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Abstract: This paper applies a regression based numerical method for hourly forecasting photovoltaic power output. 

This methodology uses a historical dataset composed of irradiance, azimuth, zenith angle and time of day information. 

A developed forecast program from this methodology pulls publicly available cloud cover forecast data for the 
following day and uses a numerical regression based method for fitting the data. Using publicly available temperature 

forecast data, forecasted irradiance data, and computed solar position (zenith, azimuth) data, both power output and 

temperature module output of PV array is computed. Numerical forecast results are compared to actual collected data.  
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1. Introduction 
 

With the power grid evolving to more renewable 

based resources, the usage of photovoltaic (PV) 

technologies is steadily increasing. The world’s energy 

needs are projected to be 30 TW in 2050 (triple the 

usage of 2011) and with a focus to reduce CO2 
emissions PV installations are expected to expand [1]. 

Solar technology efficiency increases and lowered cost 

have made significant progress towards wider industry 

acceptance. However PV is unlike conventional power 

plants, power output of PV generation systems is not 

externally controlled or constant in time. Changes in 

cloud cover create intermittent irradiance on the PV 

panels, which lead to power fluctuations from the PV 

systems. The impact of solar penetration into power 

systems is detailed in [2]. 

Spinning and non-spinning reserves in electrical 
power systems may overcome this output challenge. 

For example, energy storage is becoming popular as a 

spinning reserve solution. These assets incur additional 

costs to the overall system. As a first measure to 

overcome the power output challenges, accurate PV 

forecasting is vital.  

PV output needs accurate forecasting for efficient 

operation of electric power systems. Several methods 

have been used in PV power forecasting. One of these 

methods is time series modeling [3] and in [4] different 

time series models are compared. In [5] the power 

output of a PV system is forecasted by using artificial 

neural networks referencing only the historical data of the 

PV system. The work in [6] uses solar irradiance and 

temperature data together with artificial neural networks. In 

[7] hourly forecast prediction using artificial neural 

networks and wavelet transform is discussed. Genetic 

algorithms are shown to provide the best simulation results 

in [8] when used with artificial neural networks. In [9] 

Kalman Filters are used for forecasting. Another tool used 

to forecast PV power output is support vector machines [10, 

11]. Detailed information on solar irradiance forecasting 

methods may be found in [12, 13]. 
According to [12] global horizontal irradiance (GHI) 

forecasting approaches may be applied from very short 

timescales from 5 minutes to 6 hours where artificial neural 

networks and autoregressive and autoregressive moving 

average models are used. For irradiance forecasting  

information of cloud cover is needed. This cloud cover data 

may be found either in satellite images or ground-based sky 

images. The study [14] uses cloud motion vectors from 

satellite images and shows good performance for periods 

from 30 minutes to 6 hours ahead. Ground-based sky 

images may be used for very short term irradiance 
forecasting [15]. 

This study presents an extended computational approach 

to forecast PV output by using a numerical regression 

method [16]. Since the solar irradiance of an area is based 

on the positions and angles (longitude, latitude, azimuth, 

zenith), these components are involved in the forecasting 
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processes. This method uses publicly available, daily, 

hour-based cloud cover forecast data and temperature 

forecast data. Different from previous work [17], where 

neural networks are used in the forecasting phase, a 

numerical regression algorithm is applied. After 

obtaining the next day’s forecasted irradiance values, 

the model uses a Newton-Raphson model-based 

maximum power point tracking (MPPT) algorithm for 

PV power output calculation. The PV module 

temperature model uses publicly available temperature 

forecasts together with the calculated power output 

forecasts. LabVIEW is used as the programming 
environment. 

The following sections describe the model for PV 

power output and module temperature forecast. The 

subsections describe the data and the preparation and 

calculation processes. The final section compares the 

test results to the actual data collected.   

 

2. The Model 
 

A model is developed in LabVIEW for PV panel 

power output and module temperature output forecast. 

The flowchart of the model is shown in Figure (1). The 

first step is to collect cloud cover data from the Web. A 

function is used to calculate the azimuth and zenith 

angles of each hour in the next day using the longitude 

and latitude information of the current location. With 

these data points, and the historical data composed of 

azimuth, zenith, hour of day, and cloud cover data, 
irradiance values are forecasted by using a numerical 

regression algorithm. The final step includes the calculation 

of MPPT and module temperature by using the calculated 

irradiance forecasts and temperature forecasts obtained 

from the Web. The LabVIEW snapshot of the main 

program is given in Figure (2). The following subsections 

describe these steps. 
 

