
Gazi University Journal of Science

GU J Sci

29(3):573-582 (2016)

Corresponding author, e-mail: dbatur@gazi.edu.tr

Using Simulated Annealing for Flexible Robotic Cell

Scheduling

G. Didem BATUR1, , Serpil EROL1

1Department of Industrial Engineering, Gazi University, Ankara, 06570, TURKEY

Received:11/05/2016 Revised:25/07/2016 Accepted: 05/08/2016

ABSTRACT

In this study, the main focus is the scheduling problem arising in two-machine flexible robotic cells consisting of CNC

machines in which sets of multiple part-types are produced. In such manufacturing cells, it is possible to process lots

that contain different types of parts. The completion time of the production depends on the robot moves as well as the
part assignments and processing times of the parts. The considered problem is to find the robot move sequence, the

part sequence and the allocation of processing times of the parts on each machine, that jointly minimize the completion

time of a particular set of production. A simulated annealing based algorithm is proposed in order to solve the problem
of determining the best schedule in a two-machine cell. Experimental results show that this approach works well and

can be extended to further cases.

Keywords: Flexible manufacturing systems; robotic cell; multiple part-type production; allocated processing times;

simulated annealing.

1. INTRODUCTION

As the competition in today's production systems

increases, more flexible systems are needed in order to

be successful. Automation level in such systems gets

higher and, setup times are reduced to improve

flexibility, resulting material handling time and cost

being bottleneck. Due to these developments, the use of

computer controlled machines and material handling

devices become essential. Robots are commonly used in

automotive, electric, electronic and machine industries.

A robotic cell is a manufacturing cell consisting of a

number of CNC machines and a material handling robot.

Efficient use of these cells necessitates the tackling of

some important and challenging problems.

Most of the studies about scheduling in robotic cells

assume that each part being processed passes through the

same sequence of locations [1, 2]. In such systems the

only problem to be considered becomes to determine the

part sequence together with the robot moves. In some

other studies, researchers focused on the scheduling

problem when all the machines are working in parallel.

Under this headline, some researchers considered the

identical machines case [3,4,5,6], whereas some others

dealt with the non-identical parallel machine systems

[7,8]. In our study, these two types of cells are combined

under the heading of flexible manufacturing systems,

adapting their properties into the definition of robotic

cells. Cells that we considered consist of highly flexible

CNC machines, which let the processing options to be

adjusted. By the help of the definitions of operational and

process flexibilities which state that one CNC can handle

all of the operations of a part type and the processing

sequence of these operations can be changed, it is

possible to allocate every operation on any of the

machines [9]. Such a cell involves the properties of both

the flow shop and parallel machine environments,

allowing the researcher to choose the most preferable

option according to other parameters of interest. Gultekin

574 GU J Sci, 29(3): 573-582 (2016) / G. Didem BATUR, Serpil EROL

et al. [10] dealed with the two machine, identical parts,

operation allocation problem with tooling constraints. It

is assumed that some operations can only be processed

on the first machine while some others can only be

processed on the second machine due to tooling

constraints. Remaining operations can be processed on

either machine. The problem was to find the allocation

of the remaining operations to the machines and the

corresponding robot move cycle that jointly minimize the

cycle time. In our study, instead of assuming the process

of a part to compose of a number of operations, we

consider the total processing time to be composed of unit

times and can be shared among machines. Jolai et al. [11]

studied the problem of robotic cell scheduling

with m machines with flexibility, load lock and swap

assumptions. They considered the robotic cells

producing parts of identical types repetitively and

determined the cycle time of all 1-unit cycles in this type

of robotic cell.

As we deal with robotic cells, we need to take robot

movements, like the travel time from its existing point to

the related machine and the loading/unloading times, into

account. It is possible to consider setup operations that

are assumed to be sequence-dependent in many studies,

as a kind of such movements. Within this context,

Mansouri et al. [12] addressed a two-machine flowshop

scheduling problem to minimize setups and makespan

where each job is characterized by a pair of attributes that

entail setups on each machine. Naderi et al. [13]

investigated scheduling job shop problems with

sequence-dependent setup times under minimization of

makespan and they developed a simulated annealing

based metaheuristic to potentially solve the problem.

