

A Short Note on The Relation $\mathcal N$ in Ordered Semihypergroups

Saber OMIDI^{1, •}, Bijan DAVVAZ¹

¹Department of Mathematics, Yazd University, Yazd, Iran

Received:23/04/2016 Accepted: 04/06/2016

ABSTRACT

Let (S, \bullet, \leq) be an ordered semihypergroup and $a \in S$. We denote by N(a) the hyperfilter of S generated by a. We define an equivalence relation $\mathcal{N} := \{(a, b) \in S \times S \mid N(a) = N(b)\}$ on S. In this note, we show that \mathcal{N} is the intersection of the relations $\sigma_P := \{(a, b) \in S \times S \mid a, b \in P \text{ or } a, b \notin P\}$, where P runs over the completely prime hyperideals of S. Moreover, we give some results on the ordered semihypergroups. *Keywords: Ordered semihypergroup, completely prime hyperideal, hyperfilter, semilattice equivalence relation*

1. INTRODUCTION AND PREREQUISITES

The notion of a hyperstructure was introduced by Marty [10] in 1934, when he defined the hypergroups and began to investigate their properties with applications to groups, rational fractions and algebraic functions. The concept of a semihypergroup is a generalization of the concept of a semigroup. The concept of congruences play an important role in studying the structure of semihypergroups [4]. As a reference for more definitions on semihypergroups we refer to [3]. In [8], Heidari and Davvaz studied a semihypergroup (S, \bullet) besides a binary relation \leq , where \leq is a partial order relation such that satisfies the monotone condition. This structure is called an ordered semihypergroup. Davvaz et al. [6] introduced the notion of pseudoorders of ordered semihypergroups. Changphas and Davvaz [1, 2]investigated some properties of

Let *S* be a non-empty set. A mapping $\bullet : S \times S \longrightarrow P^*(S)$, where $P^*(S)$ denotes the family of all non-empty subsets of *S*, is called a *hyperoperation* on *S*. By a *hypergroupoid* we mean a non-empty set *S* endowed with a hyperoperation \bullet . In the above definition, if *A* and *B* are two non-empty

hyperideals and bi-hyperideals in ordered semihypergroups. In 2016, Davvaz and Omidi [5] introduced hyperideals and bi-hyperideals of ordered semihyperrings. Tang et al. [12] studied some properties of hyperfilters in ordered semihypergroups. The ordered regular equivalence relations on ordered semihypergroups were studied by Gu and Tang in [7]. In 2014, Kehayopulu [9] studied the Green's relations and the relation \mathcal{N} in Γ semigroups. The concept of a semilattice congruence of an ordered Γ -semigroup was introduced in [11].

^{*}Corresponding author, e-mail: omidi.saber@yahoo.com

subsets of *S* and $x \in S$, then we denote

$$A \bullet B = \bigcup_{\substack{a \in A \\ b \in B}} a \bullet b, \ A \bullet x = A \bullet \{x\}, \quad x \bullet B = \{x\} \bullet B.$$

A hypergroupoid (S, \bullet) is called a *semihypergroup* if for all x, y, z of S, we have

$$x \bullet (y \bullet z) = (x \bullet y) \bullet z,$$

which means that

$$\bigcup_{u\in y\bullet z}x\bullet u=\bigcup_{v\in x\bullet y}v\bullet z\,.$$

A non-empty subset *K* of a semihypergroup (S, \bullet) is called a *subsemihypergroup* of *S* if $K \bullet K \subseteq K$. Let (S, \bullet) be a semihypergroup. Then, *S* is called a *hypergroup* if it satisfies the reproduction axiom, for all $x \in S$, $x \bullet S = S =$ $S \bullet x$. A non-empty subset *K* of *S* is a *subhypergroup* of *S* if $a \bullet K = K = K \bullet a$, for every $a \in K$.

