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1. Introduction 

Insurance is a concept that concerns and affects almost everyone in our daily lives. Therefore, insurance is an 
inevitable part of the developed economies. Contemporary economies and modern states would hardly operate 
without insurance companies. Because these institutions guarantee compensation to almost any actors of the 
society at the individualistic, company, or the organizational level at an unfortunate time when catastrophes such 
as fires, floods, earthquakes, accidents and riots befalls onto them. Therefore, the examination of risk and ruin 
problems of insurance company has a vital role in actuarial science. Swedish mathematicians and the pioneers in 
this area, Lundberg (1903) and Cramér (1930) laid foundations of modern risk theory based on the probability 
theory, statistics, and stochastic processes. They found out that insurance business can be aptly modelled via 
stochastic processes framework. Cramér-Lundberg model is one of the pillars of non-life insurance mathematics 
(Mikosch, 2004). This model has been extended and adapted to various domains of applied probability: financial 
mathematics, renewal theory, queuing theory, branching processes, reliability, and extreme value theory are just 
some of them. Many valuable studies have been done in the literature on this subject (see, Cramér, 1930; Lundberg, 
1903; Malinovski, 2014; Mikosch, 2004; Mishura, 2014; Yang, 1998).  The question of how much of initial capital 
is required to keep the probability of ruin above some predefined threshold value is answered in the paper by 
Malinovski (2014). Evaluation of ruin probabilities largely depends on the distribution of demand quantities, and 
given two or more demand distributions, it is important which one gives greater ruin probabilities in finite or 
infinite time horizon for a given initial capital value of 𝑢. This issue is addressed in (Asmussen and Rolski, 1994; 
Chadjiconstantinidis and Politis, 2007; Cohen and Young, 2020; Gaier et al., 2003 ; Gauchonab et al., 2020; 
Gerber, 1998; Kaas et al., 2001; Rolski, 1999; Straub, 1988; and etc.).  Most of the research is done on variations 

In this study, a non-linear version of a Cramér-Lundberg risk model is examined. 
The objective of this work is to evaluate the ruin probability of the non-linear 
risk model. The classical linear Cramér-Lundberg model has been widely studied 
in the literature. However, the linear model is not always realistic. Because an 
insurance company's premium income cannot always increase linearly. 
Therefore, it is recommended to adapt premium income as a function which 
increases monotonically and yet its rate of growth decreases over time. Thus, to 
account for this, a more realistic non-linear mathematical model has been 
constructed and investigated, when the premium income function is 𝑝(𝑡) = 𝑐√𝑡. 
Then Lundberg type upper bound was calculated for the ruin probability for the 
model under investigation.  

Article History: 
Received:          16.02.2022 
Revised:            24.03.2022 
Accepted:          04.04.2022 
 
 



Hanalioglu,	Allyyev,	Khaniyev										 					 	 																																																													JTOM(6)1,	1065-1075,	2022	

 
 

1066 

of premium income function 𝑝(𝑡) and its relation to the total claim process 𝑆(𝑡). In the paper by Boikov (2002), 
the premium income process is studied by assuming that premium income is stochastic and also independent of 
the risk process. Constantinescu et al. (2018), investigated ruin probabilities in classical risk model with gamma 
claims. 

A scenario when the total claim amount process is the same as in the classical model while the premium income – 
unlike the classical case – is a stochastic process, called as random premiums risk process, is investigated by 
Temnov (2004) and ruin probabilities are estimated numerically. Similarly, Zang and Yang (2009) considered risk 
model with stochastic premium income. In their work, some specific dependence structure among the claim sizes, 
inter-claim times, and premium sizes is assumed.  

The studies mentioned above are all valuable, each focusing on specific sets of conditions. In the literature, the 
premium income function 𝑝(𝑡) is generally modeled as a linear function. However, the linear model is not always 
realistic because an insurance company's premium collection cannot always increment in a linear fashion. This is 
particularly the case for companies (markets) saturated with insurance policyholders. Accordinggly, a reasonable 
approach would be to formulate the premium income as a monotonically increasing function whose growth-rate 
slows with time. To this end, a more realistic mathematical non-linear Cramér-Lundberg risk model is formulated 
and studied, which is defined as 𝑉(𝑡) = 𝑢 + 𝑐+ 𝑔(𝑊!)

