
*Corresponding Author Vol. 19 (No. 3) / 158 

International Journal of Thermodynamics (IJoT) Vol. 19 (No. 3), pp. 158-161, 2016 
ISSN 1301-9724 / e-ISSN 2146-1511 doi: 10.5541/ijot.5000160131 
www.ijoticat.com  Published online: September 1, 2016 

 

 

Two Parameter Deformed Non-Extensive Entropy from the Two-Parameter 

Quantum Number 
 

Won Sang Chung* 
 

Department of Physics and Research Institute of Natural Science,  

College of Natural Science, Gyeongsang National University, Jinju 660-701, Korea 

E-mail : *mimip4444@hanmail.net 

 

Received 19 December 2015, Accepted 15 April 2016 

 

Abstract  
 

In this paper, two parameter (p, r) deformed non-extensive entropy is constructed from the view of the two-

parameter quantum number. The time evolution of two parameter deformed entropy is obtained to give the condition 

that the entropy increases. For special example, 𝑞 =  1 +  ε , 𝑟 =  1 − ε for a sufficiently small ε is considered and 

up to a first order in ε, the MaxEnt probability distribution and the deformed internal energy is computed. 
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1. Introduction 

There is a growing interest in generalizing the 

Boltzmann-Gibbs statistical mechanics. Because the 

entropy plays a fundamental role in the statistical physics, 

the entropy should be deformed so as to construct a new 

(deformed) theory. The first attempt has been accomplished 

by Tsallis [1,2]. Based on the fact that Boltzmann-Gibbs 

theory is not adequate for various complex, natural, 

artificial and social system, he introduced the non-extensive 

entropy is given by 

 

𝑆𝑞 = 𝑘  𝑝𝑖
𝑞𝑊

𝑖 − 1 /(1 − 𝑞)       (1) 

 

where 𝑘 is a Boltzmann constant. The non-extensive 

Boltzmann-Gibbs entropy has attracted much interest 

among physicists, chemists and mathematicians who study 

thermodynamics of complex system [3-6]. When the 

deformation parameter 𝑞 goes to 1, the non-extensive 

entropy reduces to the ordinary one. 

The entropy (1) can be obtained from the quantum 

derivative. Abe [7] rewrote the Tsallis entropy as follows: 

 

𝑆𝑞 = −𝑘
𝑑

𝑑𝑞𝛼
  𝑝𝑖

𝛼  𝛼=1
𝑊
𝑖=1              (2) 

 

where 
𝑑

𝑑𝑞𝛼
 is Jackson q-derivative defined by 

 
𝑑

𝑑𝑞𝛼
𝑓 𝛼 =

𝑓 𝑞𝛼  −𝑓 𝑥 

(𝑞−1)𝛼
        (3) 

 

This derivative is related to the following q-number: 

 

 𝑥 𝑞 =
𝑞𝑥−1

𝑞−1
         (4) 

 

Considering the system composed of two independent 

subsystems having the physical quantities  𝐴1, 𝐴2, 

respectively and assuming that the physical quantity is 

extensive  (A = 𝐴1 + 𝐴2), we have 

 
 𝐴1 + 𝐴2 𝑞 =  𝐴1 𝑞 +  𝐴2 𝑞 + (𝑞 − 1) 𝐴1 𝑞  𝐴2 𝑞           (5) 

 

which gives the psuedo-additivity  relation: 

 

𝑆𝑞  𝑝1⨂ 𝑝2 = 𝑆𝑞  𝑝1 + 𝑆𝑞  𝑝2 +  1 − 𝑞 𝑆𝑞  𝑝1 𝑆𝑞  𝑝2     (6) 

 

In this paper, we consider the two parameter deformed 

non-extensive entropy from the view of the two-parameter 

quantum number, which emerges in the quantum group 

theory. We consider the time evolution of two parameter 

deformed entropy to obtain the condition that the entropy 

increases with time. For special example, we dealt with the 

case of 𝑟 =  −𝑞 + 2 , 𝑏 = 𝑞 with 𝑞 =  1 +  ε , 𝑟 =  1 −
 ε  for a sufficiently small  ε. In our case we consider that ε 

is less than  10−2. Up to a first order in ε, we computed the 

MaxEnt probability distribution and the deformed internal 

energy. 