Werner and Kravchenko [14] considered the problem of

scheduling a set of jobs on a set of identical parallel

machines, where a setup has to be performed by a given

set of servers before the processing of a job can start.

They assumed the processing of a job to be performed on

one of the machines without interruption, and

generalized some results for some specific cases. Mor

and Mosheiov [15] studied on a single machine

scheduling problem, where the machine is unavailable

for processing for a pre-specified time period. They

assumed that job processing times are position-

dependent. Considering minimum makespan, minimum

total completion time and minimum number of tardy jobs

as the objective functions, they introduced simple

heuristics which are based on solving the classical

assignment problem. Jiang et al. [16] considered the

scheduling problem on two parallel machines with a

single server which is used for loading (setup) of the jobs

before being processed on the machines. Allowing the

processing time slot of each job to be preempted into a

few pieces and these pieces to be assigned to possibly on

distinct machines, this study is similar to our case in

which we take the processing time allocation into

account as one of the main problems. However, since we

have two more decisions, namely the part assignments

and the robot move sequences, our problem is more

complex than this one.

We have considered the robotic cells which can process

lots that contain different types of parts. Within the scope

of multiple part type production, the decisions to be made

include finding the robot move sequence and the part

sequence, that jointly minimize the total production time.

As we do not assume the allocation of processing times

on each machine to be constant, we have a final decision

which is the ‘allocation’. As far as we know, this is one

of the first studies to consider allocation possibility in

multiple part-type robotic cell scheduling literature. In a

previous study, Batur et al. [17] considered the problem

of determining the best cyclic solution in a 2-machine

manufacturing cells which repeatedly produce a set of

multiple part-types, and where transportation of the parts

between the machines is performed by a robot. They

modeled the problem as a travelling salesman problem

and then constructed a 2-stage heuristic algorithm,

comparing the results with LPT.

Because of the hardness of these problems, mathematical

models are usually inadequate throughout the solution

procedures and it is very common for researchers

studying on such subjects to prove the complexities and

try to provide efficient algorithms. The rest of the paper

is organized as follows. In the following section, we will

define the problem and our notation. In Section 3, the

metaheuristic approach will be defined and the algorithm

developed will be explained. The computational results

are reported in Section 4. Finally, Section 5 summarizes

the contributions and concluding remarks of this study.

2. PROBLEM STATEMENT

In this study, flexible manufacturing cells consisting of

CNC machines are considered. Robotic cells can process

different types of parts which in general have different

processing times. Considered problem is to find the robot

move sequence and the part sequence minimizing the

completion time of a particular set of production. During

such a production, all the parts of an order enter the cell,

get processed and leave the cell, returning the system to

its initial state.

Based on the definitions of operational and process

flexibilities; we consider an in-line robotic cell of two

identical machines which are capable of performing all

the required processes. Fig. 1 is given in order to

represent such cells. There are two buffers in the

structure; the one in the beginning is used as the input

storage and the one in the end is used as the output

storage. Each part is assumed to have known total

processing times to be performed.

GU J Sci, 29(3): 573-582 (2016) / G. Didem BATUR, Serpil EROL 575

Fig. 1. In-line robotic cell layout

Taking the advantage of flexibility property, we claim

that robot may choose either to perform all the processing

of a part completely on any one of the machines or to

share the total time among the machines. In order to use

robotic cell systems efficiently, problems including the

scheduling of the robot moves and the determination of

the machines to perform processing of each part should

be solved. We try to find the parts to be processed on the

machines by allocating the processes to them and finding

the robot move sequence which will jointly minimize the

makespan. Throughout this study, we assume the

processing times of parts to be integer valued.

Basic assumptions for this study that are common for

most of the studies in the literature are as follows:

- All data are deterministic.

- Parts are always available at the input buffer and there

is always an empty place at the output buffer.

- No buffer storage exists between the machines, each

part is either on a machine or being handled by the robot.

- Neither the robot nor the machines can be in possession

of more than one part at any time.

- The robot and the processing machines never

experience breakdown and never require maintenance.

- Setup times are assumed to be negligible.

- No preemption is allowed in the processing of any

operation.

