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Abstract: We apply the mode-matching method to the electrostatic analysis of shorted enclosed-cable trays that are 
generally used in industrial facilities such as a nuclear power plant. In mode-matching formulation on potential 

distribution, we utilize Laplace’s equation and superposition principle. After obtaining the modal coefficients from 

Dirichlet and Neumann boundary conditions, we then derive distributions of potential and electric field, capacitance 

matrix, effecive didlectric constant, and characteristic impedance to evaluate the electromagnetic influence caused by a 

short accident in the enclosed-cable tray. 
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1. Introduction 
 

The cable trays have been employed to protect and 

isolate the power and communication cables from 

physical and electromagnetic damage and fire attacks in 

industrial facilities such as a nuclear power plant [1, 2]. 
Based on the configuration, the cable trays are divided 

into ladder-type, perforated-type, and solid-bottom-type, 

etc. To improve the isolation and protection 

performances, either the enclosed-cable tray or the 

physical and electromagnetic barrier can be utilized [1, 2]. 

In this paper, we analyze the electromagnetic 

influence from the shorted enclosed-cable trays used for 

intelligent pressure transmitters in nuclear power plants. 
We assume that two enclosed-cable trays without 

connection to the ground are located between both lateral 

walls with the potential of 0 V and shorted by the inner 

leaky cables. To derive the distiributions of potential and 

electric field, the capacitance matrix, the effective 

dielectric constant, and the characteristic impedance in the 

variation of geometrical parameters, we utilize the mode-

matching method [3]. Since the wavelength in the 
operating frequency of the used power cables is generally 

large (wavlength of about 5000 km in the frequency of 60 

Hz) in comparison with the dimension of the analyzed 

regions, the validation of our electrostatic analysis is 

ensured. 

Note that this study is extented version of previous 

researches [4, 5] and  the novelty of this research is the 

estimation of the electromagnetic influence from the 
shorted enclosed-cable trays. The resulted capacitance 

matrix generally indicates how much the enclosed-cable 

trays are influenced from adjacent another tray and lateral 

walls in a short accident. In addtion, the investigated 

effective dielectric impedance and characteristic 

impedance provide the useful information for scattering 

analysis in the short accident of enclosed-cable trays. In 

what follows, we show a brief mode-matching 

formulation on the potential distribution and boundary 
conditions for simultaneous equations  

 

2. Mode-matching Formulation 
 

Fig. 1 illustrates a cross section of two enclosed-cable 
trays surrounded by multilayer dielectrics with the lateral 

conducting walls of 0 V. The potentials V1 and V2 are 

applied to two enclosed-cable trays with the widths w1 

and w2, respectively, and the separating distance s. The 

surrounding dielectrics are specifically divided into three 

different regions, which are regions uk with uk (k = 1, 2, 

3, ) for the upper dielectrics, regions bt with bt (t = 1, 2, 

3, ) for the bottom dielectrics, and regions 13 with 1, 

2, 

 
Fig. 1. Cross section of the shorted enclosed-cable trays in 
the multilayer dielectrics. 
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and 3 for the dielectrics adjacent to two enclosed-cable 
trays. The lateral walls stand apart from the closed-cable 

trays with distances d1 and d2. Based on the superposition 

principle, it is tractable that the original problem is 

considered the decomposed three problems in Fig. 2 

where the potentials on the enclosed-cable trays have (0, 
0) in case 1, (V1, 0) in case 2, and (0, V2) in case 3, 

respectively [3]. Because the potential in each regions 

satisfies Laplace’s equation [3], the potential in every 

region is expressed as 
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where m1 = n1 / d1, m2 = n2 / s, m3 = n3 / d2, muk = nuk / 

(x6 – x1), mbt = nbt / (x6 – x1) (k = t = 1, 2, 3, ), and 
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Herein kmax and tmax are the maximum k and t, respectively. 

