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ABSTRACT 

In this study, the main focus is the scheduling problem arising in two-machine flexible robotic cells consisting of CNC 

machines in which sets of multiple part-types are produced. In such manufacturing cells, it is possible to process lots 

that contain different types of parts. The completion time of the production depends on the robot moves as well as the 
part assignments and processing times of the parts. The considered problem is to find the robot move sequence, the 

part sequence and the allocation of processing times of the parts on each machine, that jointly minimize the completion 

time of a particular set of production. A simulated annealing based algorithm is proposed in order to solve the problem 
of determining the best schedule in a two-machine cell. Experimental results show that this approach works well and 

can be extended to further cases. 

Keywords: Flexible manufacturing systems; robotic cell; multiple part-type production; allocated processing times; 

simulated annealing. 

 

1. INTRODUCTION 

As the competition in today's production systems 

increases, more flexible systems are needed in order to 

be successful. Automation level in such systems gets 

higher and, setup times are reduced to improve 

flexibility, resulting material handling time and cost 

being bottleneck. Due to these developments, the use of 

computer controlled machines and material handling 

devices become essential. Robots are commonly used in 

automotive, electric, electronic and machine industries. 

A robotic cell is a manufacturing cell consisting of a 

number of CNC machines and a material handling robot. 

Efficient use of these cells necessitates the tackling of 

some important and challenging problems. 

Most of the studies about scheduling in robotic cells 

assume that each part being processed passes through the 

same sequence of locations [1, 2]. In such systems the 

only problem to be considered becomes to determine the 

part sequence together with the robot moves. In some 

other studies, researchers focused on the scheduling 

problem when all the machines are working in parallel. 

Under this headline, some researchers considered the 

identical machines case [3,4,5,6], whereas some others 

dealt with the non-identical parallel machine systems 

[7,8]. In our study, these two types of cells are combined 

under the heading of flexible manufacturing systems, 

adapting their properties into the definition of robotic 

cells. Cells that we considered consist of highly flexible 

CNC machines, which let the processing options to be 

adjusted. By the help of the definitions of operational and 

process flexibilities which state that one CNC can handle 

all of the operations of a part type and the processing 

sequence of these operations can be changed, it is 

possible to allocate every operation on any of the 

machines [9]. Such a cell involves the properties of both 

the flow shop and parallel machine environments, 

allowing the researcher to choose the most preferable 

option according to other parameters of interest. Gultekin 
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et al. [10] dealed with the two machine, identical parts, 

operation allocation problem with tooling constraints. It 

is assumed that some operations can only be processed 

on the first machine while some others can only be 

processed on the second machine due to tooling 

constraints. Remaining operations can be processed on 

either machine. The problem was to find the allocation 

of the remaining operations to the machines and the 

corresponding robot move cycle that jointly minimize the 

cycle time. In our study, instead of assuming the process 

of a part to compose of a number of operations, we 

consider the total processing time to be composed of unit 

times and can be shared among machines. Jolai et al. [11] 

studied the problem of robotic cell scheduling 

with m machines with flexibility, load lock and swap 

assumptions. They considered the robotic cells 

producing parts of identical types repetitively and 

determined the cycle time of all 1-unit cycles in this type 

of robotic cell. 

As we deal with robotic cells, we need to take robot 

movements, like the travel time from its existing point to 

the related machine and the loading/unloading times, into 

account. It is possible to consider setup operations that 

are assumed to be sequence-dependent in many studies, 

as a kind of such movements. Within this context, 

Mansouri et al. [12] addressed a two-machine flowshop 

scheduling problem to minimize setups and makespan 

where each job is characterized by a pair of attributes that 

entail setups on each machine. Naderi et al. [13] 

investigated scheduling job shop problems with 

sequence-dependent setup times under minimization of 

makespan and they developed a simulated annealing 

based metaheuristic to potentially solve the problem. 

Werner and Kravchenko [14] considered the problem of 

scheduling a set of jobs on a set of identical parallel 

machines, where a setup has to be performed by a given 

set of servers before the processing of a job can start. 