As is mentioned above, our focus is on multiple part-type

production. Thus, we need to solve both the problems of

scheduling of parts and sequencing of robot moves for

robotic cells. We do not make the assumption of the

allocated processing time values on each machine being

constant, thus allocation constitutes our third main

problem.

3. SOLUTION PROCEDURE

3.1. Overview of SA

SA may be classified as an improvement procedure in

nature. It was introduced by Metropolis et al. [18] and

popularized by Kirkpatrick et al. [19] as a method to

solve combinatorial optimization problems. Among the

methods that have been developed to optimize various

objectives like makespan, flow time, idle time, work-in-

process and tardiness, etc., SA is believed to be the

valuable search algorithm to accomplish these objectives

[20].

Many researchers use simulated annealing to solve

scheduling problems (e.g. see the work by Low et al.

[21], Lee et al. [22], Behnamian et al. [23], Zhang and

Wu [24]). Methods based on this approach have a

remarkable ability that none of the traditional heuristic

methods possess, that is, the ability to escape from local

optima by accepting sequences that momentarily

deteriorate the objective function under specific

condition.

3.2. Proposed SA-Based Approach

The main reason that we prefer to use SA instead of other

metaheuristics is the fact that we can adapt our problem

specific decisions and neighborhood structures to this

approach rather than any other. For instance, genetic

algorithm would not be as suitable as SA for this type of

a problem since a mutation operator is hard to apply to

the below defined solution vector. Similarly, tabu search

would be difficult to implement as we would need more

than one tabu list, one for each part of the solution vector.

For this problem, the decisions to be made are the part

sequence, machine assignments and the processing time

allocation. Batur et al. observed that in such

environments, it is usually enough to allocate only one

part between the two machines [17]. Therefore, the

solution is represented by a vector of length 2𝑛 + 2 ,

where n represents the number of parts to be processed

in the system. This vector consists of three parts, where

the first part gives the sequence of the parts being

processed, the second part shows the related machines

that each part is to be processed and the last part gives

the allocated part number together with its allocated

processing time value. According to the sequence,

assignment and allocations defined by this

representation; all of the parts are taken from the input

576 GU J Sci, 29(3): 573-582 (2016) / G. Didem BATUR, Serpil EROL

buffer, transferred to related machines and delivered to

the output buffer after their processes are completed.

3.2.1. SA Specific Decisions

In order to apply SA procedure to a combinatorial

optimization problem, there are some decisions to be

taken. Starting temperature must be hot enough to allow

a move to almost any neighborhood state. However, if

the temperature starts at a too high value then the search

can move to any neighbor and thus transform the search

(at least in the early stages) into a random search. In this

study, four different starting temperature values (50, 100,

150, 200) are taken into account and it is observed that

the best solutions are obtained by choosing the value to

be 𝑇𝑖𝑛𝑖𝑡 = 100.

It is usual to let the temperature decrease until it reaches

zero. Some implementations keep decreasing the

temperature until some other condition is met; for

example, no change in the best state for a certain period

of time. We assumed that the annealing process will

continue until the temperature reaches 0, i.e. 𝑇𝑓𝑖𝑛𝑎𝑙 = 0.

The way in which we decrement our temperature is

critical to the success of the algorithm. One way to

decrement the temperature is a simple linear method. An

alternative is a geometric decrement where 𝑇 = 𝑇 ∗
(𝐷𝑒𝑐𝑅𝑎𝑡𝑖𝑜) , where 𝐷𝑒𝑐𝑅𝑎𝑡𝑖𝑜 < 1 . Experience has

shown that 𝐷𝑒𝑐𝑅𝑎𝑡𝑖𝑜 should be between 0.8 and 0.99,

with better results being found in the higher end of the

range. In this study temperature decrement is determined

taking 𝐷𝑒𝑐𝑅𝑎𝑡𝑖𝑜 = 0.99.

Another decision we have to make is how many

iterations we make at each temperature. A constant

number of iterations at each temperature is an obvious

scheme. We assumed the iteration number to be equal to

the given number of parts of the considered problem.

3.2.2. Problem Specific Decisions

3.2.2.1 Initial Solution

Initial solution for this problem is constructed randomly.