"($)
!&' − 𝑆(𝑡). Here, 𝑔(𝑡) is a non-linear function that is 

monotonically increasing whose growth-rate is decreasing with time;	𝑊! , 𝑖 = 1, 2, 3… are positive-valued 
independent and identically distributed random variables describing inter-arrival times of claims; 𝑢 – the initial 
capital of the company; 𝑐 – the premium rate; 𝑆(𝑡) = ∑ 𝑋!

"($
!&'  is the renewal-reward process that expresses the 

insurer’s capital outflow; 𝜈(𝑡) – the  process counting the total number of claims and 𝑋! , 𝑖 = 1, 2, 3… are 
independent and identically distributed random variables representing the amount of payment for the 𝑖$( claim, 
for 𝑖 = 1, 2, 3, … . In other words, 𝑉(𝑡) expresses insurance company’s capital balance at any time		𝑡.  The main 
goal of this research is to investigate the ruin probability of the non-linear risk model 𝑉(𝑡). For this aim, Lundberg 
type upper bound is obtained for the ruin probability of this non-linear risk model, when the income function is 
defined as	𝑝(𝑡) = 𝑐√𝑡. 

The primary contribution of this study is the mathematical construction of the Cramér-Lundberg model under the 
assumption that the premium income function is a non-linear function. Finding a Lundberg type upper bound for 
the ruin probability of this non-linear risk process is a secondary contribution. 
 
The remaining part of the article is organized as follows. In Section 2, construction of the model is given. In Section 
3, relevant definitions from the risk theory are provided. In Section 4, Lundberg-type upper bound is obtained for 
the ruin probability. In Section 5, the generalized Lundberg adjustment coefficient 𝑟 is analyzed in detail. In 
Section 6, conclusion is provided. 
 
Now, we proceed to the mathematical construction of the process 𝑉(𝑡).  
 
2. Mathematical Construction of the Non-Linear Cramér-Lundberg Risk Model 
 
Let sequences of random variables {𝑊!} and {𝑋!}, 𝑖 = 1, 2, 3, …  be defined on the same probability space (Ω, ℱ, 𝑃) 
and let variables in each sequence be independent and identically distributed. Also suppose that 𝑊!

)𝑠	and 𝑋!′𝑠 take 
only positive values.  

𝑊! , 𝑖 = 1, 2, … are independent and identically distributed random variables describing inter-arrival times of 
claims, similarly, 𝑋! , 𝑖 = 1, 2, … are independent and identically distributed random variables denoting the amount 
of the payment for the  𝑖$( claim, for 𝑖 = 1, 2, 3, … . 

Define the renewal sequences {𝑇*}	and {𝑆*} as follows:  

𝑇* =	∑ 𝑊!
*
!&' ; 𝑆* = ∑ 𝑋!*

!&' ,			𝑖 = 1, 2, 3, … ;	𝑇+ = 𝑆+ = 0    
Here, 𝑇* is the 𝑛$( claim time; 𝑆* represents the total payment amount in the first 𝑛 claims. 
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Moreover, to count the total number of claims occurred in [0, 𝑡], define a renewal process as follows:   𝜈(𝑡) ≡
𝑚𝑎𝑥{𝑛 ≥ 0 ∶ 		 𝑇*	 	≤ 𝑡		},			𝑡 ≥ 0. Now  we can define the stochastic process  𝑉(𝑡), which represents the insurance 
company's capital at time 𝑡, as follows:  

𝑉(𝑡) = 𝑢 + 𝑐S𝑔(𝑊!)
-($)

!&'

−S𝑋!

-($)

!&'

	,																																																																																																																																							(1) 

Here,  𝑢 – company's initial capital; 𝑐 – premium rate per unit time; 𝑔(𝑡) is a monotonically increasing non-linear 
function whose growth-rate declines with time and 𝑔(0) = 0; 𝑔(1) = 1. 
 
The stochastic process 𝑉(𝑡) is called a Non-Linear Risk process. Moreover, the model expressed by means of this 
process is called the Non-Linear Cramér-Lundberg Risk Model. 
 
