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   Abstract 
 

This research aims to accomplish an analytic solution to mathematical models involving space-time 

fractional differential equations in the conformable sense in series form through the weighted inner 

product and separation of variables method. The main advantage of this method is that various 

linear problems of any kind of differential equations can be solved by using this method. First, the 

corresponding eigenfunctions are established by solving the Sturm-Liouville eigenvalue problem. 

Secondly, the coefficients of the eigenfunctions are determined by employing weighted inner 

product and initial condition. Thirdly, the analytic solution to the problem is constructed in the 

series form. Finally, an illustrative example is presented to show how this method is implemented 

for fractional problems and exhibit its effectiveness and accuracy. 

 
 

 

 

1. Introduction* 

 

Since the role of fractional partial differential 

equations has come into prominence, the focus of 

numerous scientists in various fields is directed to this 

subject. As a result, fractional differential equations are 

employed in the modeling of processes in diverse research 

areas such as applied mathematics, physics chemistry, 

power systems, control theory, system theory, 

optimization, signal processing, epidemic model of 

childhood disease, epidemic system of HIV/AIDS 

transmission etc., [1-13]. The main reason for this increase 

in interest is that the fractional derivative is a non-local 

operator, which allows us to analyze the behavior of the 

complex non-linear processes much better than by using 

the alternatives.   

Dealing with fractional derivatives is more 

complicated than ordinary derivatives as several 

difficulties are encountered when solving fractional 
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differential equations. Essential properties of ordinary 

derivatives such as the product rule and the chain rule are 

not held by the majority of the fractional derivatives. 

However, conformable fractional derivative holds almost 

all properties of ordinary derivative, which allows us to 

handle and accomplish the solution of mathematical 

models, including fractional differential equations in the 

conformable sense without any difficulty [14-16]. 

Therefore, in this research, we look for the solution to 

models given in the following form     : 

𝜕𝛼𝑢(𝑥,𝑡;𝛼,𝛽)

𝜕𝑡𝛼 = 𝐴
𝜕2𝛽𝑢(𝑥,𝑡;𝛼,𝛽)

𝜕𝑥2𝛽 + 𝐵
𝜕𝛽𝑢(𝑥,𝑡;𝛼,𝛽)

𝜕𝑥𝛽 + 𝐶   (1) 

𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0,     (2) 

𝑢(𝑥, 0) = 𝑓(𝑥, 𝛽),    (3) 

 

where 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑡 ≤ 𝑇, 0 < 𝛼 ≤ 1, 1 < 2𝛽 ≤ 2, 

𝐴, 𝐵, 𝐶 ∈ 𝑅, 𝐴 ≠ 0.  

 

The primary motivation for this study is the fact that 

diverse scientific processes are modeled by fractional 

diffusion equations. Subsequently, solving this kind of 

fractional diffusion problem has drawn the attention of 
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many scientists in various branches. 

 

2. Preliminary Results 

 

The definition and fundamental properties of the 

conformable fractional derivative are presented in this 

section. 

 

Definition: The conformable fractional derivative of 

function 𝑓(𝑥) for 0 < 𝛼 ≤ 1 is introduced as follows [11]: 

𝑑𝛼𝑓(𝑥)

𝑑𝑥𝛼 =
𝑓(𝑥+𝜖𝑥1−𝛼)−𝑓(𝑥)

𝜖
 . 

 

We list fundamental properties of the conformable 

fractional derivatives of certain functions as: 

1. If 𝑓 is differentiable then 
𝑑𝛼

𝑑𝑥𝛼 𝑓(𝑥) = 𝑥1−𝛼 𝑑

𝑑𝑥
𝑓(𝑥). 

2. 
𝑑𝛼

𝑑𝑥𝛼
(𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)) = 𝑎

𝑑𝛼𝑓(𝑥)

𝑑𝑥𝛼 + 𝑏
𝑑𝛼𝑔(𝑥)

𝑑𝑥𝛼 . 

3. 
𝑑𝛼

𝑑𝑥𝛼
(𝑥𝑝) = 𝑝𝑥𝑝−𝛼 for all 𝑝 ∈ 𝑅. 

4. 
𝑑𝛼

𝑑𝑥𝛼 (𝑓(𝑥)𝑔(𝑥)) = 𝑓(𝑥)
𝑑𝛼𝑔(𝑥)

𝑑𝑥𝛼 + 𝑔(𝑥)
𝑑𝛼𝑓(𝑥)

𝑑𝑥𝛼 . 

5. 
𝑑𝛼

𝑑𝑥𝛼 (
𝑓(𝑥)

𝑔(𝑥)
) =

𝑔(𝑥)
𝑑𝛼𝑓(𝑥)

𝑑𝑥𝛼 −𝑓(𝑥)
𝑑𝛼𝑔(𝑥)

𝑑𝑥𝛼

𝑔2(𝑥)
. 

6. 
𝑑𝛼

𝑑𝑥𝛼
(𝜆) = 0, for all constant functions 𝑓(𝑥) = 𝜆. 