They assumed the processing of a job to be performed on 

one of the machines without interruption, and 

generalized some results for some specific cases.  Mor 

and Mosheiov [15] studied on a single machine 

scheduling problem, where the machine is unavailable 

for processing for a pre-specified time period. They 

assumed that job processing times are position-

dependent. Considering minimum makespan, minimum 

total completion time and minimum number of tardy jobs 

as the objective functions, they introduced simple 

heuristics which are based on solving the classical 

assignment problem. Jiang et al. [16] considered the 

scheduling problem on two parallel machines with a 

single server which is used for loading (setup) of the jobs 

before being processed on the machines. Allowing the 

processing time slot of each job to be preempted into a 

few pieces and these pieces to be assigned to possibly on 

distinct machines, this study is similar to our case in 

which we take the processing time allocation into 

account as one of the main problems. However, since we 

have two more decisions, namely the part assignments 

and the robot move sequences, our problem is more 

complex than this one. 

We have considered the robotic cells which can process 

lots that contain different types of parts. Within the scope 

of multiple part type production, the decisions to be made 

include finding the robot move sequence and the part 

sequence, that jointly minimize the total production time. 

As we do not assume the allocation of processing times 

on each machine to be constant, we have a final decision 

which is the ‘allocation’. As far as we know, this is one 

of the first studies to consider allocation possibility in 

multiple part-type robotic cell scheduling literature. In a 

previous study, Batur et al. [17] considered the problem 

of determining the best cyclic solution in a 2-machine 

manufacturing cells which repeatedly produce a set of 

multiple part-types, and where transportation of the parts 

between the machines is performed by a robot. They 

modeled the problem as a travelling salesman problem 

and then constructed a 2-stage heuristic algorithm, 

comparing the results with LPT. 

Because of the hardness of these problems, mathematical 

models are usually inadequate throughout the solution 

procedures and it is very common for researchers 

studying on such subjects to prove the complexities and 

try to provide efficient algorithms. The rest of the paper 

is organized as follows. In the following section, we will 

define the problem and our notation. In Section 3, the 

metaheuristic approach will be defined and the algorithm 

developed will be explained. The computational results 

are reported in Section 4. Finally, Section 5 summarizes 

the contributions and concluding remarks of this study. 

2. PROBLEM STATEMENT 

In this study, flexible manufacturing cells consisting of 

CNC machines are considered. Robotic cells can process 

different types of parts which in general have different 

processing times. Considered problem is to find the robot 

move sequence and the part sequence minimizing the 

completion time of a particular set of production. During 

such a production, all the parts of an order enter the cell, 

get processed and leave the cell, returning the system to 

its initial state. 

Based on the definitions of operational and process 

flexibilities; we consider an in-line robotic cell of two 

identical machines which are capable of performing all 

the required processes. Fig. 1 is given in order to 

represent such cells. There are two buffers in the 

structure; the one in the beginning is used as the input 

storage and the one in the end is used as the output 

storage. Each part is assumed to have known total 

processing times to be performed.  
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Fig. 1. In-line robotic cell layout 

Taking the advantage of flexibility property, we claim 

that robot may choose either to perform all the processing 

of a part completely on any one of the machines or to 

share the total time among the machines. In order to use 

robotic cell systems efficiently, problems including the 

scheduling of the robot moves and the determination of 

the machines to perform processing of each part should 

be solved. We try to find the parts to be processed on the 

machines by allocating the processes to them and finding 

the robot move sequence which will jointly minimize the 

makespan. Throughout this study, we assume the 

processing times of parts to be integer valued.  

Basic assumptions for this study that are common for 

most of the studies in the literature are as follows: 

- All data are deterministic. 

- Parts are always available at the input buffer and there 

is always an empty place at the output buffer. 

- No buffer storage exists between the machines, each 

part is either on a machine or being handled by the robot. 

- Neither the robot nor the machines can be in possession 

of more than one part at any time. 

- The robot and the processing machines never 

experience breakdown and never require maintenance.  

- Setup times are assumed to be negligible. 

- No preemption is allowed in the processing of any 

operation. 