Additionally, let's define the following boundary functionals: 
𝑁' ≡ 𝑁'(𝑢) = 𝑚𝑖𝑛{𝑛 ≥ 1: 𝑢 + ∑ [𝑐𝑔(𝑊!) −	𝑋!] < 0*

!&' };					𝜏' = ∑ 𝑊!
.!
!&' .																																																													(2)  

Here, 𝑁', represents the number of claims until ruin, and 𝜏' representes the time of ruin. 
 
A sample graph of the process 𝑉(𝑡) is shown in Figure 1. 
 

 
Figure 1. A sample path of  non–linear risk process 𝑉(𝑡) 

 
The key objective of this study is to determine the ruin probability of the non-linear risk model in Eq.(1). For this 
purpose, it is necessary to give the following preliminary definitions. 
 
3. Ruin Probability of Non-Linear Lundberg Risk Model 
      
Let us provide the following definitions in a similar manner as in Mikosch (2004). 
 
Definition 3.1:   i. The event that 𝑉(𝑡) ever falls below zero is called ruin, i.e., 
                               𝑹𝒖𝒊𝒏 =	 {𝑉(𝑡) < 0		𝑓𝑜𝑟	𝑠𝑜𝑚𝑒	𝑡	 > 0} 
 
                          ii. The first time when the non-linear process falls below zero is called ruin time, 𝝉𝟏: 
                               𝝉𝟏 = inf 	{𝑡 > 0:	𝑉(𝑡) < 0} 
 
Note: The 𝜏' defined here is the same as the random variable 𝜏' defined in the Eq.(2), with  probability 1. 
 
                         iii. Then 𝝍(𝒖) − 𝑡ℎ𝑒	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑟𝑢𝑖𝑛, is then given by: 
                               𝝍(𝒖) ≡ 𝑃{(𝑅𝑢𝑖𝑛	|	𝑉(0) = 𝑢} = 𝑃0{𝜏' < ∞}, 𝑢 > 0.	 
 
Observe that the occurrence of  ruin is possible only at discrete times 𝑡 = 	𝑇* for some 𝑛 = 1,2,…. Therefore, we 
can rewrite  

𝑅𝑢𝑖𝑛 = 	kinf
$1+

𝑉(𝑡) < 0l = 	 kinf
*2'

	𝑉(𝑇*) 	< 0l = 	 kinf
*2'

	[𝑢 + 𝑐 ∑ 𝑔(𝑊!)*
!&' −	∑ 𝑋!*

!&' 	] 	< 0l . 
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For shortness of notation, let's define the following random variables: 
𝑍* =	𝑋* − 𝑐𝑔(𝑊*),	      𝐷* = ∑ 𝑍!*

!&' 		 , 𝑛 = 1,2,3, … , 					𝐷+ = 0	.     
Then we have the following alternative expression for the ruin probability 𝜓(𝑢) with the initial capital 𝑢:  

𝜓(𝑢) = 𝑃 kinf
*2'

	(𝑢 − 𝐷*) 	< 	0l = 𝑃 psup
*2'

	𝐷* > 𝑢t																																																																																																								(3)   

 
Definition 3.2: The non-linear Cramér-Lundberg model satisfies the net profit condition if  
 
𝐸(𝑍') = 𝐸(𝑋') − 𝑐𝐸(𝑔(𝑊')) 	< 0																																																																																																																																							(4) 
  
The net profit condition can be contemplated as follows: 
 
The expected amount of a claim	𝐸(𝑋') should always be less than the expected premium income 𝑐𝐸(𝑔(𝑊')) in 
one period. In other words, more average premium income should be earned than the average loss the company 
paid in each period. However, this does not imply that the ruin of the company is completely averted. Because the 
Net Profit Condition does not consider the fluctuating behavior of the stochastic process. 
 
In this model, a small claim condition is assumed, meaning that, there exists a moment generating function of the 
claim size distribution in a neighborhood of the origin, i.e., for each  ℎ ∈ (−ℎ+, ℎ+), 𝑀3(ℎ) ≡ 𝐸(𝑒(3!) 
exists,	𝑓𝑜𝑟	𝑠𝑜𝑚𝑒	ℎ+ 	> 0.		 
 