 

2. Two Parameter Deformed Entropy 

Now let us consider two parameter deformation of the 

Eq. (1):  
 

𝑆𝑞,𝑟 = −𝑘
𝑑

𝑑𝑞 ,𝑟𝛼
  𝑝𝑖

𝛼  𝛼=1
𝑊
𝑖=1                      (7)

  

where two parameter deformed derivative 
𝑑

𝑑𝑞 ,𝑟𝛼
 is defined 

by 

 
𝑑

𝑑𝑞,𝑟𝛼
 𝑓 𝛼 =

𝑓 𝑞𝛼  −𝑓 𝑟𝛼  

(𝑞−𝑟)𝛼
         (8) 

 

which is related to the following deformed number : 
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 𝑥 𝑞,𝑟 =
𝑞𝑥−𝑟𝑥

𝑞−𝑟
         (9) 

 

We know that 𝑆𝑞,𝑟  reduces to a Tsallis entropy when r 

approaches  1. Considering the system composed of two 

independent subsystems having the physical quantities  𝐴1,
𝐴2, respectively and assuming that the physical quantity is 

extensive  (A = 𝐴1 + 𝐴2), we have 

 

 𝐴1 + 𝐴2 𝑞,𝑟 =  𝐴1 𝑞,𝑟 ×
1

2
 𝑞𝐴2 + 𝑟𝐴2 +  𝐴2 𝑞,𝑟 ×

                             
1

2
 𝑞𝐴1 + 𝑟𝐴1                     (10) 

or 

 𝐴1 + 𝐴2 𝑞,𝑟

=  𝐴1 𝑞,𝑟 +  𝐴2 𝑞,𝑟

+  
𝑞 − 1

2
  𝐴1 𝑞,𝑟 𝐴2 𝑞 +  𝐴2 𝑞,𝑟 𝐴1 𝑞 

+
𝑟 − 1

2
  𝐴1 𝑞,𝑟 𝐴2 𝑟 +  𝐴2 𝑞,𝑟 𝐴1 𝑟  

(11) 

which gives the pseudo-additivity relation: 

 

𝑆𝑞  𝑝1⨂𝑝2 

= 𝑆𝑞  𝑝1 + 𝑆𝑞  𝑝2 

+
1 − 𝑞

2
 𝑆𝑞,𝑟(𝑝1)𝑆𝑞(𝑝2) + 𝑆𝑞 ,𝑟(𝑝2)𝑆𝑞(𝑝1) 

+
1 − 𝑟

2
 𝑆𝑞,𝑟(𝑝1)𝑆𝑟(𝑝2) + 𝑆𝑞,𝑟(𝑝2)𝑆𝑟(𝑝1)  

(12) 

 Clearly, we know that 𝑆𝑞,𝑟  is nonextensive unless  𝑞 =

𝑟 = 1. Two parameter deformed entropy can be written in 

terms of two parameter deformed logarithmic function: 

 

𝑆𝑞,𝑟 = −
𝑘

𝑞−𝑟
 (𝑝𝑖

𝑞
− 𝑝𝑖

𝑟)𝑊
𝑖=1       (13)

  

𝑆𝑞,𝑟 = −𝑘 𝑝𝑖
𝛼 ln𝑞,𝑟 𝑝𝑖

𝑊
𝑖=1        (14) 

 

ln𝑞,𝑟 𝑥 =
1−𝑥𝑟−𝑞

𝑞−𝑟
        (15) 

 

𝑒𝑞,𝑟 𝑥 =  1 + (𝑟 − 𝑞)𝑥 +

1

𝑟−𝑞       (16) 