As is mentioned above, our focus is on multiple part-type 

production. Thus, we need to solve both the problems of 

scheduling of parts and sequencing of robot moves for 

robotic cells. We do not make the assumption of the 

allocated processing time values on each machine being 

constant, thus allocation constitutes our third main 

problem. 

3. SOLUTION PROCEDURE 

3.1. Overview of SA 

SA may be classified as an improvement procedure in 

nature. It was introduced by Metropolis et al. [18] and 

popularized by Kirkpatrick et al. [19] as a method to 

solve combinatorial optimization problems. Among the 

methods that have been developed to optimize various 

objectives like makespan, flow time, idle time, work-in-

process and tardiness, etc., SA is believed to be the 

valuable search algorithm to accomplish these objectives 

[20].  

Many researchers use simulated annealing to solve 

scheduling problems (e.g. see the work by Low et al. 

[21], Lee et al. [22], Behnamian et al. [23], Zhang and 

Wu [24]). Methods based on this approach have a 

remarkable ability that none of the traditional heuristic 

methods possess, that is, the ability to escape from local 

optima by accepting sequences that momentarily 

deteriorate the objective function under specific 

condition.  

3.2. Proposed SA-Based Approach 

The main reason that we prefer to use SA instead of other 

metaheuristics is the fact that we can adapt our problem 

specific decisions and neighborhood structures to this 

approach rather than any other. For instance, genetic 

algorithm would not be as suitable as SA for this type of 

a problem since a mutation operator is hard to apply to 

the below defined solution vector. Similarly, tabu search 

would be difficult to implement as we would need more 

than one tabu list, one for each part of the solution vector. 

For this problem, the decisions to be made are the part 

sequence, machine assignments and the processing time 

allocation. Batur et al. observed that in such 

environments, it is usually enough to allocate only one 

part between the two machines [17]. Therefore, the 

solution is represented by a vector of length 2𝑛 + 2 , 

where n represents the number of parts to be processed 

in the system. This vector consists of three parts, where 

the first part gives the sequence of the parts being 

processed, the second part shows the related machines 

that each part is to be processed and the last part gives 

the allocated part number together with its allocated 

processing time value. According to the sequence, 

assignment and allocations defined by this 

representation; all of the parts are taken from the input 
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buffer, transferred to related machines and delivered to 

the output buffer after their processes are completed. 

3.2.1. SA Specific Decisions 

In order to apply SA procedure to a combinatorial 

optimization problem, there are some decisions to be 

taken. Starting temperature must be hot enough to allow 

a move to almost any neighborhood state. However, if 

the temperature starts at a too high value then the search 

can move to any neighbor and thus transform the search 

(at least in the early stages) into a random search. In this 

study, four different starting temperature values (50, 100, 

150, 200) are taken into account and it is observed that 

the best solutions are obtained by choosing the value to 

be 𝑇𝑖𝑛𝑖𝑡 = 100. 

It is usual to let the temperature decrease until it reaches 

zero. Some implementations keep decreasing the 

temperature until some other condition is met; for 

example, no change in the best state for a certain period 

of time. We assumed that the annealing process will 

continue until the temperature reaches 0, i.e. 𝑇𝑓𝑖𝑛𝑎𝑙 = 0. 

The way in which we decrement our temperature is 

critical to the success of the algorithm. One way to 

decrement the temperature is a simple linear method. An 

alternative is a geometric decrement where 𝑇 = 𝑇 ∗
(𝐷𝑒𝑐𝑅𝑎𝑡𝑖𝑜) , where 𝐷𝑒𝑐𝑅𝑎𝑡𝑖𝑜 < 1 . Experience has 

shown that 𝐷𝑒𝑐𝑅𝑎𝑡𝑖𝑜 should be between 0.8 and 0.99, 

with better results being found in the higher end of the 

range. In this study temperature decrement is determined 

taking 𝐷𝑒𝑐𝑅𝑎𝑡𝑖𝑜 = 0.99. 

Another decision we have to make is how many 

iterations we make at each temperature. A constant 

number of iterations at each temperature is an obvious 

scheme. We assumed the iteration number to be equal to 

the given number of parts of the considered problem. 