Definition 3.3: Assume that there exists a moment generating function of 𝑍' in some neighborhood of (−ℎ+, ℎ+), 
for ℎ+ > 0, of the origin. If the equation below, 
 
𝐸y𝑒((4!567(8!))z = 1																																																																																																																																																															(5) 
 
has a positive solution ℎ = 𝑟, then this solution 𝑟	is called the generalized Lundberg coefficient or adjustment 
coefficient and can be represented as follows: 
 

	𝑟 ≡ 𝑖𝑛𝑓|ℎ > 0:	𝑀3(ℎ) = 𝐸(𝑒(3!) = 𝐸y𝑒((4!567(8!))z = 1} 
 
4.  Lundberg-Type Upper Bound for Ruin Probability 

In this part of the study, a Lundberg type upper bound is found for the non-linear risk model constructed in Section 
2 (see, Eq.(1)). The following theorem establishes this upper bound. 

Theorem 4.1: Assume the non-linear risk model given in Eq.(1) with Net Profit Condition satisfied. Also suppose 
that the generalized adjustment coefficient (𝑟) exists for this model. Then, for all 𝑢 > 0, the following inequality 
holds: 

 
𝜓(𝑢) ≤ 𝑒590																																																																																																																																																																															(6)  

 
Proof: Using the method in Mikosch (2004), let us show that for each 𝑢 > 0, the inequality (6) is satisfied for the 
non-linear risk model.  

Let's denote the probability of ruin in the 𝑛$( claim by 𝜓*(𝑢). By definition, 𝜓*(𝑢) can be written as: 

𝜓*(𝑢) = 𝑃 p 𝑠𝑢𝑝
':;:*

(𝐷;) > 𝑢t . 

Here, 𝐷* = ∑ 𝑍!*
!&' ; 	𝑍* = 𝑋* − 𝑐𝑔(𝑊*),  𝑛 = 1,2,3, …. 

Now, for every	𝑛 = 1,2,3, … let us prove that 

𝜓*(𝑢) ≤ 𝑒590																																																																																																																																																																													(7) 
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by the method of induction. 

Using the Markov Inequality for	𝑛 = 1, the following inequality can be written for the ruin probability:    

𝜓'(𝑢) = 𝑃{𝐷' > 𝑢} = 𝑃{𝑟𝐷' > 𝑟𝑢} = 𝑃{𝑒9<! > 𝑒90} = 𝑃{𝑒93! > 𝑒90} ≤
𝐸(𝑒93!)
𝑒90  

													= 𝑒590𝐸(𝑒93!) = 𝑒590𝑀3(𝑟). 

Here,  𝑀3(𝑟) ≡ 𝐸(𝑒93!), 𝑟 > 0	.  

𝑟 exists when net profit condition is satisfied and this coefficient is defined as: 

𝑟 ≡ 𝑖𝑛𝑓{𝑘 > 0:𝑀3(𝑘) = 1}																																																																																																																																																			(8)  

In other words, the coefficient 𝑟 is the first positive solution of the equation 𝑀3(𝑘) = 1. 

Thus, we have shown that for	𝑛 = 1, 𝜓'(𝑢) ≤ 𝑒590.  Now let's prove the proposition 	(7) for 𝑛 = 2.  In this case, 
the ruin probability can be calculated as follows: 

𝜓=(𝑢) = 𝑃 p 𝑠𝑢𝑝
':;:=

𝐷; > 𝑢t = 𝑃{𝐷' > 𝑢	𝑜𝑟	𝐷= > 𝑢} = 𝑃{𝐷' > 𝑢} + 𝑃{𝐷' ≤ 𝑢;𝐷= > 𝑢	} 

= � 𝑃{𝑍' ∈ 𝑑𝑥} + �𝑃{𝐷' > 𝑢 − 𝑥}𝑃{𝑍' ∈ 𝑑𝑥}
0

5>

>

0
= � 𝑑𝐹3(𝑥) + �𝜓'(𝑢 − 𝑥)𝑑𝐹3(𝑥)

0

5>

>

0
 

≤ � 𝑒59(05?)𝑑𝐹3(𝑥) + �𝑒59(05?)𝑑𝐹3(𝑥)
0

5>

= � 𝑒59(05?)𝑑𝐹3(𝑥) = 𝑒590
>

5>

>

0
� 𝑒9?𝑑𝐹3(𝑥)
>

5>

 

= 𝑒590𝐸(𝑒93!) = 𝑒590𝑀3(𝑟)	.																																																																																																																																														(9) 

Here, 𝐹3(𝑥) ≡ 𝑃{𝑍' ≤ 𝑥}	. Note that, in Eq.(9), it is considered that 	𝑒59(05?) ≥ 1, for 𝑥 > 𝑢.  

