
of (21), we have

1

2χih

∣∣∣∣∣∣
xi+1∫

xi−1

(x− xi)
2
a′′ (ξi (x)) v (x)ψi (x) dx

∣∣∣∣∣∣ ≤ Ch2

χih

xi+1∫
xi−1

ψi (x) dx

= O
(
h2

)
. (22)

Next, according to Lemma 1, we take the following inequality

|v′(ηi)| ≤ C

{
1 +

1√
ε

(
e
−

√
αηi√
ε + e

−
√

α(l−ηi)√
ε

)}
≤ C

{
1 +

1√
ε

(
e
−

√
αxi−1√

ε + e
−

√
α(l−xi+1)√

ε

)}
, 1 < i < N − 1.
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Hence, for the first term in the right side of (21), we have

1

χih

∣∣∣∣∣∣a′ (xi)
xi+1∫

xi−1

(x− xi)
2
v′ (ηi (x))ψi (x) dx

∣∣∣∣∣∣ ≤ C

χih
|a′ (xi)|

xi+1∫
xi−1

(x− xi)
2
ψi (x) dx

+
C√
εχih

|a′ (xi)|
xi+1∫

xi−1

(x− xi)
2
ψi (x) e

−
√

αxi−1√
ε dx

+
C√
εχih

|a′ (xi)|
xi+1∫

xi−1

(x− xi)
2
ψi (x) e

−
√

αxi+1√
ε dx. (23)

We can easily view that the first term in the right side of (23) is that O(h2).
From a′(0) = 0 and xe−x ≤ e−

x
2 , (x ≥ 0) for the second term of (21), we have∣∣∣∣∣∣ C√

εχih
a′ (xi)

xi+1∫
xi−1

(x− xi)
2
ψi (x) e

−
√

αxi−1√
ε dx

∣∣∣∣∣∣
≤ C√

εχih

∣∣a′′ (ξ̄i)∣∣ e−√
αxi−1√

ε

xi+1∫
xi−1

(x− xi)
2
ψi (x) dx

≤ Ch2
xi√
ε
e
−

√
αxi−1√

ε

≤ Ch2
xi
xi−1

xi−1√
ε
e
−

√
αxi−1√

ε

≤ Ch2i (i− 1)
−1
e
−

√
αxi−1
2
√

ε

≤ Ch2, i > 1.

The same evaluation is achieved for the third term in the right side of (23) from
a′(l) = 0, for i < N − 1. Thus, identity (21) is proved for i = 2, 3, ..., N − 2.

Also for i = 1, using relations

a (x) = a (x1) + (x− x1) a
′(x1) +

(x− x1)
2

2
a′′ (ξ1) , ξ1 ∈ (x1, x)

and

v(x) = v(x0) +

x∫
x0

v′ (ξ) dξ,

we get

R
(1)
1 =

1

χ1h
a′ (x1)

x2∫
x0

(x− x1)

 x∫
x0

v′ (ξ) dξ

ψ1 (x) dx
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+
1

2χ1h

x2∫
x0

(x− x1)
2
a′′ (ξ1 (x)) v (x)ψ1 (x) dx. (24)

From (22), the second term in the right side of (24) will be O(h2). From a′ (0) and
Lemma 1, we can evaluate the first as following∣∣∣∣∣∣a

′ (x1)

χ1h

x2∫
x0

(x− x1)

 x∫
x0

v′ (ξ) dξ

ψ1 (x) dx

∣∣∣∣∣∣ ≤ |a′ (x1)|h
x2∫

x0

|v′ (x)| dx

≤ Cx1h |a′′ (η̄1)|
x2∫

x0

{
1 +

1√
ε

(
e
−

√
αx√
ε + e

−
√

α(l−x)√
ε

)}
dx

≤ Ch2

h+
1√
ε

x2∫
x0

e
−

√
αx√
ε dx


≤ Ch2

{
h+

√
α
−1

(
1− e

2
√

αh√
ε

)}
= O

(
h2

)
.