Let σ be an equivalence relation on a semihypergroup (*S*, \bullet) and A, B \subseteq *S*. Then $A\overline{\sigma}B$ means that for all $a \in A$, there exists $b \in B$ such that $a\sigma b$ and for all $b' \in B$, there exists $a' \in A$ such that $a'\sigma b'$. Also, $A\overline{\sigma}B$ means that for all $a \in A$ and for all $b \in B$, we have $a\sigma b$. The equivalence relation σ is called (1) *regular* if for all $x \in S$, from $a\sigma b$, it follows that $a \bullet x\overline{\sigma}b \bullet x$ and $x \bullet a\overline{\sigma}x \bullet b$; (2) *strongly regular* if for all $x \in a\overline{\sigma}x \bullet b$.

An ordered semihypergroup (S, \bullet, \leq) is a semihypergroup (S, \bullet) together with a partial order \leq that is compatible with the hyperoperation \bullet , meaning that for any $x, y, z \in S$,

$$x \leq y \Rightarrow z \bullet x \leq z \bullet y$$
 and $x \bullet z \leq y \bullet z$.

Here, $z \bullet x \le z \bullet y$ means for any $a \in z \bullet x$ there exists $b \in z \bullet y$ such that $a \le b$. The case $x \bullet z \le y \bullet z$ is defined similarly. An ordered semihypergroup (S, \bullet, \le) is called an ordered hypergroup if (S, \bullet) is a hypergroup. A non-empty subset *A* of an ordered semihypergroup (S, \bullet, \le) is called a subsemihypergroup of *S* if (A, \bullet, \le) is an ordered semihypergroup. For a non-empty subset *K* of an ordered semihypergroup *S*, we denote

$$[K] = \{x \in S \mid x \le a \text{ for some } a \in K\}.$$

Definition 1.1 A non-empty subset I of an ordered semihypergroup (S, \bullet, \leq) is called a hyperideal of S if

(1)
$$S \bullet I \subseteq I$$
 and $I \bullet S \subseteq I$;

(2) When $x \in I$ and $y \in S$ such that $y \leq x$, imply that $y \in I$.

Note that the condition (2) in Definition 1.1 is equivalent to $(I] \subseteq I$.

A hyperideal *I* of an ordered semihypergroup *S* is called *completely prime* if for any *a*, *b* of *S* such that $a \cdot b \cap I \neq \emptyset$, then $a \in I$ or $b \in I$. A subsemihypergroup *F* of *S* is

called a *hyperfilter* [12] of *S* if (1) ($\forall a, b \in S$) $a \cdot b \cap F \neq \emptyset$ implies $a, b \in F$; (2) For any $a \in F$ and $c \in S$, $a \leq c$ implies $c \in F$. The intersection of all hyperfilters of *S* containing a non-empty subset *A* of *S* is the hyperfilter of *S* generated by *A*. For an element $a \in S$, we denote by N(a) the hyperfilter of *S* generated by *a*, and by \mathcal{N} the relation on *S* defined by

$$\mathcal{N} \coloneqq \{(a, b) \in S \times S \mid N(a) = N(b)\}$$

A semilattice equivalence relation on S is a strongly regular relation σ on S such that $a \cdot a\overline{\sigma} a$ and $a \cdot b\overline{\sigma} b \cdot a$ for each $a, b \in S$.

Theorem 1.2 [7] Let (S, \bullet, \le) be an ordered semihypergroup. Then \mathcal{N} is an ordered semilattice equivalence relation on S.

Theorem 1.3 [12] Let (S, \bullet, \leq) be an ordered semihypergroup and F a non-empty subset of S. Then, the following statements are equivalent:

- (1) F is a hyperfilter of S.
- (2) $S \setminus F = \emptyset$ or $S \setminus F$ is a completely prime hyperideal of *S*.

2. MAIN RESULTS

Let *a* be an element of an ordered semihypergroup (S, \bullet, \leq) . We denote by $I_S(a)$ the hyperideal of *S* generated by *a*. We have

$$I_{S}(a) = (a \cup S \bullet a \cup a \bullet S \cup S \bullet a \bullet S].$$

Let (S, \bullet, \leq) be an ordered semihypergroup. An equivalence relation \mathcal{I} is defined on S by $a\mathcal{I}b$ if and only if $I_S(a) = I_S(b)$ for any $a, b \in S$. This equivalence relation is called Green's relation on an ordered semihypergroup S. For a subset A of S we denote by σ_A the relation on S defined by

$$\sigma_A \coloneqq \{(a, b) \in S \times S \mid a, b \in A \text{ or } a, b \notin A\}.$$

Theorem 2.1 Let P be a completely prime hyperideal of an ordered semihypergroup (S, \bullet, \leq) . Then the set σ_P is a semilattice equivalence relation on S.