By the definition of 𝑟, the equality  𝑀3(𝑟) = 1 must hold. Therefore, from Eq.(9) we get: 

𝜓=(𝑢) ≤ 𝑒590.   

Similarly, the proposition in (7) can be proved for	𝑛 = 3, 4, …	by induction. 

In other words, it is shown that for every 𝑛 = 1, 2, 3, 4, … we have: 

𝜓*(𝑢) ≤ 𝑒590 

The following inequality can be written, using the property of the supremum:  

𝜓'(𝑢) ≤ 𝜓=(𝑢) ≤ ⋯ ≤ 𝜓*(𝑢) ≤ ⋯ ≤ 𝑒590 

In other words, 𝜓*(. ) is a positive valued, monotonically non-decreasing, bounded above sequence. In this 
case,	 lim

*→>
𝜓*(𝑢) exists and lim

*→>
𝜓*(𝑢) ≡ 𝜓(𝑢) ≤ 𝑒590. 

Thus, for every	𝑢 > 0:	 𝜓(𝑢) ≤ 𝑒590. 

Therefore, Theorem 4.1 is proved for every 𝑢 > 0.                                                                                                ∎                                                                                             

Remark: According to Eq.(6), when the company's initial capital 𝑢	is large, the ruin probability will be decrease. 
Similarly, the larger the adjustment coefficient 𝑟, the smaller the probability of ruin. 

Since the initial capital 𝑢 is known, the generalized Lundberg coefficient 𝑟 needs to be examined to find a 
Lundberg-type upper bound. This issue is addressed in detail in the following section. 

 

5.  Analysis of the Generalized Lundberg Coefficient 𝒓 
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It follows from the previous section that the investigation of the probability of ruin is equivalent to examining the 
adjustment coefficient	𝑟. 

Therefore, let's reconsider Eq.(5) to find the adjustment coefficient	𝑟. 

𝑀3(𝑟) = 𝐸(𝑒93!) = 𝐸y𝑒9(4!567(8!))z = 𝐸(𝑒94!)𝐸y𝑒5697(8!z = 1																																																																										(10) 

Here,  𝑋! , 𝑖 = 1, 2, … are independent and identically distributed random variables denoting the amount of 
payment for  𝑖$( claim, for 𝑖 = 1,2,3, …, and 𝑐𝑔(𝑡) represents the income function. After introducing a notation 
𝑌! ≡ 𝑔(𝑊!), Eq.(10) can be rewritten as follows: 

𝑀3(𝑟) = 𝐸(𝑒94!)𝐸y𝑒5697(8!z = 𝑀4(𝑟)𝑀A(−𝑐𝑟) = 1																																																																																																	(11) 

Here, 

𝑀4(𝑟) = 𝐸(𝑒94!) = ∫ 𝑒9?>
+ 𝑓4(𝑥)𝑑𝑥;	𝑀A(−𝑐𝑟) = 𝐸y𝑒5697(8!)z = ∫ 𝑒569B>

+ 𝑓A(𝑦)𝑑𝑦 . 

In summary, the adjustment coefficient 𝑟 can be found from the integral in Eq.(11).  However, it is very difficult 
to find the coefficient 𝑟 from the integral equation (11) in general. Therefore, a special case is discussed and studied 
below. 

A Special Case: In this case, the income function is taken as	𝑐√𝑡  and the corresponding non-linear risk model is 
examined. In addition, in this special case, the random variables  𝑋! , 𝑖 = 1,2,3, … representing the payment amount 
in the 𝑖$( claim have Exponential distribution with 𝜇 > 0 parameter; 𝑊! , 𝑖 = 1,2,3, .. random variables expressing 
the time between claims are assumed to have Exponential distribution with 𝜆 > 0 parameter. The probability 
density functions of these random variables are as follows, respectively: 

𝑓4(𝑥) = 𝜇𝑒5C? , 𝑥 ≥ 0;	𝑓8(𝑡) = 𝜆𝑒5D$ , 𝑡 ≥ 0																																																																																																																	(12) 

Before solving Eq.(11), let's examine the distribution and Moment Generating Function of random variables 𝑌* =
√𝑊* . 