Once the parts to be processed are sequenced in the first

part of the above explained vector representation, second

part of the solution is constructed being either the first or

the second machines and finally one of the 𝑛 parts is

defined along with its ratio of allocated time. We can

explain this structure with an example of which there are

4 parts to be processed in the order of 3-4-1-2 on

machines 2-1-1-2, respectively and processing of the 4th

part is going to be shared by the two machines with a

ratio of 30% on the assigned machine and of 70% on the

other one. Such a solution is represented with the

following vector: [3|4|1|2||2|1|1|2||4|0.3].

3.2.2.2 Neighborhood Structure

In order to improve the current solution and get close to

the optimum, algorithm searches for neighbor solutions.

A neighborhood is defined by the set of feasible solutions

that one can obtain with the help of swapping and random

selections. There are four sub-strategies used in this

study, and the one to use is determined randomly.

Part Swapping: First choice is to perform swap operation

between parts. If we choose this way, we change the

sequence of the two parts, given in the first part of the

vector representation. For example, a neighbor solution

of the vector [3|𝟒|1|𝟐||2|1|1|2||4|0.3] may be the

vector [3|𝟐|1|𝟒||2|1|1|2||4|0.3], which has a different

part sequence and also different machine assignments

due to this sequence.

Change of Assignment: Second option is to change any

one of the parts’ machine assignment. Such a variation is

obtained changing one point of the second part of the

solution vector. For the above given example, the new

vector [3|4|1|2||2|1|𝟏|2||4|0.3] is possible to obtain,

which means that part 1 is no longer processed by

machine 2, but its processing is performed by machine 1

instead.

Change of Allocated Part or Its Allocation Ratio: Third

and fourth alternatives are related to the final part of the

vector representation. If the third one is chosen then the

part to allocate is changed, which is part 4 in the above

example; whereas the last way is to change the allocated

time ratio, which is 0,3 in the example.

3.2.2.3 Objective Function Value

Throughout the solution procedure, presented with a

solution to a problem, there exists some ways of

measuring the quality of the solution. For this problem,

there is only one objective to be minimized which is the

total time that passes between the time that all of the parts

are taken from the input buffer and that they all are left

to the output buffer after being processed. Calculations

of the objective function value are performed using the

following steps.

At time zero, robot is assumed to be in front of the input

buffer and all the parts are loaded in the buffer.

Algorithm starts taking the first part of the sequence

defined by the solution vector and loading it on the

machine to which it is assigned. Afterwards, at any point

of time, it is first checked whether or not any of the

machines is empty. If the answer is positive, then the part

to be loaded is determined according to the part sequence

given in the solution vector and loaded on this machine.

If both of the machines are loaded, robot will deal with

the one of which the processing of the already loaded part

is to be finished earlier. After unloading of this part, robot

takes the next assigned one (if there are any left) from the

input buffer and loads on this machine. When all of the

parts of both machines are processed and carried to the

output buffer, system returns to its initial position and the

time that passed until this moment is taken as the

objective function value. For the reader to get the insight

of the algorithm better, we give a detailed representation

of a 3-part example in Appendix A.

Proposed algorithm starts by constructing the above

explained initial solution. After calculating the objective

function value of this solution, four neighbors are

developed with the help of the previously defined

neighborhood structures. Objective function values are

determined for each of these and the minimum valued

solution is selected. This new solution is compared to the

initial one and according to the SA approach, it is decided

GU J Sci, 29(3): 573-582 (2016) / G. Didem BATUR, Serpil EROL 577

whether to go on with this one instead of the previous.

As it is commonly known, SA accepts the newly

constructed solution in case of the objective function

value is preferable, whereas it takes the probability

function into account on the other case. In the same

manner, in our algorithm, the best solution found in that

iteration is compared with the one that this solution is

obtained from and accepted if it is better or the generated

random value fits the desired condition. In order to allow

a worse solution to be taken as the next candidate, this

state is integrated into the solution procedure defining a

temperature value which is to be updated at each decision

step. Flow-chart of the proposed approach is given in Fig.

2.