3.2.2. Problem Specific Decisions 

3.2.2.1 Initial Solution 

Initial solution for this problem is constructed randomly. 

Once the parts to be processed are sequenced in the first 

part of the above explained vector representation, second 

part of the solution is constructed being either the first or 

the second machines and finally one of the 𝑛  parts is 

defined along with its ratio of allocated time. We can 

explain this structure with an example of which there are 

4 parts to be processed in the order of 3-4-1-2 on 

machines 2-1-1-2, respectively and processing of the 4th 

part is going to be shared by the two machines with a 

ratio of 30% on the assigned machine and of 70% on the 

other one. Such a solution is represented with the 

following vector: [3|4|1|2||2|1|1|2||4|0.3]. 

3.2.2.2 Neighborhood Structure 

In order to improve the current solution and get close to 

the optimum, algorithm searches for neighbor solutions. 

A neighborhood is defined by the set of feasible solutions 

that one can obtain with the help of swapping and random 

selections. There are four sub-strategies used in this 

study, and the one to use is determined randomly.  

Part Swapping: First choice is to perform swap operation 

between parts. If we choose this way, we change the 

sequence of the two parts, given in the first part of the 

vector representation. For example, a neighbor solution 

of the vector [3|𝟒|1|𝟐||2|1|1|2||4|0.3]  may be the 

vector [3|𝟐|1|𝟒||2|1|1|2||4|0.3], which has a different 

part sequence and also different machine assignments 

due to this sequence.  

Change of Assignment: Second option is to change any 

one of the parts’ machine assignment. Such a variation is 

obtained changing one point of the second part of the 

solution vector. For the above given example, the new 

vector [3|4|1|2||2|1|𝟏|2||4|0.3]  is possible to obtain, 

which means that part 1 is no longer processed by 

machine 2, but its processing is performed by machine 1 

instead.  

Change of Allocated Part or Its Allocation Ratio: Third 

and fourth alternatives are related to the final part of the 

vector representation. If the third one is chosen then the 

part to allocate is changed, which is part 4 in the above 

example; whereas the last way is to change the allocated 

time ratio, which is 0,3 in the example.  

3.2.2.3 Objective Function Value 

Throughout the solution procedure, presented with a 

solution to a problem, there exists some ways of 

measuring the quality of the solution. For this problem, 

there is only one objective to be minimized which is the 

total time that passes between the time that all of the parts 

are taken from the input buffer and that they all are left 

to the output buffer after being processed. Calculations 

of the objective function value are performed using the 

following steps.  

At time zero, robot is assumed to be in front of the input 

buffer and all the parts are loaded in the buffer. 

Algorithm starts taking the first part of the sequence 

defined by the solution vector and loading it on the 

machine to which it is assigned. Afterwards, at any point 

of time, it is first checked whether or not any of the 

machines is empty. If the answer is positive, then the part 

to be loaded is determined according to the part sequence 

given in the solution vector and loaded on this machine. 

If both of the machines are loaded, robot will deal with 

the one of which the processing of the already loaded part 

is to be finished earlier. After unloading of this part, robot 

takes the next assigned one (if there are any left) from the 

input buffer and loads on this machine. When all of the 

parts of both machines are processed and carried to the 

output buffer, system returns to its initial position and the 

time that passed until this moment is taken as the 

objective function value. For the reader to get the insight 

of the algorithm better, we give a detailed representation 

of a 3-part example in Appendix A. 

Proposed algorithm starts by constructing the above 

explained initial solution. After calculating the objective 

function value of this solution, four neighbors are 

developed with the help of the previously defined 

neighborhood structures. Objective function values are 

determined for each of these and the minimum valued 

solution is selected. This new solution is compared to the 

initial one and according to the SA approach, it is decided 
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whether to go on with this one instead of the previous. 

As it is commonly known, SA accepts the newly 

constructed solution in case of the objective function 

value is preferable, whereas it takes the probability 

function into account on the other case. In the same 

manner, in our algorithm, the best solution found in that 

iteration is compared with the one that this solution is 

obtained from and accepted if it is better or the generated 

random value fits the desired condition. In order to allow 

a worse solution to be taken as the next candidate, this 

state is integrated into the solution procedure defining a 

temperature value which is to be updated at each decision 

step. Flow-chart of the proposed approach is given in Fig. 