 

To determine the unknown modal coefficients A and B 
in (5), the Dirichlet conditions for the continuity of 

potentials at z = zu1 and z = zuk yield (6) and (7), 

respectively. 
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b
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      puk = quk / (x6 – x1),  

quk = 1, 2,  , the maximum nuk, and mp is the Kronecker 
delta. 

 

The Neumann conditions for the continuity of normal 

derivatives of the potentials at z = zu1 and z = zuk yield 

(8)(11). 
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For the bottom regions, it is possible to enforce the 

boundary conditions at z = zb1 and z = zbt through the 

similar procedure. The results from the enforcement of 

  
(a) 

 

  
(b) 

 

Region 1 

Region u1

Region 3 Region 2 

Region b1

0 0
0 V2

 
(c) 

 
Fig. 2. Equivalent problem based on the superposition 
principle: (a) case 1, (b) case 2, and (c) case 3. 
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boundary conditions constitute a set of simultaneous 

equations for the modal coefficients A and B. The 
modal coefficients are calculated efficiently after 
truncating the infinite series in the simultaneous 

equations. 

 

3. Computed Results 
 

The numerical computation was performed using 

Matlab program language. In our computation, it is 

important to determine the proper truncation number to 

ensure the convergence of the potential values since the 

excessive series for the potentials require much 

computing time. After verifying the fast convergence, we 

derived the distributions of potential and electric field, 

capacitance matrix, effective dielectric constant, and 
characteristic impedance. 

 

2.1. Field Distribution 
 

The time-invariant electric field E  is derived from 

the calculated potential as shown in (12). 
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Figs. 3 and 4 show the potential distribution and the 

electric field strength of x−component (Ex) and 

z−component (Ez) for the shorted enclosed-cable trays 

with the applied potentials of V1 = 1 and V2 = 1 where 

the surrounding layeres are filled with air (r = 1) and the 
geometry parameters are w1 = s = w2 = 5 m, hu1 = 1 m, 

and d1 = d2 = 10 m. The electric fields are normalized by 

the absolute potential difference V2 – V1 between two 
enclosed-cable trays. Due to the symmetry with respect to 

yz plane, both results in Figs. 3 and 4 are seen to be 
symmetrical distributions. 

In Fig. 3, the equivalent potential lines are dense 
between two enclosed-cable trays (Region 2), which 

results in strong electric field and electromagnetic 

coupling. In addition, the equivalent potential lines are 

tilted to the direction of the lateral walls that indicates the 

distances d1 and d2 are also the important factors 

influencing on the nearby enclosed-cable trays 

electromagnetically. Fig. 4 shows the investigation of the 

electric field strength calculated by (12). As expected, Ex 
is forceful at the gap between both enclosed-cable trays 

(Region 2) and between the enclosed-cable trays and the 

lateral walls (Regions 1 and 3). 

In order to evaluate the electromagnetic interference 

from the lateral walls, we investigated Ex and Ez at z = 1.5 

m for the enclosed-cable trays with w1 = w2 = 10 m and 

hu1 = 0.05 m when the distance d1 (= d2) is 20 m and 400 

m as shown in Fig. 5(a) and Fig. 5(b), respectively. For 
the comparison, the same geometry excluding the lateral 

shield is computed by the conformal mapping as shown 

with dashed line [6].  In Fig. 5 the result for d1 = d2 = 400 

m represents that the calculated electric field as a function 

of the position x shows a favorable agreement with the 

results derived from the conformal mapping except for 

small discrepancies. This results indicate the 

electromagnetic coupling from the lateral walls can be 

neglected in the condition of the proper distances d1 and 

d2. Note that how much the enclosed-cable trays are 

electromagnetically coupled with the lateral walls in 

terms of distances d1 and d2 is shwon in Section 2.2. 