Fig.2. Structure of the proposed approach

Notations used in the algorithm are as follows and the pseudo-code of the algorithm is also given step-by-step in Fig.3.

n part number

Sol initial solution

SolObj objective function value of ´Sol`

Current the solution which is used to obtain a new one

CurObj objective function value of ´Current`

IterSol neighbor solution in the iteration

IterObj objective function value of ´IterSol`

IterBestSol best solution found in the iteration

IterBestObj objective function value of ´IterBestSol`

Tinit & Tfinal initial & final temperature

Delta difference observed in the objective function values

DecRatio cooling ratio

578 GU J Sci, 29(3): 573-582 (2016) / G. Didem BATUR, Serpil EROL

Fig.3. Pseudo-code of the algorithm

4. COMPUTATIONAL EXPERIMENTS

In this study, we constructed an algorithm which

involves an application of the simulated annealing

algorithm. The method not only sequences the parts and

the robot movements related to the production plan; but

also enables the process allocation in order to help to

balance the workload. In this manner, the method trying

to minimize the makespan, satisfies effective solutions in

short times.

Considered problem has some basic parameters; which

are number of parts, average processing time, range of

processing times, load / unload time and travel time [17].

In Table 1, these five factors which effects the

complexity of the problems, and the levels related to

these factors are given. These levels are constructed

according to the observations obtained throughout the

trials of the proposed algorithm.

The algorithm of which the steps are defined in Section

3 is constructed and examined using Microsoft Visual

C++ 2008. We have obtained satisfying solutions very

quickly even for large sized problems. In order to have

trustworthy comments over the quality of the obtained

solutions, we have compared our method with LPT

(Longest Processing Time) which is a commonly used

algorithm. We use the Equation (1) in order to calculate

the improvement.

% 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
𝐶𝑚𝑎𝑥(𝐿𝑃𝑇)−𝐶𝑚𝑎𝑥(𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐)

𝐶𝑚𝑎𝑥(𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐)
∗ 100, (1)

where Cmax(LPT) is the makespan obtained by the LPT

approach and Cmax(Heuristic) is the one obtained by our

algorithm.

Table 1. Factor and factor levels

Factor Low High

Number of Parts ≤ 30 > 30

Average Processing Time ≤ 50 > 50

Range of Processing Times ≤ 150 > 150

Load / Unload Time ≤ 5 > 5

Travel Time ≤ 5 > 5

Step 1. Produce the initial solution (Sol) randomly and compute its cost function value (CurObj).

 Make Current = Sol and CurObj = SolObj.

Step 2. Set the parameters: Tinit = 100, Tfinal = 1, DecRatio = 0.99.

 Make the temperature of this moment equal to the initial temperature, i.e. T = Tinit..

Step 3. If T > Tfinal go to Step 3.1, else go to Step 4.

 Step 3.1. Make IterBestSol = Ø and IterBestObj = ´a big number`

 Perform Step 3.1.1 to Step 3.1.2 for n times.

Step 3.1.1. Create a neighbor solution (IterSol) using either swap or random

 selection and compute its objective function value (IterObj).

 Step 3.1.2. If IterObj < IterBestObj,

 IterBestSol = IterSol, IterBestObj = IterObj.

 Step 3.2. Compute the difference, Delta = IterBestObj – CurObj.

 Define the random variable, RanNum ~ U(0,1).

 Step 3.3. If IterBestObj < CurObj or eDelta/T > RanNum,

 Current = IterBestSol, CurObj = IterBestObj.

 Step 3.4. Update the temperature, T = T*DecRatio and go to Step 3.

Step 4. Save the final Current and CurObj values.

 End the algorithm

GU J Sci, 29(3): 573-582 (2016) / G. Didem BATUR, Serpil EROL 579

We have run both of the algorithms for 30 times for all

combinations of the above five factors and observed that

the proposed algorithm gives very good results compared

to the ones of LPT. Only 17 of a total of 960 runs, LPT

results are better with an average improvement of 0,20

%. For the rest, SA based algorithm is superior, giving an

average improvement

of 4,75 %. As is previously mentioned, this problem type

was considered by Batur et al. [17] in a cyclic manner.

They also compared the results with LPT and obtained

an improvement of 2,67 % over this method. Considering

the production plan to be non-cyclic, we have compared

the results with the same algorithm and by the help of SA

procedure, we have increased this gain by more than 2

%, without any extra effort.