Proof. Clearly, σ_P is a relation on *S* which is reflexive and symmetric. So, we show that it is transitive. Suppose that $(a, b) \in \sigma_P$ and $(b, c) \in \sigma_P$. Then $a, b \in P$ or $a, b \notin P$ and $b, c \in P$ or $b, c \notin P$. If $a, b \in P$ and $b, c \in P$, then $a, c \in P$. Hence, $(a, c) \in \sigma_P$. If $a, b \notin P$ and $b, c \notin P$, then $a, c \notin P$. So, $(a, c) \in \sigma_P$. The case $a, b \notin P$ and $b, c \notin P$. Thus, σ_P is an equivalence relation on *S*.

Now, let $(a, b) \in \sigma_P$ and $c \in S$. Then $a, b \in P$ or $a, b \notin P$. Let $a, b \in P$. Since P is a hyperideal of S, we have $a \cdot c \subseteq P$ and $b \cdot c \subseteq P$. Hence, for all $u \in a \cdot c$ and for all $v \in b \cdot c$, we have $(u, v) \in \sigma_P$. This implies that $a \cdot c \overline{\sigma_P} b \cdot c$. Let $a, b \notin P$ and $c \in P$. Since P is a hyperideal of S, we have $a \cdot c \subseteq P$ and $b \cdot c \subseteq P$. Thus for any $m \in a \cdot c, n \in b$. *c*, we have $(m, n) \in \sigma_P$. Hence, $a \cdot c \overline{\sigma_P} b \cdot c$. Now, let $a, b \notin P$ and $c \notin P$. Since *P* is a completely prime hyperideal of *S*, we have $a \cdot c \cap P = \emptyset$ and $b \cdot c \cap P = \emptyset$. If $x \in a \cdot c$ and $y \in b \cdot c$, then $x \notin P$ and $y \notin P$. This implies that $(x, y) \in \sigma_P$, and hence $a \cdot c \overline{\sigma_P} b \cdot c$. Similarly, $c \cdot a \overline{\sigma_P} c \cdot b$. Therefore, σ_P is a strongly regular equivalence relation on *S*.

Finally, we prove that σ_P is a semilattice equivalence relation on *S*. Suppose that $a \in P$, where $a \in S$. Then, $a \cdot a \subseteq P$. Hence, $(x, a) \in \sigma_P$ for every $x \in a \cdot a$. Now, let $a \notin P$. Then, $a \cdot a \cap P = \emptyset$. Thus $a, y \notin P$ for every $y \in a \cdot a$, which means that $(y, a) \in \sigma_P$. Thus $a \cdot a \overline{\sigma_P} a$. Let $a, b \in S$ and $x \in a \cdot b, y \in b \cdot a$. If $a \cdot b \cap P \neq \emptyset$, then $a \in P$ or $b \in P$. By condition (1) of Definition 1.1, we have $x \in a \cdot b \subseteq P$ and $y \in b \cdot a \subseteq P$. So, for all $x \in a \cdot b$ and $y \in b \cdot a$, we have $x, y \in P$. This implies that $(x, y) \in \sigma_P$. If $a \cdot b \cap P = \emptyset$, then $b \cdot a \cap P = \emptyset$. So, for all $x \in a \cdot b$ and $y \in b \cdot a$, we have $x, y \notin P$. This implies that $(x, y) \in \sigma_P$. Thus $a \cdot b \overline{\sigma_P} b \cdot a$. Hence the proof is completed.