 

2.2. Capacitance Matrix 
 

Capacitance matrix is generally utilized to evaluate the 

electrostatic influence on adjacent objects. The 

capacitance matrix C is defined as [7] 

  
(a) 

 
(b) 

\ 
Fig. 4. Electric field distribution  strength of enclosed-cable 

trays sorrounced with air: (a) xcomponent (Ex) and (b) 

zcomponent (Ez) of electric field strength (w1 = s = w2 = 5 

m, hu1 = 1 m, d1 = d2 = 10 m, V1 = 1, and V2 = 1). 

 
Fig. 3. Potential distribution of enclosed-cable trays 

sorrounced with air (w1 = s = w2 = 5 m, hu1 = 1 m, d1 = d2 = 

10 m, V1 = 1, and V2 = 1) 
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where each component for the symmetric structure is 

obtained as 
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Herein both Q1 and Q2 represent the charge accumulation 

per unit length (m) on the shorted enclosed-cable trays 1 

and 2, respectively, and are calculated using the integral 

form of Gauss’s law as 

 

 

Fig. 9. Capacitances C11 and C21 of the cases 1 in Figs. 2 
and 3 when the distance d (= d1 = d2) changes and the 
separation distance s is T. 
 
 

 

Fig. 8. Capacitances C11 and C21 of both enclosed-cable 
trays with vertically parallel placement in free-space when 

the separation distance s varies (case 1: w1 = w2 = T / 4 and h 
= T, case 2: w1 = w2 = T / 3 and h = T, and case 3: w1 = w2 = 
T / 2 and h = T). 

 

 

Fig. 7. Capacitances C11 and C21 of both enclosed-cable 
trays with vertically parallel placement when the separation 
distance s varies (case 1: w1 = w2 = T / 4 and h = T, case 2: 
w1 = w2 = T / 3 and h = T, and case 3: w1 = w2 = T / 2 and h 
= T). 

 

 

Fig 6. Capacitance matrix of the symmetric enclosed-cable 
trays sorrounded with air when the distance d1 (= d2) 
increases (w1 = w2 = 5 m , s = 6.54 m, hb1 = 0.5 m, and hu1 = 
0.05 m). 

 

 
(a) 

 (b) 
 

Fig 5. Normalized electric field strength of the symmetric 

enclosed-cable trays sorrounded with air: (a) xcomponent 

(Ex), (b) ycomponent (Ey) (w1 = w2 = s = 10 m and hu1 = 

0.05 m). 
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Based on the definition of the capacitance matrix, the 

capacitance matrix for the same geometry in Fig 6 was 

investigated when the distance d (= d1 = d2) changes. Fig. 

6 shows the capacitance matrix as a function of d / (2w + 

s). The C11 and C12 drastically change when the ratio of d 
/ (2w + s) increases from 0 to about 1. Then the C11 and 

C12 converge as the ratio of d / (2w + s) approaches about 

15. This investigation would provide the proper distance d 

from the lateral walls to avoid the electromagnetic 

coupling between the lateral walls and the elclosed-cable 

trays. 

Figs. 7 and 8 show the capacitance matrices when 

both shorted enclosed-cable trays in free-space are close 
to each other horizontally and vertically, respectively. To 

reveal electrostatic influence only between both shorted 

enclosed-cable trays excluding that from the lateral walls, 

the distances d1 and d2 were set to be infinite (over 10 

times distance of 2T + s). In Figs. 7 and 8, the 

capacitances C11 and C21 are shown to be enlarged when 

the height of the enclosed-cable trays increases from T / 4 

(case 1) to T / 2 (case 3) as well as the ratio s / T 
decreases. The investigated results reveal that the 

separation distance s should be significantly considered 

for the accumulated enclosed-cable trays to avoid the EMI 

problems. 

In Fig. 9 we investigated the capacitances C11 and C21 

corresponding to the variation in the distance d (= d1 = d2) 

in case 1 in Figs. 7 and 8 for evaluating the effect from 

the lateral walls. In the case 1, the capacitance C11 is 
shown to be increased whereas the capacitance C21 is 

shown to be decreased when the lateral walls approach to 

the shorted enclosed-cable trays. The deviation between 

the capacitances C11 and C21 gives a clue about the 

favorable placement of the grounded structure to alleviate 

the undesirable electromagnetic coupling from nearby 

objects. 