Table 2. Improvement percentages

Factor Factor Level Mean (%) Minimum (%) Maximum (%)

Number of Parts
Low 6,09 -1,47 19,92

High 3,41 -0,35 17,89

Average Processing Time
Low 4,53 -0,18 18,70

High 4,97 -1,47 19,92

Range of Processing Times
Low 2,80 -0,35 19,92

High 6,71 -1,47 19,67

Load / Unload Time
Low 4,60 -1,47 19,67

High 4,90 -0,24 19,92

Travel Time
Low 4,20 -0,35 19,54

High 5,30 -1,47 19,92

Average, minimum and maximum improvements

obtained by the proposed method are given in Table 2.

As can be observed from the table, our algorithm has

satisfied considerably high improvements like 19,92 %,

and in worst cases, its deterioration is only 1,47 %.

In order to take a closer look to the factor levels

separately, we use Fig. 4. It is observed that average

processing time and load / unload times are not as

effective as the other three factors. Advantages of the

proposed algorithm seems to be more obvious for cases

with low number of parts, high ranged processing times

and high valued travel times. These observations are

clearly reasonable. Starting from the first factor, LPT’s

disadvantages gets less observable as the number of parts

gets higher. Increment over the range of processing times

means that there are various types of parts to be produced

and it is not reasonable to schedule these items by the

help of an algorithm which is insensitive to these

differences. Finally, travel time is important as we

consider robotic cells and it is related to the most

significant parameter, the robot movements, that needs to

be decreased.

Fig. 4. Average improvement percentages according to the factor levels

It is previously mentioned that we let part allocations

throughout this study. As can be seen from Table 3, in 86

out of 960 runs, the algorithm chose to use this option.

The result responses to an amount of 8,96 % in total, and

580 GU J Sci, 29(3): 573-582 (2016) / G. Didem BATUR, Serpil EROL

shows that allocation is able to be a preferable option

again without the need of any additional sources. Table

3 also shows the allocation numbers related to the

previously mentioned factor levels. We can say the

results are fairly distributed among the levels of all but

only one factor. The reason that load / unload time to be

the most effective parameter of the decision of allocation

is the necessity of the allocated part to be loaded and

unloaded twice. One can easily say that it is more

possible the allocation option to give better results as this

factor takes lower values.

Table 3. Allocation numbers

Factor Factor Level Number

Number of Parts
Low 47

High 39

Average Processing

Time

Low 45

High 41

Range of

Processing Times

Low 48

High 38

Load / Unload

Time

Low 64

High 22

Travel Time
Low 42

High 44

Total 86

5. CONCLUSION

In this study, we focus on the scheduling problem arising

in two-machine flexible robotic cells which can process

lots that contain different types of parts. Considering

multiple part types, the decisions to be made are to find

the robot move sequence and the part sequence, that

jointly minimize the total production time. As we do not

assume the allocation of processing times on each

machine to be constant, we also have the processing time

allocation problem.

Due to the fact that mathematical optimization

techniques are very limited to use for NP-hard problems,

in the existing literature, it is very common to use

metaheuristic approaches solving this type of ‘hard to

solve’ optimization problems. We have proposed an

efficient Simulated Annealing Algorithm which is also

very easy to implement and can be extended for further

cases with ease. The improvement search of the

algorithm uses both the swapping and random selections.

Experimental results show that it is possible to get

acceptable solutions very quickly and effectively. It is

important to notice that we obtained better results only

by changing processing time allocations for one part;

with no additional effort or cost. As a future research

direction, although explained procedure is developed for

a 2-machine system, it is not hard to expand the

algorithm for 3- or m-machine cases.

REFERENCES

[1] Dawande, M., Geismar, N., Sethi, S.P., “Dominance

of cyclic solutions and challenges in the scheduling

of robotic cells”, SIAM Review, 47, 709-721,

(2005).

[2] Gundogdu, E., Gultekin, H., “Scheduling in two-

machine robotic cells with a self-buffered

robot”, IIE Transactions, 48(2): 170-191, (2016).