Theorem 2.2 Let CP(S) be the set of completely prime hyperideals of an ordered semihypergroup (S, \bullet, \leq) . Then,

$$\mathcal{N} = \bigcap_{P \in \mathcal{CP}(S)} \sigma_P$$

Proof. Suppose that *P* is a completely prime hyperideal of *S*. First, we show that $\mathcal{N} \subseteq \sigma_P$. Let $(a, b) \in \mathcal{N}$. If $(a, b) \notin \sigma_P$, then one of two following cases happens:

Case 1. $a \in P$ and $b \notin P$. Since $b \in S \setminus P$, we have $S \setminus P \neq \emptyset$. By assumption, $S \setminus (S \setminus P) = P$ is a completely prime hyperideal of *S*. By Theorem 1.3, $S \setminus P$ is a hyperfilter of *S*. Since $b \in S \setminus P$, it follows that $N(b) \subseteq S \setminus P$. So, $a \in N(a) = N(b) \subseteq S \setminus P$, which is a contradiction. This leads to $(a, b) \in \sigma_P$.

Case 2. $a \notin P$ and $b \in P$. Since $a \in S \setminus P$, we have $S \setminus P \neq \emptyset$. By assumption, $S \setminus (S \setminus P) = P$ is a completely prime hyperideal of *S*. By Theorem 1.3, $S \setminus P$ is a hyperfilter of *S*. Since $a \in S \setminus P$, it follows that $N(a) \subseteq S \setminus P$. So, $b \in N(b) = N(a) \subseteq S \setminus P$, which is a contradiction. This leads to $(a, b) \in \sigma_P$.

This implies that $\mathcal{N} \subseteq \sigma_P$ for every $P \in \mathcal{CP}(S)$. Thus $\mathcal{N} \subseteq \bigcap_{P \in \mathcal{CP}(S)} \sigma_P$.

Now, let $(a, b) \in \sigma_P$ for every $P \in C\mathcal{P}(S)$. Let $(a, b) \notin \mathcal{N}$. Then $N(a) \neq N(b)$. So, $a \notin N(b)$ or $b \notin N(a)$. If, say, $a \notin N(b)$, then $a \in S \setminus N(b)$. Since $b \in N(b)$, we have $b \notin S \setminus N(b)$. This implies that $(a, b) \notin \sigma_{S \setminus N(b)}$. By Theorem 1.3, $S \setminus N(b)$ is a completely prime hyperideal of S, which is a contradiction. If, say, $b \notin N(a)$, then $b \in$ $S \setminus N(a)$. Since $a \in N(a)$, we have $a \notin S \setminus N(a)$. This implies that $(a, b) \notin \sigma_{S \setminus N(a)}$. By Theorem 1.3, $S \setminus N(a)$ is a completely prime hyperideal of S, which is a contradiction. Then, $(a, b) \in \mathcal{N}$ which implies that $\sigma_P \subseteq \mathcal{N}$ for every $P \in C\mathcal{P}(S)$. Hence, $\bigcap_{P \in C\mathcal{P}(S)} \sigma_P \subseteq \mathcal{N}$. **Theorem 2.3** *If* (S, \bullet, \leq) *is an ordered semihypergroup, then* $\mathcal{I} \subseteq \mathcal{N}$.

Proof. Let Ω be the set of hyperideals of *S*. First, we show that

$$\mathcal{I} = \bigcap_{A \in \Omega} \sigma_A.$$

Let $(a, b) \in \mathcal{I}$ and $A \in \Omega$. If $a \in A$, then we have

$$b \in I_{S}(b) = I_{S}(a)$$
$$= (a \cup S \cdot a \cup a \cdot S \cup S \cdot a \cdot S]$$
$$\subseteq (A \cup S \cdot A \cup A \cdot S \cup S \cdot A \cdot S]$$
$$\subseteq (A]$$
$$= A.$$