 

 
 

Figure 1. Flowchart of PV power output and module temperature 
forecast model. 

 
 

Figure 2. LabVIEW PV power output and module temperature forecast program 
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2.1. Cloud Cover Data Collection 
 

The cloud cover forecast data is obtained from 

publicly available data from the Web [18]. Figure (3) 

shows a forecasted satellite image of the U.S. 

Southeast. The longitude and latitude coordinates for 

Oak Ridge where the Distributed Energy 

Communications and Control (DECC) Lab is located is 

represented with a black star on the image. On the right 
hand side of the image the legend shows the colors and 

cloud cover percentage equivalents. The process for 

finding the cloud cover forecast data for the next day is 

as follows: 

 Connect to the cloud cover forecast webpage.  

 The available images that have cloud cover 

forecast data start from 3 am of the current 

day and continue until the end of next day. 

Download the cloud cover forecast images to 

the computer that runs the forecasting 

program.  

 Store values of cloud cover percentage by 
using the coordinate information of ORNL’s 

DECC Lab, the corresponding pixel values, 

and the legend colors which specify the cloud 

cover percentages for each image.  

 

 
 
Figure 3. A sample cloud cover image of U.S. Southeast and 

the position of ORNL’s DECC Lab.  

 

2.2. Azimuth and zenith angle calculation 
 

A MATLAB function based on [19] written by 

Vincent Roy was translated into LabVIEW. The 

function uses year, month, day, hour, minute, second, 

time difference from Greenwich, latitude, longitude, 

and altitude of the location as inputs. The outputs of the 

function are zenith and azimuth angles in degrees. For 
each day to be forecasted, the function is run with one 

hour intervals. 

 

2.3. Irradiance Forecast Using Numerical 

Regression 
Forecasting the solar irradiance includes two steps. The 

first step is to pull the saved data collected from the actual 

PV system as historical data. The second step forecasts the 

irradiance values using the historical data and a numerical 

regression-based model. The historical information is fit 
into the forecasted function values. 

 

2.3.1. Historical Data 
 

A dataset consisting of actual values of time of day, 

cloud cover forecasts, and azimuth and zenith angles for 40 

days was used. A sample plot of historical irradiance values 

measured is shown in Figure (4). 

 

 
 

Figure 4. Sample actual historical data (irradiance values).  

 

 

2.3.1. Irradiance Forecasting  
 

It is known that in a multiple regression model, a 
measurement Y is related to several predictors Xi for each 

observation. It is obvious that irradiance forecasting 

regression process will be dependent to more than one 

variable. This study uses time of the day, cloud cover 

percentage, azimuth and zenith angles in the forecasting 

process. A general function to be used in the forecasting 

process is shown as follows: 

ErrorxfY
n

j jj   21 )(   (1) 

 

By using equation (1), a model needs to be proposed. 

The approach for obtaining a proper model for forecasting 

is to find a function that fits as close as possible to the past 
data. For this aim, several different combinations of 

functions composed of time of day, cloud cover, azimuth 

and zenith angle were used. To catch the nonlinear 

behaviors such as sharp fluctuations of the irradiance, 

several different linear and nonlinear combinations of the 

components were included in the forecasting model. The 

final model to be used for fitting the data is given below:        
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Where t, c, a, and z represent time, cloud cover, 
azimuth, and zenith respectively. The algorithm for 

forecasting the next day’s irradiance values is as 

follows: 

 For all data points of 40 days, calculate the 

value of the following function and store in a 

vector V. 
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 Calculate the  coefficient as follows: 

GVVV   '1' )(   (4) 

where G is a vector of elements consisting of the 

actual irradiance values for 40 days of data.  

 Using the computed αvalues and the function 

given above predict the next day’s irradiance 

values using equation (2). 