[3] Gan, H-S., Wirth, A., Abdekhodaee, A., “A branch-

and-price algorithm for the general case of

scheduling paralel machines with a single server”,

Computers and Operations Research, 39: 2242-

2247, (2012).

[4] Hasani, K., Kravchenko, S.A., Werner, F.

“Minimising interference for scheduling two

parallel machines with a single

server”, International Journal of Production

Research, 52(24): 7148-7158, (2014).

[5] Jiang, Y., Zhang, Q., Hu, J., Dong, J., Ji, M., “Single-

server parallel-machine scheduling with loading

and unloading times”, Journal of Combinatorial

Optimization, 30(2): 201-213, (2015).

[6] Hasani, K., Kravchenko, S.A., Werner, F.,

“Minimizing the makespan for the two-machine

scheduling problem with a single server: Two

algorithms for very large instances”, Engineering

Optimization, 48(1): 173-183, (2016).

[7] Balin, S., “Nonidentical parallel machine scheduling

using genetic algorithm”, Expert Systems with

Applications, 38, 6814-6821, (2011).

[8] Bilyk, A, Mönch, L., “A variable neighborhood

search approach for planning and scheduling of jobs

on unrelated parallel machines”, Journal of

Intelligent Manufacturing, 23(5), 1621-1635,

(2012).

[9] Browne, J., Harhen, J., Shivnan, J., Production

Management Systems. New York: Addison-

Wesley, (1996).

[10] Gultekin, H., Akturk, M.S., Karasan, O.E., “Robotic

cell scheduling with tooling constraints”, European

Journal of Operational Research, 174, 777-796,

(2006).

[11] Jolai, F., Foumani, M., Tavakoli-Moghadam, R,

Fattahi, P., “Cyclic scheduling of a robotic flexible

cell with load lock and swap”, Journal of Intelligent

Manufacturing 23(5), 1885-1891, (2012).

[12] Mansouri, S.A., Hendizadeh, S.H, Salmasi, N.,

“Bicriteria scheduling of a two-machine flowshop

with sequence-dependent setup times”,

International Journal of Advanced Manufacturing

Technology, 40, 1216-1226, (2009).

GU J Sci, 29(3): 573-582 (2016) / G. Didem BATUR, Serpil EROL 581

[13] Naderi, B., Fatemi Ghomi S.M.T., Aminnayeri, M.,

“A high performing metaheuristic for job shop

scheduling with sequence-dependent setup times”,

Applied Soft Computing, 10, 703-710, (2010).

[14] Werner, F., Kravchenko, S.A., “Scheduling with

multiple servers”. Automation and Remote Control.

71, 2109-2121, (2010).

[15] Mor, B., Mosheiov, G., “Heuristics for scheduling

problems with an unavailability constraint and

position-dependent processing times”, Computers

and Industrial Engineering, 62, 908-916, (2012).

[16] Jiang, Y., Dong, J., Ji, M., “Preemptive scheduling

on two parallel machines with a single server”,

Computers and Industrial Engineering, 66, 514-518,

(2013).

[17] Batur, G.D., Karasan, O.E., Akturk, M.S., “Multiple

part-type scheduling in flexible robotic cells”,

International Journal of Production Economics,

135, 726-740, (2012).

[18] Metropolis, N., Rosenbluth, A., Resenbluth, M.,

“Equation of state calculations by fast computing

machines”, Journal of Chemical Physics, 21, 1087–

1092, (1953).

[19] Kirkpatrick, S., Gelatt, Jr., C.D., Vecchi, M.P.,

“Optimization by simulated annealing”, Science,

220, 671-680, (1983).

[20] Hooda, N., Dhingra, A.K., “Flow shop scheduling

using simulated annealing: A review”, International

Journal of Applied Engineering Research, 2, 234-

249, (2011).

[21] Low, C., Yeh, J.Y., Huang K.I., “A robust simulated

annealing heuristic for flow shop scheduling

problems”, International Journal of Advanced

Manufacturing Technology, 23, 762-767, (2004).

[22] Lee, Z.J., Lin, A.W., Ying, K.C., “Scheduling jobs

on dynamic parallel machines with sequence-

dependent setup times”, International Journal of

Advanced Manufacturing Technology, 47, 773-781,

(2010).