Since the random variable	𝑊* has the Exponential distribution with parameter 𝜆, then distribution of the random 
variable 𝑌* can be written as follows: 

𝐹A(𝑡) ≡ 𝑃{𝑌* ≤ 𝑡} = 𝑃|√𝑊* ≤ 𝑡} = 	𝑃{𝑊* ≤ 𝑡=} = 1 − exp(−𝜆𝑡=) , 𝑡 ≥ 0																																																								(13) 

As can be seen from Eq.(13), 𝑌* has Weibull distribution with parameter set (𝛼 = 2; 𝜆) whose probability density 
function is as follows: 

𝑓A(𝑡) = 2𝜆𝑡 exp(−𝜆𝑡=) , 𝑡 ≥ 0.																																																																																																																																											(14) 

Now let's write the Moment Generating Function of the random variable 𝑌*. 

𝑀A(𝑘) = 𝐸(𝑒;A!) = � 𝑒;$𝑓A(𝑡)𝑑𝑡
>

+

= � 𝑒;$2𝜆𝑡𝑒5D$"𝑑𝑡
>

+

= 2𝜆� 𝑡𝑒𝑥𝑝	 p−𝜆 �𝑡= −
𝑘
𝜆 𝑡�t 𝑑𝑡

>

+

 

													= 2𝜆 exp�
𝑘=

4𝜆�� 𝑡 exp p−𝜆[𝑡 −
𝑘
2𝜆]

=t 𝑑𝑡
>

+

																																																																																																											(15) 

By changing the variable 𝑣 = 𝑡 − ;
=D

 in the integral in Eq.(15), the Moment Generating Function of the random 
variable 𝑌*, can be written as follows: 

𝑀A(𝑘) = 2𝜆 exp �
𝑘=

4𝜆� � �𝑣 +
𝑘
2𝜆� exp

(−𝜆𝑣=) 𝑑𝑣
>

5	 ;=D
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= 2𝜆 exp �
𝑘=

4𝜆�

⎩
⎨

⎧
� 𝑣exp	(−𝜆𝑣=)𝑑𝑣
>

5	 ;=D

+
𝑘
2𝜆 � exp	(−𝜆𝑣=)𝑑𝑣

>

5	 ;=D ⎭
⎬

⎫
																																																																													(16) 

Let's rewrite Eq.(16) by change of the variable 𝑥 = √2𝜆𝑣: 

𝑀A(𝑘) = 2𝜆 exp �
𝑘=

4𝜆�

⎩
⎪
⎨

⎪
⎧

�
𝑥
√2𝜆

𝑒𝑥𝑝
>

5	 ;
√=D

�−
𝑥=

2 �
𝑑𝑥
√2𝜆

+
𝑘
2𝜆 � 𝑒𝑥𝑝

>

5	 ;
√=D

�−
𝑥=

2 �
𝑑𝑥
√2𝜆

⎭
⎪
⎬

⎪
⎫
																																															(17) 

For brevity, let's introduce the following notations: 𝑇 ≡ − ;
√=D

; 	𝜑(𝑥) = '
√=F

exp  − ?"

=
¡ , 𝑥 ∈ 𝑅. 

Here φ(x) is the probability density function of the standard normal distribution. 

Considering the above accepted notations in Eq.(17), the Moment Generating Function  𝑀A(𝑘) of the random 
variable  𝑌*	can be written as follows: 

𝑀A(𝑘) = 2𝜆 exp �
𝑇=

2 � ¢
1
2𝜆� 𝑥 exp�−

𝑥=

2 �𝑑𝑥
>

G

+
𝑘

2𝜆√2𝜆
� exp�−

𝑥=

2 �𝑑𝑥
>

G

£ 

													= 2𝜆 exp�
𝑇=

2 � ¢
1
2𝜆� 𝑥√2𝜋	𝜑(𝑥)𝑑𝑥

>

G

+
𝑘

2𝜆√2𝜆
� √2𝜋	𝜑(𝑥)𝑑𝑥
>

G

£ 

												= √2𝜋𝑒𝑥𝑝�
𝑇=

2 � ¢� 𝑥	𝜑(𝑥)𝑑𝑥
>

G

+
𝑘
√2𝜆

� 	𝜑(𝑥)𝑑𝑥
>

G

£ =
1

	𝜑(𝑇) ¢� 𝑥	𝜑(𝑥)𝑑𝑥
>

G

− 𝑇� 	𝜑(𝑥)𝑑𝑥
>

G

£ 

												=
1

	𝜑(𝑇)
{𝜑(𝑇) − 𝑇Φ¦(𝑇)} = 1 −

𝑇
𝜑(𝑇)Φ

¦(𝑇)	 

Here  Φ¦(𝑇) ≡ ∫ 	𝜑(𝑥)𝑑𝑥>
G . 