 

2.4. Temperature Forecasts   
 

Temperature forecasts are performed by getting data 

from [20]. The process starts by computing the number of 

days from the beginning of the current year, and that day’s 
forecast data. The target webpage is reached using 

LabVIEW and the code of the page is assigned to a string 

variable. Specific hour temperature values are sought in this 

string systematically and interpolation is used to obtain the 

next day’s temperature forecasts. A sample temperature 

forecast webpage that is used in obtaining this data is 

shown in Figure (5). 
 

 
Figure 5. A sample temperature forecast webpage. 
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2.4. MPPT and MPPT Temperature Module 

Calculation  

 
The model in [21] was used for the calculation of 

the MPPT. This model uses a PV circuit model 

comprising of a diode and series and parallel 

resistances as shown in Figure (5). 
 

 

 
 

Figure 5. Single diode PV representation. 

 

The output current of the PV module is computed 

by using Kirchoff’s Current Law. Numerically, this 

process requires subtracting the sum of diode current 

and the current passing through parallel resistance from 

the photovoltaic current as represented in equation (5): 
 

 

p
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             (5) 

 
 

Where Ipv and I0 are the photovoltaic and saturation 

currents of the PV array respectively. Vt=NskT is the 

thermal voltage (with Nscells in series connection), 

Rsand Rpare equivalent series and parallel resistances, 

and αis the diode constant whose typical value lies 

between 1 and 1.5 

 

2.5.1. Determining Rs,Rp, Pmax, Ipvmax 
 

Several parameters such as: Kv open circuit voltage 

temperature coefficient, KI short-circuit current 

temperature coefficient, Voc,n nominal open circuit 

voltage, Isc,n nominal short-circuit current, Vmp voltage 

at the maximum point, Imp current at maximum point 

are known. Other constants are k Boltzmann’s Constant 

and q electron charge. Parameters for the model can be 

found on the 280 W Hanwa Solar PV data sheet and 

are provided in Table (1) as reference [17]: 

 

 
 

 

 
Table 1. HSL72 Solar PV Module Parameters 

 

Definition Value 

Maximum Power 
(Pmax) 

280 W 

Voltage at 

maximum power 

(Vmp) 

35.7 V 

Current at 

maximum power 

(Imp)  

7.84 A 

Voltage at Open 

Circuit (Voc) 

44.6 V 

Current at Open 

Circuit (Isc) 

8.43 A 

Kı 0.005058 A/K 

 Kv -0.14718 V/K 

Ns 72 
 

 

In the computations, the diode saturation current 

given below is also used: 

1

,
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where
nTTT   represents the difference between 

the ambient and the nominal temperature. Hence, the 

temperature has an effect on diode saturation current.  

The process for determining the series and parallel 

resistances, maximum power and maximum 

photovoltaic current starts with initially setting Rs to 0, 

and Rp to

mp

mpnoc

mpnsc

mp

I

VV

II

V 




,

,

. Then by selecting 

a small step size of Rs, such as 0.003, Rs is slowly 

increased and in each step the following operations are 

performed. 
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where G is the actual irradiance and Gn is the nominal 

irradiance.  
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where )( smpmp RIVV  .  

 Equation (4) is solved for all V values from 0 

to VocNser by using Newton-Raphson method 

and for each V value, a I value is obtained, 

computing all the power values for these pairs. 

The maximum power value is computed and 

stored.  
From all the maximum powers, there is only one 

point that satisfies the condition Pmax,m =VmpImp 
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mpmpm IVP max,
at the (Vmp, Imp) point [18]. Using  

Pmax=6719.82, position =102, Rs=0.306, Rp=573.91, 

and Ipvmax=8.47345 are found. The graph of Pmax as a 
function of Rs is shown in Figure (7). 
 

 
 

Figure 7. Pmax, Rs graph. 

 

2.5.2. Calculation of PV Power Output 
 

PV power output calculations use Rp, Rs, Ipvmax, 

ambient temperature T, and irradiance G as inputs. P 

and Tmodule are the outputs.  

A thermal calculation model for a PV module is 

given in [21]. This model takes the decrease and 

increase in the temperatures into consideration for 

module temperatures. The change in module 

temperature is given by the following equation: 

outconvswlwule PqqqC mod
  (10) 

where Cmodule, qlw, qsw, qconv and Pout represent the heat 

capacity of the module, short wave transfer, convection 

heat transfer, and power generated by the module 

respectively. Detailed information on these equations 

may be found in [22].  