 

The two parameter deformed exponential function 

obeys: 

 

𝑒𝑞,𝑟 𝑥 𝑒𝑞,𝑟 𝑦 = 𝑒𝑞,𝑟 𝑥⨂𝑦       (17) 

 

 where the deformed addition is defined by: 

 

𝑥⨂𝑦 = 𝑥 + 𝑦 +  𝑟 − 𝑞 𝑥𝑦      (18) 

 

3. MaxEnt Probability Distribution 

Now let us start with two parameter deformed entropy 

(13) with the following two constraints 

 

 𝑝𝑖
𝑊
𝑖=1 = 1        (19) 

 𝑝𝑖
𝑏𝑊

𝑖=1 𝐸𝑖 = 𝑈𝑏 = 𝑐𝑜𝑛𝑠𝑡       (20) 

 

Then, the maximum entropy principle reduces to 

optimize the following quantity 

 

𝑆 =
𝑆

𝑘
− α 𝑝𝑖

𝑊
𝑖=1 − 𝛽 𝑝𝑖

𝑏𝑊
𝑖=1 𝐸𝑖       (21) 

 

where  𝛼, 𝛽 are Lagrange multipliers. Differentiating 𝑆  with 

respect to 𝑝𝑖  yields 

 
1

𝑟−𝑞
 𝑞𝑝𝑖

𝑞−1
− 𝑟𝑝𝑖

𝑟−1 − 𝛼 − 𝛽𝑏𝐸𝑖𝑝𝑖
𝑏−1 = 0     (22) 

 

which does not give a concrete form of 𝑝𝑖  for arbitrary 𝑞, 𝑟 

and 𝑏. However, for special choices of these values we can 

solve the Eq. (22). 

Now let us consider the time evolution of the deformed 

entropy. Differentiating the deformed entropy with respect 

to time, we get 

 
𝑑𝑆𝑞 ,𝑟

𝑑𝑡
=

𝑘

𝑟−𝑞
  𝑞𝑝𝑖

𝑞−1
− 𝑟𝑝𝑖

𝑟−1 
𝑑𝑝𝑖

𝑑𝑡

𝑊
𝑖=1      (23) 

 

From   𝑝𝑖
𝑊
𝑖−1 = 1, the time evolution of the probability 

is 

 
𝑑𝑝𝑖

𝑑𝑡
=   𝐴𝑗𝑖𝑝𝑗 − 𝐴𝑖𝑗𝑝𝑖 

𝑊
𝑗=1        (24) 

 

where 𝐴𝑗𝑖  is the probability of transition per unit time from 

the j-th microstate to the i-th micro state. Assuming the 

detailed balance, we can set 

 

𝐴𝑖𝑗 = 𝐴𝑗𝑖         (25) 

 

Then, we have 

 
𝑑𝑆𝑞 ,𝑟

𝑑𝑡
=

𝑘

𝑟−𝑞
  𝑞𝑝𝑖

𝑞−1
− 𝑟𝑝𝑖

𝑟−1 𝐴𝑖𝑗  𝑝𝑗 − 𝑝𝑖 
𝑊
𝑖,𝑗=1        (26)

  

Interchanging the dummy indices, we get 

 
𝑑𝑆𝑞 ,𝑟

𝑑𝑡
=

𝑘

𝑟−𝑞
  𝑞𝑝𝑗

𝑞−1
− 𝑟𝑝𝑖

𝑟−1 𝐴𝑗𝑖  𝑝𝑗 − 𝑝𝑖 
𝑊
𝑖,𝑗=1     (27) 

 

Summing the Eq. (26) and the Eq. (27), side by side, we 

get 

 