2.  

 

 

 

Fig.2. Structure of the proposed approach 

Notations used in the algorithm are as follows and the pseudo-code of the algorithm is also given step-by-step in Fig.3. 

n  part number 

Sol  initial solution 

SolObj  objective function value of ´Sol` 

Current the solution which is used to obtain a new one 

CurObj objective function value of ´Current` 

IterSol  neighbor solution in the iteration 

IterObj  objective function value of ´IterSol` 

IterBestSol  best solution found in the iteration 

IterBestObj  objective function value of ´IterBestSol` 

Tinit & Tfinal  initial & final temperature 

Delta   difference observed in the objective function values 

DecRatio cooling ratio 
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Fig.3. Pseudo-code of the algorithm 

4. COMPUTATIONAL EXPERIMENTS 

In this study, we constructed an algorithm which 

involves an application of the simulated annealing 

algorithm. The method not only sequences the parts and 

the robot movements related to the production plan; but 

also enables the process allocation in order to help to 

balance the workload. In this manner, the method trying 

to minimize the makespan, satisfies effective solutions in 

short times. 

Considered problem has some basic parameters; which 

are number of parts, average processing time, range of 

processing times, load / unload time and travel time [17]. 

In Table 1, these five factors which effects the 

complexity of the problems, and the levels related to 

these factors are given. These levels are constructed 

according to the observations obtained throughout the 

trials of the proposed algorithm.  

The algorithm of which the steps are defined in Section 

3 is constructed and examined using Microsoft Visual 

C++ 2008. We have obtained satisfying solutions very 

quickly even for large sized problems. In order to have 

trustworthy comments over the quality of the obtained 

solutions, we have compared our method with LPT 

(Longest Processing Time) which is a commonly used 

algorithm. We use the Equation (1) in order to calculate 

the improvement. 

% 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
𝐶𝑚𝑎𝑥(𝐿𝑃𝑇)−𝐶𝑚𝑎𝑥(𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐)

𝐶𝑚𝑎𝑥(𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐)
∗ 100,   (1) 

where Cmax(LPT) is the makespan obtained by the LPT 

approach and Cmax(Heuristic) is the one obtained by our 

algorithm. 

Table 1. Factor and factor levels 

Factor Low High 

Number of Parts ≤ 30 > 30 

Average Processing Time ≤ 50 > 50 

Range of Processing Times ≤ 150 > 150 

Load / Unload Time ≤ 5 > 5 

Travel Time ≤ 5 > 5 

Step 1. Produce the initial solution (Sol) randomly and compute its cost function value (CurObj). 

            Make Current = Sol and CurObj = SolObj. 

Step 2. Set the parameters: Tinit = 100, Tfinal = 1, DecRatio = 0.99. 

            Make the temperature of this moment equal to the initial temperature, i.e. T = Tinit.. 

Step 3. If T > Tfinal go to Step 3.1, else go to Step 4. 

 Step 3.1. Make IterBestSol = Ø and IterBestObj = ´a big number` 

   Perform Step 3.1.1 to Step 3.1.2 for n times. 

Step 3.1.1. Create a neighbor solution (IterSol) using either swap or random 

    selection and compute its objective function value (IterObj). 

   Step 3.1.2. If IterObj < IterBestObj, 

             IterBestSol = IterSol, IterBestObj = IterObj. 

 Step 3.2. Compute the difference, Delta = IterBestObj – CurObj. 

   Define the random variable, RanNum ~ U(0,1). 

 Step 3.3. If IterBestObj < CurObj or eDelta/T > RanNum, 

        Current = IterBestSol, CurObj = IterBestObj. 

 Step 3.4. Update the temperature, T = T*DecRatio and go to Step 3. 

Step 4. Save the final Current and CurObj values. 