The algorithm for calculation of PV power output 

and module temperature is given in Algorithm 1. As 

seen below, the algorithm includes a main for loop for 

24 hour simulation and two sub for loops. The first sub 

loop performs PV power output calculation by using 
Newton-Raphson method, and the second sub loop 

calculates module temperature by using Euler’s 

Method. The first sub loop uses Rp, Rs, Ipvmac, T, and G 

as input values. The second sub loop uses the power 

output from the first sub loop. Other inputs are the 

ambient temperature and forecasted irradiance value. 

Note that the simulations are performed for each hour 

of the day and module temperatures are calculated for 

the end of each simulation hour. 

 

  
 
Algorithm 1. PV output and temperature module calculation 

algorithm. 

 
A sample V-I graph for different irradiance values 

is shown in Figure (8). Simulations are performed for 

irradiance values changing from 200 to 1000 W/m2 for 

this specific example. As expected the current increases 

as the irradiance input increases.  
 

 
 

Figure 8. V, I graph for different G values 

 
Figure (9) shows the effect of irradiance values 

ranging from 0 to 1000 W/m2 and current outputs 

ranging from 0 to 17.5A on module temperature. In this 

simulation ambient temperature is kept constant. In this 

case higher irradiance values result in higher module 

temperature values.  

Figure (10) shows the effects of irradiance values 

ranging from 307.5 to 310 K on module temperature. 

Power output is kept constant in this simulation. As 

shown, as the ambient temperature increases, the 

module temperature increases. Similarly, higher 
irradiance values produce higher module temperatures.   
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Figure 9. The effect of irradiance and power output on 

module temperature.  
 

 
Figure 10. The effect of irradiance and ambient 

temperature on module temperature.  

 

3.1. Tests and Results 
 

The proposed method was tested from 24th to 30th 

of June 2015. RMSE (root mean square error) and 

nRMSE (normalized root mean square error) results are 
calculated. 

Simulation results are compared to actual values 

obtained from the PV module installed on ORNL’s 

DECC Lab. In Figure (11), the actual and forecasted 

irradiance values for the specified days are shown. 

Comparison of the measurements to the forecast shows 

that clear days lead to more accurate forecasts than 

cloudy days. From the figure, the highest irradiance 

error is obtained for 29th of June. The reason for the 

discrepancy is either cloud cover forecast errors or 

irradiance measurement errors. The RMSE and 
nRMSE values for 7 days irradiance simulation is 

calculated as 141.83 W/m2 and 0.45 respectively.  

 

 
Figure 11. Actual and forecasted irradiance values for 

24th to 30th of June 2015.  

 

Figure (12) illustrates actual and forecasted power 

output of a single PV panel. The power output 
forecasts of the PV panel match with the actual results. 

The error increases for the days that have more 

fluctuations in power output. Since the model uses 

forecasted cloud cover in forecasting solar irradiance, 

this also increases the error. The RMSE and nRMSE 

values for power output are found as 1252.41W and 

0.9984 respectively.  

 

 
Figure 12. Actual and forecasted power values for 24th 

to 30th of June 2015. 

 

Figure (13) shows the actual and the forecasted 

temperatures of the PV module.  The forecasted 

temperature module temperatures represent the 
behavior of the actual module temperatures. The 

RMSE and nRMSE one week values for module 

temperature is computed as 7.96C and 0.2514 

respectively.  

 

 
Figure 13. Actual and forecasted module temperatures 

for 24th to 30th of June 2015. 
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4. Conclusion 
 

This paper uses a numerical regression method for 

PV output and module temperature output forecasting. 

The computation model uses publicly available cloud 

cover forecast information and temperature forecast 

data together with position and angle components such 

as longitude, latitude, azimuth, and zenith to perform 

the forecasts. LabVIEW is used as simulation tool and 
to our knowledge there is no other work that uses 

LabVIEW as the simulation tool.  

A sample of one week’s simulation results show 

that the irradiance and module temperature forecasting 

match well with actual results. These forecast results 

are planned to be used in a microgrid operation and 

control environment. Since the simulations are 

performed aiming at the next day’s forecast, these 

results will help in optimizing resource dispatch in the 

microgrid.  
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