In summary, we have: 

𝑀A(𝑘) ≡ 1 −
𝑇

𝜑(𝑇)Φ
¦(𝑇),								𝑇 ≡ −

𝑘
√2𝜆

.																																																																																																																						(18)	 

Considering that 𝑘 = −𝑐𝑟 in Eq.(18), it becomes 𝑇 ≡ 69
√=D

 . In this case, the following equation is obtained:  

𝑀A(−𝑐𝑟) ≡ 1 − G
H(G)

Φ¦(𝑇) 

On the other hand, since the random variables 𝑋! , 𝑖 = 1,2,3, …, which represent the payment amount, have 
Exponential distribution with parameter 𝜇 > 0, the Moment Generating Function can be presented as follows: 

 𝑀4(𝑟) ≡
C
C59

																																																																																																																																																																											(19)  

Inserting Eq.(18) and Eq.(19) into Eq.(11), the following equation is obtained: 

𝜇
𝜇 − 𝑟 �1 −

𝑇
𝜑(𝑇)Φ

¦(𝑇)� = 1 ⟺ 1−
𝑇

𝜑(𝑇)Φ
¦(𝑇) =

𝜇 − 𝑟
𝜇 ⟺ 1−

𝑇
𝜑(𝑇)Φ

¦(𝑇) = 1 −
𝑟
𝜇 

In other words, 

𝑇
𝜑(𝑇)Φ

¦(𝑇) =
𝑟
𝜇																																																																																																																																																																							

(20) 

It can be rewritten as 𝑟 = 	 √=D
6
𝑇, from the definition of 𝑇 ≡ 69

√=D
 .  
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Inserting 𝑟 = √=D
6
𝑇 in Eq.(20), we obtain the following equation:  

𝑇
𝜑(𝑇)Φ

¦(𝑇) =
√2𝜆
𝑐𝜇 𝑇 ⟺

Φ¦(𝑇)
𝜑(𝑇) =

√2𝜆
𝑐𝜇 ⟺ 𝜑(𝑇) =

𝑐𝜇
√2𝜆

Φ¦(𝑇)																																																																																				(21) 

For brevity we put 𝐾 ≡ 6C
√=D

.  In this case, Eq.(21) becomes: 

𝜑(𝑇) = 𝐾Φ¦(𝑇)																																																																																																																																																																								(22)  

Here,  𝜑(𝑥) = '
√=F

exp  − ?"

=
¡ , 𝑥 ∈ 𝑅; Φ¦(𝑇) ≡ ∫ 	𝜑(𝑥)𝑑𝑥>

G ; 𝐾 ≡ 6C
√=D

; 𝑇 ≡ 69
√=D

. 

Note that, when net profit condition is satisfied, an interval for variation of the constant 𝐾 can be found. We know 
that the expected value of the claim amount is	𝐸(𝑋') =

'
C
. Also, since the random variable 𝑌' representing time 

dependent income has a Weibull distribution with (𝛼 = 2; 𝜆)	 parameter, its expected value is given as follows: 

𝐸(𝑌') =
1
√𝜆

Γ�1 +
1
2� =

√𝜋
2√𝜆

																																																																																																																																													(23) 

Net profit condition demands that 𝐸(𝑋') < 𝑐𝐸(𝑌'). In this case, the following inequality 

 '
C
< 𝑐 √F

=√D
																																																																																																																																																																																		(24)  

holds. Thus, from the inequality (24), the following interval of variation is found for the coefficient 𝐾: 

ª2
𝜋 < 𝐾 < ∞																																																																																																																																																																											(25) 

When 𝐾 > «=
F
 , the graph of the functions 𝑦 = 𝜑(𝑇) and  𝑦 = 𝐾Φ¦(𝑇)	 can be drawn on the same coordinate 

system and the intersection point of these functions can be found (see, Figure 2). As can be seen in the graph 
below, the graphs of these functions intersect at a single positive abscissa point. Therefore, the first positive 
solution of Eq.(22)  can be found by numerical methods. 