[23] Behnamian, J. Zandieh, M., Fatemi Ghomi, S.M.T.,

“Parallel-machine scheduling problems with

sequence-dependent setup times using an ACO, SA

and VNS hybrid algorithm”, Expert Systems with

Applications, 36, 9637-9644, (2009).

[24] Zhang, R., Wu C., “A hybrid immune simulated

annealing algorithm for the job shop scheduling

problem”, Applied Soft Computing, 10, 79–89,

(2010).

582 GU J Sci, 29(3): 573-582 (2016) / G. Didem BATUR, Serpil EROL

APPENDIX A. NUMERICAL EXAMPLE

We use the following example: Assume that we have 3 parts to be completed with corresponding processing times: 𝑃1 = 6,

𝑃2 = 12 and 𝑃3 = 40, ε and δ are both 1 units of time and solution of [3|1|2||1|2|1||3|0.4] is obtained throughout the

solution procedure. This solution corresponds to the situation that part 2 being processed on the 1st machine, part 1 on the

2nd machine and part 3 is to be allocated as 0.4 of its total processing is going to be performed by the 1st machine and the

rest on the other.

As it is mentioned before, at the starting moment (𝑡𝑖𝑚𝑒(𝑡) = 0) robot is in front of the input buffer, all the parts are loaded

in the input buffer, both of the two machines are empty and the decision of which machine to load first is made according

to the sequence given in the first part of the solution vector. In such a situation, robot starts its movement taking the 3rd part

(allocated one) to the 1st machine. Such a movement necessitates robot taking the part from the input buffer (ε), carrying it

to the machine (δ) and loading (ε). Robot time is 𝑡 = 2ε + 𝛿 = 3 now. According to the solution vector, processing of this

part is shared among the two machines as 𝑃31 = 40 ∗ 0.4 = 16 and 𝑃32 = 40 ∗ 0.6 = 24, so its processing on the 1st

machine will be completed at time 𝑡 = 3 + 16 = 19. For the following step, since the 2nd machine is empty and its next

part (part 1) has not been loaded yet, robot performs the movement related to this part; goes back to the input buffer first

(δ), takes the part (ε), brings it to the 2nd machine (2δ), and loads the part on the machine (ε). This movement makes the

time 𝑡 = 3 + 2ε + 3𝛿 = 8. Now, both of the machines are loaded. Completion times of parts 3 and 1 are 19 and 14,

respectively. For the following movement, 1st machine is selected as its processing is completed earlier. Since robot is still

in front of the machine, it does perform any travel and waits until the processing is completed. At time 𝑡 = 14, robot takes

part 1 from the 2nd machine (ε) and brings it to the output buffer (δ). Now there is one part in the system and one waiting in

the input buffer to be processed. As the next part is part 2 and it is assigned to the 1st machine, this machine needs to be

unloaded first. At this machine part 3 is loaded and its next location is the 2nd machine which is already unloaded, so robot

goes to the 1st machine from the output buffer (2δ), does not wait as its processing is completed at that time (𝑡 = 19), takes

the part (ε), brings (δ) and loads it on the 2nd machine (ε) at time 𝑡 = 22. This part needs to be processed at this machine for

24 units of time. 1st machine is now ready for the next machine to be loaded. Robot goes back to the input buffer from the

2nd machine (2δ), takes the last part which is part 2 (ε), carries to the machine (δ) and loads it on the 1st machine (ε) at time

= 27 . Now all of the parts of both of the machines are loaded once. In order the system to return back to its initial position,

both of the machines needs to be unloaded. As the completion time of part 2 is smaller than the other one, robot will wait

in front of the 1st machine until time 𝑡 = 39, unloads it (ε+2δ+ ε) and goes to the 2nd machine for part 3 (δ). At time 𝑡 = 46,

processing of the last part is completed and it is taken to the output buffer as soon as it is unloaded from the machine (ε+δ+

ε). As all of the parts’ processes are completed, robot goes to its initial position (input buffer) (3δ) which makes the system

return to its initial state. At this point of time, the time passed until this moment is calculated to be 𝑡 = 52 which is defined

as the objective function value.

Related Gantt-chart is given by Fig. A.1.

Fig. A.1. Gantt-chart for the example