Thus, ∣∣∣R(1)
1

∣∣∣ = O
(
h2

)
are proved. The proof of

∣∣∣R(1)
N−1

∣∣∣ = O
(
h2

)
is similar. So, the inequality (20) is

proved.
Next, it is not difficult to see that, for f ∈ C2[0, l]∣∣∣R(2)

i

∣∣∣ = O
(
h2

)
, 1 ≤ i ≤ N − 1. (25)

Finally, for R
(3)
i we have∣∣∣R(3)

i

∣∣∣ ≤
∣∣∣∣∣∣ λχih

xi+1∫
xi−1

dxψi(x)

xi+1∫
xi−1

 l∫
0

∂2M (ξ, ζ)

∂ξ2
v (ζ) dζ

M1 (x, ξ) dξ

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
1

2
λ

N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1)
(
M (xi, ξ) v (ξ)

)′′
dξ

∣∣∣∣∣∣∣ . (26)

By virtue of boundedness of ∂2M
∂x2 , v (x) and |M1(x, ζ)| ≤ Ch the first term in the

right side of (26) will be O(h2).
Rearranging the second term in the right side of (26) gives

1

2
|λ|

N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1)
∣∣(M (xi, ξ) v (ξ)

)∣∣′′ dξ



A UNIFORM SECOND-ORDER NUMERICAL APPROXIMATION 963

≤ 1

2
|λ|

N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1) |M ′′ (xi, ξ)| |v (ξ)| dξ

+ |λ|
N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1) |M ′ (xi, ξ)| |v′ (ξ)| dξ

+
1

2
|λ|

N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1) |M (xi, ξ)| |v′′ (ξ)| dξ. (27)

Hence, from |v (x)| ≤ C and ∂2M
∂x2 ∈ C2[0, l] for the first term on the right side (27)

will be O(h2).
For the second term in the right side (27), we have the estimate

|λ|
N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1) |M ′ (xi, ξ)| |v′ (ξ)| dξ ≤ |λ|h2
l∫

0

|M ′ (xi, ξ)| |v′ (ξ)| dξ

≤ |λ|h2
l∫

0

{|M ′ (xi, ξ)| |v (ξ)|+ |M (xi, ξ)| |v′ (ξ)|} dξ.

From here using Lemma 1 it is obtained the estimate

|λ|
N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1) |M ′ (xi, ξ)| |v′ (ξ)| dξ

≤ C |λ|h2
l∫

0

(
1 + 1⧸

√
ε

(
e
−

√
αξ√
ε + e

−
√

α(l−ξ)√
ε

))
dξ

≤ Ch2. (28)

For the third term in the right side (27), by virtue of (4) for k = 2, we have

1

2
|λ|

N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1) |M (xi, ξ)| |v′′ (ξ)| dξ

≤ C

N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1) |M (xi, ξ)|
{
1 +

1

ε
e
−

√
αξ√
ε +

1

ε
e
−

√
α(l−ξ)√

ε

}
dξ

≤ Ch2

1 +

N∑
j=1

xj∫
xj−1

|M(xi, ξ)|
(
1

ε
e
−

√
αξ√
ε +

1

ε
e
−

√
α(l−ξ)√

ε

) .



964 M. E. DURMAZ, M. CAKIR, G. AMIRALI

Taking into account the relations (the partial derivatives are estimated at interme-
diate points, as required by the mean value theorem, as indicated by the bar.)

M(xi, ξ) =M(x, 0) +
¯∂M

∂ξ
ξ, M(x, 0) = 0,

we get

Ch2
N∑
j=1

xj∫
xj−1

|M(xi, ξ)|
1

ε
e
−

√
αξ√
ε dξ = Ch2

N∑
j=1

xj∫
xj−1

∣∣∣∣M(xi, 0) +
¯∂M

∂ξ
ξ

∣∣∣∣ 1εe−
√

αξ√
ε

≤ Ch2
l∫

0

ξ

ε
e
−

√
αξ√
ε dξ,

from which after taking into consideration xe−x ≤ e−
x
2 , we obtain

Ch2
N∑
j=1

xj∫
xj−1

|M(xi, ξ)|
1

ε
e
−

√
αξ√
ε dξ ≤ Ch2

1√
α

l∫
0

1√
ε
e
−

√
αξ

2
√

ε dξ

= Ch2
2

α

(
1− e

−
√

αl√
ε

)
≤ Ch2.