This means that $b \in A$, and so $(a, b) \in \sigma_A$. If $a \notin A$, then we have $b \notin A$. Since $a, b \notin A$, it follows that $(a, b) \in \sigma_A$. Hence, $\mathcal{I} \subseteq \sigma_A$ for every $A \in \Omega$. So, we have $\mathcal{I} \subseteq \bigcap_{A \in \Omega} \sigma_A$. Now, let $A \in \Omega$ and $(x, y) \in \sigma_A$. Then, $(x, y) \in \sigma_{I_S(x)}$. So, we have $x, y \in I_S(x)$ or $x, y \notin I_S(x)$. Since $x \in I_S(x)$, it follows that $y \in I_S(x)$. This implies that $I_S(y) \subseteq I_S(x)$. Similarly, we can prove that $I_S(x) \subseteq I_S(y)$. Then, $I_S(x) =$ $I_S(y)$ and so $(x, y) \in \mathcal{I}$. Hence, $\bigcap_{A \in \Omega} \sigma_A \subseteq \mathcal{I}$. Thus we have $\mathcal{I} = \bigcap_{A \in \Omega} \sigma_A$. Now, by Theorem 2.2, we have

$$\mathcal{I} = \bigcap_{A \in \Omega} \sigma_A \subseteq \bigcap_{A \in \mathcal{CP}(S)} \sigma_A = \mathcal{N}.$$

Theorem 2.4 *Let* (S, \bullet, \le) *be an ordered semihypergroup. If* $N(a) = \{b \in S \mid a \in (S \bullet b \bullet S]\}$ *for all* $a \in S$ *, then* $\mathcal{I} = \mathcal{N}$.

Proof. By Theorem 2.3, we have $\mathcal{I} \subseteq \mathcal{N}$. Let $(x, y) \in \mathcal{N}$. Then, $x \in N(x) = N(y)$. By hypothesis, we have

$$y \in (S \bullet x \bullet S] \subseteq (x \cup S \bullet x \cup x \bullet S \cup S \bullet x \bullet S] = I_S(x).$$

Hence, $I_S(y) \subseteq I_S(x)$. Similarly, we have $I_S(x) \subseteq I_S(y)$. Thus $I_S(x) = I_S(y)$ and so $(x, y) \in \mathcal{I}$. Therefore, $\mathcal{N} \subseteq \mathcal{I}$ and the proof is completed.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

- T. Changphas and B. Davvaz, *Bi-hyperideals and quasi-hyperideals in ordered semihypergroups*, Ital. J. Pure Appl. Math. **35** (2015), 493-508.
- [2] T. Changphas and B. Davvaz, *Properties of hyperideals in ordered semihypergroups*, Ital. J. Pure Appl. Math. 33 (2014), 425-432.
- [3] P. Corsini, Prolegomena of Hypergroup Theory, Second edition, Aviani Editore, Italy, 1993.
- [4] B. Davvaz, Some results on congruences in

semihypergroups, Bull. Malays. Math. Sci. So. (2), **23** (2000), 53-58.

- [5] B. Davvaz and S. Omidi, *Basic notions and properties* of ordered semihyperrings, Categ. General Alg. Structures Appl. 4(1) (2016), 43-62.
- [6] B. Davvaz, P. Corsini and T. Changphas, *Relationship between ordered semihypergroups and ordered semigroups by using pseudoorder*, European J. Combinatorics, 44 (2015), 208-217.
- [7] Z. Gu and X. Tang, Ordered regular equivalence relations on ordered semihypergroups, J. Algebra, 450 (2016), 384-397.
- [8] D. Heidari and B. Davvaz, On ordered hyperstructures, U.P.B. Sci. Bull. Series A. 73(2) (2011), 85-96.
- [9] N. Kehayopulu, Green's relations and the relation N in Γ-semigroups, Quasigroups Relat. Syst. 22 (2014), 89-96.
- [10] F. Marty, Sur une generalization de la notion de groupe, Eight Congress Math. Scandinaves, Stockholm, 1934, 45-49.
- [11] M. Siripitukdet and A. Iampan, On the least (ordered) semilattice congruence in ordered Γ-semigroups, Thai J. Math. 4 (2006), 403-415.
- [12] J. Tang, B. Davvaz and Y. F. Luo, *Hyperfilters and fuzzy hyperfilters of ordered semihypergroups*, J. Intell. Fuzzy Systems, **29**(1) (2015), 75-84.