            End the algorithm 
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We have run both of the algorithms for 30 times for all 

combinations of the above five factors and observed that 

the proposed algorithm gives very good results compared 

to the ones of LPT. Only 17 of a total of 960 runs, LPT 

results are better with an average improvement of 0,20 

%. For the rest, SA based algorithm is superior, giving an 

average improvement  

 

of 4,75 %. As is previously mentioned, this problem type 

was considered by Batur et al. [17] in a cyclic manner. 

They also compared the results with LPT and obtained 

an improvement of 2,67 % over this method. Considering 

the production plan to be non-cyclic, we have compared 

the results with the same algorithm and by the help of SA 

procedure, we have increased this gain by more than 2 

%, without any extra effort.  

Table 2. Improvement percentages 

Factor Factor Level Mean (%) Minimum (%) Maximum (%) 

Number of Parts 
Low 6,09 -1,47 19,92 

High 3,41 -0,35 17,89 

Average Processing Time 
Low 4,53 -0,18 18,70 

High 4,97 -1,47 19,92 

Range of Processing Times 
Low 2,80 -0,35 19,92 

High 6,71 -1,47 19,67 

Load / Unload Time 
Low 4,60 -1,47 19,67 

High 4,90 -0,24 19,92 

Travel Time 
Low 4,20 -0,35 19,54 

High 5,30 -1,47 19,92 

Average, minimum and maximum improvements 

obtained by the proposed method are given in Table 2. 

As can be observed from the table, our algorithm has 

satisfied considerably high improvements like 19,92 %, 

and in worst cases, its deterioration is only 1,47 %.  

In order to take a closer look to the factor levels 

separately, we use Fig. 4. It is observed that average 

processing time and load / unload times are not as 

effective as the other three factors. Advantages of the 

proposed algorithm seems to be more obvious for cases 

with low number of parts, high ranged processing times 

and high valued travel times. These observations are 

clearly reasonable. Starting from the first factor, LPT’s 

disadvantages gets less observable as the number of parts 

gets higher. Increment over the range of processing times 

means that there are various types of parts to be produced 

and it is not reasonable to schedule these items by the 

help of an algorithm which is insensitive to these 

differences. Finally, travel time is important as we 

consider robotic cells and it is related to the most 

significant parameter, the robot movements, that needs to 

be decreased. 

 

Fig. 4. Average improvement percentages according to the factor levels 

It is previously mentioned that we let part allocations 

throughout this study. As can be seen from Table 3, in 86 

out of 960 runs, the algorithm chose to use this option. 

The result responses to an amount of 8,96 % in total, and 
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shows that allocation is able to be a preferable option 

again without the need of any additional sources. Table 

3 also shows the allocation numbers related to the 

previously mentioned factor levels. We can say the 

results are fairly distributed among the levels of all but 

only one factor. The reason that load / unload time to be 

the most effective parameter of the decision of allocation 

is the necessity of the allocated part to be loaded and 

unloaded twice. One can easily say that it is more 

possible the allocation option to give better results as this 

factor takes lower values. 

 

Table 3. Allocation numbers 

Factor Factor Level Number 

Number of Parts 
Low 47 

High 39 

Average Processing 

Time 

Low 45 

High 41 

Range of 

Processing Times 

Low 48 

High 38 

Load / Unload 

Time 

Low 64 

High 22 

Travel Time 
Low 42 

High 44 

Total  86 

 

5. CONCLUSION 

In this study, we focus on the scheduling problem arising 

in two-machine flexible robotic cells which can process 

lots that contain different types of parts. Considering 

multiple part types, the decisions to be made are to find 

the robot move sequence and the part sequence, that 

jointly minimize the total production time. As we do not 

assume the allocation of processing times on each 

machine to be constant, we also have the processing time 

allocation problem.  

Due to the fact that mathematical optimization 

techniques are very limited to use for NP-hard problems, 

in the existing literature, it is very common to use 

metaheuristic approaches solving this type of ‘hard to 

solve’ optimization problems. We have proposed an 

efficient Simulated Annealing Algorithm which is also 

very easy to implement and can be extended for further 

cases with ease. The improvement search of the 

algorithm uses both the swapping and random selections. 