Analogously, after using the relation

M(xi, ξ) =M(xi, l) +
¯∂M

∂ξ
(ξ − l), M(x, l) = 0,

it is not difficult to confirm that

Ch2
N∑
j=1

xj∫
xj−1

|M(xi, ξ)|
1

ε
e
−

√
α(l−ξ)√

ε dξ ≤ Ch2.

Therefore, we obtain

1

2
|λ|

N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1) |M (xi, ξ)| |v′′ (ξ)| dξ ≤ Ch2. (29)

Thus, it can be easily seen that the first term in the right side of (26) is that O(h2).
In addition, after taking into account (28) and (29) we obtain∣∣∣R(3)

i

∣∣∣ ≤ Ch2. (30)

From (20), (25) and (30), we have

|Ri| ≤ Ch2. (31)

The bound (19) together with (31) finish the proof. □



A UNIFORM SECOND-ORDER NUMERICAL APPROXIMATION 965

4. Numerical Calculates

In this section, theoretical calculates are tested on one sample.
Our particular example is

Lv := −εv′′ (x) +
(
2− cos2 (πx)

)
v (x) +

1

2

1∫
0

(
exsin(πζ) − 1

)
v(ζ)dζ = (1 + x)

−1
,

(0 < x < 1) ,

v(0) = 1, v(1) = 0.

The exact solution to this problem is unknown. For this reason, we estimate errors
and calculate solutions using the double-mesh method, which compares the obtained
solution to a solution computed on a mesh that is twice as fine. We introduce
the maximum point-wise errors and the computed ε-uniform maximum point-wise
errors as

eNε = max
i

|yε,Ni − ỹε,2N2i |∞,ωN
, eN = max

ε
eNε ,

where ỹε,2N2i is the approximate solution of the related method on the mesh

ω̃2N = {x i
2
: i = 0, 1, ..., 2N}, xi+ 1

2
=
xi + xi+1

2
for 0 ≤ i ≤ N − 1.

We also describe the computed ε-uniform the rates of convergence and the rates of
convergence as follows

pNε =
ln

(
eNε
e2Nε

)
ln 2

, pN =
ln

(
eN

e2N

)
ln 2

.

The rate of convergence of the difference approximation is significantly in agreement
with the theoretical analysis, as shown in the Table 1.

5. Conclusion

In this paper, we described a new second-order difference scheme, which was
constructed on the uniform mesh by using composite trapezoidal rule for integral
term involving kernel function to solve linear FIDEs with singular perturbation. We
tested the technique on one example with various values of ε and N to demonstrate
the appropriateness of the method. Numerical investigations can be sustained for
more sophisticated types such as partial integro-differential equations, nonlinear,
delay form, higher dimensional, etc.

Author Contribution Statements The authors contributed equally to this work.
All authors read and approved the final copy of this paper.
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ε N = 26 N = 27 N = 28 N = 29 N = 210

1 0,00873286 0,00220145 0,00055304 0,00013874 0,00003471

1,988 1,993 1,995 1,999

10−2 0,01038533 0,00262165 0,00065997 0,00016591 0,00004165

1,986 1,99 1,992 1,994

10−4 0,01110798 0,00281381 0,00071081 0,00017931 0,00004514

1,981 1,985 1,987 1,99

10−6 0,01173901 0,00297572 0,00075327 0,00019055 0,00004817

1,98 1,982 1,983 1,984

10−8 0,01168824 0,00296902 0,00075366 0,00019131 0,00004853

1,977 1,978 1,978 1,979

eN 0,01173901 0,00297572 0,00075366 0,00019131 0,00004853

pN 1,98 1,982 1,978 1,979

Table 1. Maximum point-wise errors and convergence rates for
various ε and N values.

Declaration of Competing Interests The authors declare that they have no
known competing financial interests or personal relationships that could have ap-
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