 

2.3. Effective dielectric constants and 

characteristic impedance 
 

It is possible that the enclosed-cable trays work as a 

transmission line in low frequency regime. Addtionally 

the effective dielectric constant (eff) and the charcteristic 
impedance (Z0) are important characteristics for the 

scattering analysis of enclosed-cable trays within multiple 

didlectric layers.  We thus derived the effective dielectric 

constant and the characteristic impedance of the enclosed-

cable trays in multiple dielectrics as 

 

/eff woC C    (17) 

 

0 1/ woZ c CC   (18) 

 

where C is the total line capacitance of enclosed-cable 

tray, Cwo is the total line capacitance without dielectric 

layers, and c is the speed of light in free space (= 3  108 
m / s). 

 

 
Fig. 10 presents the computed effective dielectric 

constants and characteristic impedances for symmetric 

enclosed-cable trays (w1 = w2 = w) on a single layer 

dielectric with  b1 = 4.6. The results are illustrated as a 
function of s / (2w + s) for several hb1 / (2w + s), and they 

are compared to the results of the conformal mapping 

technique [8]. The results show a favorable agreement 
with the conformal mapping technique. The small 

discrepancies are attributed to the considered thickness 

hu1 of enclosed-cable trays in our approach. The 

 

Fig. 12. Effective dielectric constant and characteristic 
impedance of asymmetric enclosed-cable trays on four layer 
dielectrics with hb2 = hb1 = hu1 = hu2 = 0.2w1, εb2 = 9.6, εb1 = 
4.6, εu1 = 3.84, and εu2 = 2.65. 
 

 

Fig. 11. Effective dielectric constant and characteristic 
impedance of asymmetric enclosed-cable trays on a single 
layer dielectric with hu2 = 0.5 w1 and εb1 = 4.6. 

 

 

Fig. 10 Effective dielectric constant and characteristic 

impedance of the shorted enclosed-cable tarys  on a single 

layer dielectric with b1 = 4.6. 
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characteristic impedance is proportional to s / (2w + s), 

which decreases as hb1 / (2w + s) increases. It is seen that 
the effective dielectric constant increases as the hb1 / (2w 

+ s) grows whereas the change in s / (2w + s) has little 

effect on the effective dielectric constant. 

Figs. 11 and 12 illustrate the calculated effective 

dielectric constants and the characteristic impedances for 

the asymmetric enclosed-cable trays surrounded with a 

single layer dielectric and four layers dielectric. The 

results are shown as a function of w1 / w2 for several s / 
w2. As the ratio of the distance to the width (s / w2) grows, 

the characteristic impedance increases while the effective 

dielectric constant decreases.  As w1 / w2 increases from 

0.1 to 1 (in symmetric enclosed-cable tarys), the 

characteristic impedance is shown to gradually decrease 

while the effective dielectric constant slightly grows and 

then slowly diminishes, as seen in Figs. 11 and 12. Note 

that there is no limitation for the number of dielectric 
layers surrounding the enclosed-cable trays in our 

approach. 

 

5. Conclusions 
 

The mode-matching method was applied to the 

electrostatic analysis of the shorted enclosed-cable trays 

within multiple dielectric layers in nuclear power plants. 

The mathematical expressions with the unknown modal 

coefficients for potential distribution were formulated 

based on Laplace’s equation and superposition principle. 

The modal coefficients with the proper truncation number 

were then determined from the Dirichlet and Neumann 
boundary conditions. Using the obtained modal 

coefficients, we investigated the potential and electric 

field distributions, the capacitance matrix, the effeictive 

dielectric conatant, and characteristic impedance varying 

the placement of the shorted cable trays and the lateral 

walls as well as the properties of dielectric layers. The 

investigated results provide the useful information to 

avoid EMI problems in nuclear power plants. 
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