𝑑𝑆𝑞,𝑟

𝑑𝑡
=

𝑘

2(𝑞 − 𝑟)
 𝐴𝑖𝑗  𝑝𝑖 − 𝑝𝑗  

2
 𝑞  𝑝𝑖

𝑙𝑝𝑗
𝑞−2−𝑙

𝑞−2

𝑙=0

𝑊

𝑖,𝑗=1

−  𝑟 𝑝𝑖
𝑙𝑝𝑗

𝑟−2−𝑙

𝑞−2

𝑙=0

  

(28) 

 

 

3.1 The Case of 𝐪 >  𝑟 

In this case, we have: 

 

𝑑𝑆𝑞,𝑟

𝑑𝑡
=

𝑘

2(𝑞 − 𝑟)
 𝐴𝑖𝑗  𝑝𝑖 − 𝑝𝑗  

2
  𝑞

𝑊

𝑖,𝑗=1

− 𝑟  𝑝𝑖
𝑙𝑝𝑗

𝑟−2−𝑙

𝑟−2

𝑙=0

+ 𝑞  𝑝𝑖
𝑙𝑝𝑗

𝑞−2−𝑙

𝑞−2

𝑙=0

  

(29) 
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Thus, we know that the deformed entropy increases 

with time for 𝑞 >  0 while it may increase or decrease 

for 𝑞 <  0. 

 

3.2 The Case of 𝐪 =  𝐫 

In this case, we have: 

 
𝑑𝑆𝑞 ,𝑟

𝑑𝑡
= 0         (30) 

Thus, the deformed entropy remain invariant with time. 

 

3.3 The Case of 𝒒 <  𝑟 

In this case, we have: 

 

𝑑𝑆𝑞,𝑟

𝑑𝑡
=

𝑘

2(𝑞 − 𝑟)
 𝐴𝑖𝑗  𝑝𝑖 − 𝑝𝑗  

2
  𝑞

𝑊

𝑖,𝑗=1

− 𝑟  𝑝𝑖
𝑙𝑝𝑗

𝑞−2−𝑙

𝑞−2

𝑙=0

− 𝑟 𝑝𝑖
𝑙𝑝𝑗

𝑟−2−𝑙

𝑟−2

𝑙=0

  

(31) 

 

Thus, we know that the deformed entropy increases 

with time for $ r > 0 $ while it may increase or decrease for 

𝑟 <  0. 

 

3.4 Special Case 

In this section we consider the special case with some 

approximation. When 𝑟 =  −𝑞 + 2 , 𝑏 = 𝑞, the Eq.(22) 

gives the following solution: 

𝑝𝑖 =  
𝛼(1−𝑞)±  𝛼(1−𝑞) 2+𝑞(2−𝑞) 1−2(1−𝑞)𝛽𝐸𝑖 

𝑞−2
 

1

1−𝑞
     (32) 

 

when 𝑞 → 1 we have 𝑟 → 1, so in this limit the Eq. (32) 

should reduce to the Boltzman-Gibbs case, which makes 

one determine 𝑝𝑖  uniquely. Indeed, we have the following 

relation: 

𝑝𝑖 =  
𝛼 1−𝑞 −  𝛼(1−𝑞) 2+𝑞(2−𝑞) 1−2(1−𝑞)𝛽𝐸𝑖 

𝑞−2
 

1

1−𝑞
    (33) 

 

From the limit 𝑞 → 1, 𝑟 → 1, we know 

 

α = ln 𝑍0 − 1 , 𝛽 =
1

𝑘𝑇
       (34) 

where, 

𝑍0 =  𝑒−𝛽𝐸𝑖

𝑊

𝑙=0

 (35) 

 

From the probability distribution given in the Eq. (33), 

we cannot obtain some physical quantities such as internal 

energy, specific heat. Thus, we adopt the approximation 

method. 