 

Figure 2.  Intersection of 𝑦 = 𝜑(𝑇)	and		𝑦 = Φ¦(𝑇)	at	𝑇∗ 

The 𝑇∗ parameter, which is the abscissa of the intersection point, is the first positive value that satisfies the Eq.(22). 
To find the upper bound for the probability of ruin, the value of	𝑟 corresponding to the 𝑇∗ value can be found from 
the following formula: 

𝑟 = √=D
6
𝑇∗																																																																																																																																																																																	(26)  
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Let us demonstrate the calculation of 𝑟 using the above algorithm with the following example.  

Example 1: Let the random variable 𝑋' express the claim amount which has exponential distribution with the 𝜇 =
'
=
  parameter. Let the random variable W' represent the time between claims which has Exponential distribution 

with 𝜆 = '
=
  parameter. Assume that the premium rate is 𝑐 = 2 per unit time. Then what is the upper bound for the 

ruin probability? 

Solution: For 𝜇 = '
=
; 𝜆 = '

=
; 𝑐 = 2 values,  𝐾 ≡ 6C

√=D
= 1. 

Using the above algorithm for 𝐾 ≡ 1, we get  𝜑(𝑇) ≡ Φ¦(𝑇)	.  

Solving this equation by numerical method, the value 𝑇∗ = 0.22885 is obtained. A corresponding adjustment 
coefficient 𝑟 to this value of 𝑇∗ is found as follows: 

𝑟 =
√2𝜆
𝑐 𝑇∗ =

0.22885
2 = 0.114425 

 Here,  𝑇∗ = 𝑖𝑛𝑓{𝑇 > 0:	𝜑(𝑇) ≡ Φ¦(𝑇)}. 

Thus, the following inequality can be written for the ruin probability – for the non-linear model being considered 
– of the insurance company with the initial capital 𝑢 > 0 as follows: 

 Ψ(𝑢) = 𝑃0{𝜏' < +∞} ≤ 𝑒590 = 𝑒5(+.''KK=L)0. 

Question: What should be the initial capital of the insurance company considered in Example 1 so that the 
probability of ruin is less than 5%. 

Answer: When the adjustment coefficient is 𝑟 = 0.114425, the upper bound of the probability of ruin of the 
considered insurance company is  𝑒5(+.''KK=L)0. If the upper bound of the probability of ruin is 5%, the following 
equation can be written: 

𝑒5(+.''KK=L)0 = 0.05 

From above equation, we get: 

𝑢 =	
ln(0.05)
−0.114425 =

−2.995732
−0.114425 = 26.18075 ≈ 26	𝑢𝑛𝑖𝑡𝑠 ≈ 13𝐸(𝑋') 

is found.  In summary, for the company to have a probability of ruin less than %5, the initial capital of the company 
should be at least approximately 13 times the payment in a claim. Note that in this example 1	𝑢𝑛𝑖𝑡 = '

=
𝐸(𝑋'). 

6. Conclusion 

In this paper, a special non-linear risk model is constructed and analyzed. In this model, the premium income 
function of an insurance company is expressed as 𝑝(𝑡) = 𝑐𝑔(𝑡) = 𝑐√𝑡, a function which increases slower than the 
linear function as in the classical model, which yields the Non-Linear Lundberg Risk Model as a result. 
Furthermore, a Lundberg type upper bound was found for this non-linear model. To calculate an upper bound, the 
adjustment coefficient 𝑟 was estimated with numerical methods by solving integral equations. 

Applying the mathematical techniques presented in this study, similar problems can be investigated by expressing 
the premium income function different than 𝑝(𝑡) = 𝑐√𝑡, which are monotonically increasing with the decreasing 
rate of growth. For instance, allowing 𝑝(𝑡) = 𝑐𝑙𝑛(1 + 𝑡), an analogous work could be conducted. Because, the 
rate of growth of the logarithmic function is slower than square-root function, logarithmic modeling can be 
preferred for some specific cases. 
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