Experimental results show that it is possible to get 

acceptable solutions very quickly and effectively. It is 

important to notice that we obtained better results only 

by changing processing time allocations for one part; 

with no additional effort or cost. As a future research 

direction, although explained procedure is developed for 

a 2-machine system, it is not hard to expand the 

algorithm for 3- or m-machine cases. 
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APPENDIX A. NUMERICAL EXAMPLE 

We use the following example: Assume that we have 3 parts to be completed with corresponding processing times: 𝑃1 = 6, 

𝑃2 = 12 and 𝑃3 = 40, ε and δ are both 1 units of time and solution of  [3|1|2||1|2|1||3|0.4] is obtained throughout the 

solution procedure. This solution corresponds to the situation that part 2 being processed on the 1st machine, part 1 on the 

2nd machine and part 3 is to be allocated as 0.4 of its total processing is going to be performed by the 1st machine and the 

rest on the other. 

As it is mentioned before, at the starting moment (𝑡𝑖𝑚𝑒(𝑡) = 0) robot is in front of the input buffer, all the parts are loaded 

in the input buffer, both of the two machines are empty and the decision of which machine to load first is made according 

to the sequence given in the first part of the solution vector. In such a situation, robot starts its movement taking the 3rd part 

(allocated one) to the 1st machine. Such a movement necessitates robot taking the part from the input buffer (ε), carrying it 

to the machine (δ) and loading (ε). Robot time is 𝑡 = 2ε + 𝛿 = 3 now. According to the solution vector, processing of this 

part is shared among the two machines as 𝑃31 = 40 ∗ 0.4 = 16 and 𝑃32 = 40 ∗ 0.6 = 24, so its processing on the 1st 

machine will be completed at time 𝑡 = 3 + 16 = 19. For the following step, since the 2nd machine is empty and its next 

part (part 1) has not been loaded yet, robot performs the movement related to this part; goes back to the input buffer first 

(δ), takes the part (ε), brings it to the 2nd machine (2δ), and loads the part on the machine (ε). This movement makes the 

time 𝑡 = 3 + 2ε + 3𝛿 = 8. Now, both of the machines are loaded. Completion times of parts 3 and 1 are 19 and 14, 

respectively. For the following movement, 1st machine is selected as its processing is completed earlier. Since robot is still 

in front of the machine, it does perform any travel and waits until the processing is completed. At time 𝑡 = 14, robot takes 

part 1 from the 2nd machine (ε) and brings it to the output buffer (δ). Now there is one part in the system and one waiting in 

the input buffer to be processed. As the next part is part 2 and it is assigned to the 1st machine, this machine needs to be 

unloaded first. At this machine part 3 is loaded and its next location is the 2nd machine which is already unloaded, so robot 

goes to the 1st machine from the output buffer (2δ), does not wait as its processing is completed at that time (𝑡 = 19), takes 

the part (ε), brings (δ) and loads it on the 2nd machine (ε) at time 𝑡 = 22. This part needs to be processed at this machine for 

24 units of time. 1st machine is now ready for the next machine to be loaded. Robot goes back to the input buffer from the 

2nd machine (2δ), takes the last part which is part 2 (ε), carries to the machine (δ) and loads it on the 1st machine (ε) at time 

= 27 . Now all of the parts of both of the machines are loaded once. In order the system to return back to its initial position, 

both of the machines needs to be unloaded. As the completion time of part 2 is smaller than the other one, robot will wait 

in front of the 1st machine until time 𝑡 = 39, unloads it (ε+2δ+ ε) and goes to the 2nd machine for part 3 (δ). At time 𝑡 = 46, 

processing of the last part is completed and it is taken to the output buffer as soon as it is unloaded from the machine (ε+δ+ 

ε). As all of the parts’ processes are completed, robot goes to its initial position (input buffer) (3δ) which makes the system 

return to its initial state. At this point of time, the time passed until this moment is calculated to be 𝑡 = 52 which is defined 

as the objective function value.  

Related Gantt-chart is given by Fig. A.1. 

Fig. A.1. Gantt-chart for the example 