Let us consider the case that 𝑞 =  1 +  ε , 𝑟 =  1 −  ε 

for a sufficiently small ε. Up to a first order in ε, we have 

𝑝𝑖 =
1

𝑍
𝑒−𝛽𝐸𝑖  1 + 𝜀  

1

2
+ ln 𝑍0 − 1 𝛽𝐸𝑖 + 𝛽2𝐸𝑖

2  (36) 

 

where 

Z =  𝑒−𝛽𝐸𝑖

𝑊

𝑙=1

 1 + 𝜀  
1

2
+ ln 𝑍0 − 1 𝛽𝐸𝑖 + 𝛽2𝐸𝑖

2  (37) 

 

Up to a first order in 𝜀, the deformed internal energy is 

given by 

𝑈𝜀 =
1

𝑍0

 𝐸𝑖𝑒
−𝛽𝐸𝑖

𝑊

𝑙=1

+
𝜀

𝑍0

 𝑒−𝛽𝐸𝑖𝐸𝑖

𝑊

𝑙=1

 
1

2
− ln 𝑍0 −

𝑍1

𝑍0

+  ln 𝑍0 − 2 𝛽𝐸𝑖 + 𝛽2𝐸𝑖
2  

(38) 

where  

Z = 𝑍0 + 𝜀𝑍1        (39) 

 

 
Figure 1. Plot of J(x) versus x for ε= 0 ( solid line ), ε= 

0.01 ( dashed line ) and ε = −0.01 ( dotted line ) 

 

As an example consider quantum harmonic oscillator 

governed by the Hamiltonian operator H = 𝑝2/2 +
𝑚𝜔2𝑥2/2 where 𝑚 is a particle mass and w is an angular 

frequency. It is known that the energy of the quantum 

harmonic oscillator is then given by  𝐸𝑛 = 𝑛ℏ𝜔, where 

𝑛 = 0,1,2, ⋯. The deformed internal energy is given by 

 

𝛽𝑈𝜀 =
𝑥𝑒−𝑥

1𝑒−𝑥

+ 𝑥𝜀  ln(1 − 𝑒−𝑥) +
𝑥𝑒−𝑥

1 − 𝑒−𝑥
ln(1 − 𝑒−𝑥)

+
𝑥2𝑒−𝑥(1 + 𝑒−𝑥)

1 − 𝑒−𝑥
 

𝑒−𝑥

1 − 𝑒−𝑥

− 𝜀𝑥2  ln 1 − 𝑒−𝑥 + 1 
𝑥𝑒−𝑥 1 + 𝑒−𝑥 

 1 − 𝑒−𝑥 2

+ 𝜀
𝑥3𝑒−𝑥(1 + 4𝑒−𝑥 + 𝑒−2𝑥)

 1 − 𝑒−𝑥 3
  

(40) 

 

where we set 𝑥 = βℏω. When we apply the formula (40) to 

the photon, we should compute the intensity which is 

proportional to the density of states times internal energy. If 

we denote the q-intensity by I(x), we get 

 

I x = cx2𝑈(𝑥)        (41)
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where c is some constant. The Figure 1 shows the plot of 

J x = β I(x)/c  versus x for ε = 0 (solid line), ε = −0.01 

(dashed line) and ε = 0.01 (dotted line). 

 

4. Conclusion 

In this paper we considered the two parameter deformed 

non-extensive entropy from the view of the two parameter 

quantum number which emerges in the quantum group 

theory. For this deformed entropy we obtained the pseudo-

additivity relation which reveals the non-extensive 

property. We also applied the maximum entropy principle 

to obtain the condition for the MaxEnt probability 

distribution. We considered the time evolution of two 

parameter deformed entropy to obtain the condition that the 

entropy increases with time. For special case, we dealt with 

the case of  𝑟 =  −𝑞 + 2 , 𝑏 = 𝑞 with 𝑞 =  1 +  ε , 𝑟 =

 1 –  ε for a sufficiently small  ε. Up to a first order in  ε, we 

have computed the MaxEnt probability distribution and the 

deformed internal energy. For  ε = ±0.01, we computed 

the deformed intensity and plotted it in Figure 1 which 

shows that the peak of the intensity goes down for both 

case. 
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