 

Additionally, the conformable fractional derivative of 

basic functions are computed in the following form: 

 
𝑑𝛼

𝑑𝑥𝛼 𝑥𝑝 = 𝑝𝑥𝑝−𝛼,  

𝑑𝛼

𝑑𝑥𝛼 𝑠𝑖𝑛 (
1

𝛼
𝑥𝛼) = 𝑐𝑜𝑠 (

1

𝛼
𝑥𝛼), 

𝑑𝛼

𝑑𝑥𝛼 𝑐𝑜𝑠 (
1

𝛼
𝑥𝛼) = −𝑠𝑖𝑛 (

1

𝛼
𝑥𝛼), 

𝑑𝛼

𝑑𝑥𝛼 𝑒𝑥𝑝 (
1

𝛼
𝑥𝛼) = 𝑒𝑥𝑝 (

1

𝛼
𝑥𝛼). 

 

Notice that the corresponding ordinary derivatives of 

the functions given above are obtained for 𝛼 = 1.  

Even though some functions such as 𝑓(𝑥) = 2√𝑥 are 

not differentiable, they could be 𝛼−differentiable in the 

conformable sense, for example, 
𝑑

1
2𝑓(𝑥)

𝑑𝑥
1
2

= 1 and 
𝑑

1
2𝑓(0)

𝑑𝑥
1
2

= 1. 

This is another distinct property of conformable fractional 

derivative. 

 

3. Main Results 

 

By means of the separation of variables method, the 

generalized solution to problem (1)-(3) is constructed in 

the following form: 

 

𝑢(𝑥, 𝑡; 𝛼, 𝛽) = 𝑋(𝑥; 𝛽) 𝑇(𝑡; 𝛼, 𝛽)          (4) 

 

where  0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑡 ≤ 𝑇. 

 

As indicated above, the function 𝑋 depends on the 

spatial fractional order 𝛽, while the function 𝑇 depends on 

both time and spatial fractional orders  𝛼 and 𝛽, 

respectively. 

  

Substituting (4) into (1) and rearranging yields   

 

𝑑𝛼𝑇(𝑡;𝛼,𝛽)

𝑑𝑡𝛼

1

𝑇(𝑡;𝛼,𝛽)
= 𝐴

𝑑2𝛽𝑋(𝑥;𝛽)

𝑑𝑥2𝛽

1

𝑋(𝑥;𝛽)
+ 𝐵

𝑑𝛽𝑋(𝑥;𝛽)

𝑑𝑥𝛽

1

𝑋(𝑥;𝛽)
+

𝐶 = −𝜆(𝛽)           (5) 

 

Notice that 𝜆 is a function of 𝛽. Taking equation (5) 

into account, two fractional differential equations of 

unknown functions 𝑋 and 𝑇 are obtained separately. The 

fractional differential equation of X subject to the 

boundary conditions is given as follows: 

 

𝐴
𝑑2𝛽𝑋(𝑥;𝛽)

𝑑𝑥2𝛽

1

𝑋(𝑥;𝛽)
+ 𝐵

𝑑𝛽𝑋(𝑥;𝛽)

𝑑𝑥𝛽

1

𝑋(𝑥;𝛽)
+ 𝜆(𝛽)𝑋(𝑥; 𝛽) = 0, 

          (6) 

𝑋(0; 𝛽) = 𝑋(𝐿; 𝛽) = 0.          (7) 

 

This problem is called the fractional Sturm-Liouville 

problem, and its solutions are obtained by applying the 

exponential function in the following form: 

 

𝑋(𝑥; 𝛽) = 𝑒𝑥𝑝 (𝑟
𝑥𝛽

𝛽
).           (8) 

 

This yields the following characteristic equation: 

 

𝐴𝑟2 + 𝐵𝑟 + 𝜆(𝛽) = 0.           (9) 

 

In order to solve this equation, the following 3 cases are 

taken into account: 

 

Case 1, 𝐵2 − 4𝐴𝜆(𝛽) > 0: 

 

There are two real and distinct solutions 𝑟1, 𝑟2 providing 

the solution to problem (6)-(7) in the following form: 

 

𝑋(𝑥; 𝛽) = 𝑐1 𝑒𝑥𝑝 (𝑟1
𝑥𝛽

𝛽
)  + 𝑐2𝑒𝑥𝑝 (𝑟2

𝑥𝛽

𝛽
).  

 

First boundary condition yields 

 

𝑋(0; 𝛽) = 𝑐1 + 𝑐2 = 0 ⟹ 𝑐2 = −𝑐1.    (10) 

 

Hence, the solution becomes 

 

𝑋(𝑥; 𝛽) = 𝑐1 (𝑒𝑥𝑝 (𝑟1
𝑥𝛽

𝛽
) −𝑒𝑥𝑝 (𝑟2

𝑥𝛽

𝛽
) ).    (11) 
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Similarly, last boundary condition yields 

 

𝑋(𝐿; 𝛽) = 𝑐1 (𝑒𝑥𝑝 (𝑟1
𝐿𝛽

𝛽
) − 𝑒𝑥𝑝 (𝑟2

𝐿𝛽

𝛽
) ) = 0,   (12) 

 

which indicates that 

 

𝑒𝑥𝑝 (𝑟1
𝐿𝛽

𝛽
)  ≠ 𝑒𝑥𝑝 (𝑟2

𝐿𝛽

𝛽
) .     (13) 

 

As a result, we have 

 

𝑐1 = 0          (14) 

 

which implies that there is no solution for Case 1. 

 

Case 2, 𝐵2 − 4𝐴𝜆(𝛽) = 0:  

 

There is a corresponding coincident as the solutions 

are equal 𝑟1 = 𝑟2, which provides the solution to problem 

(6)-(7) in the following form: 

𝑋(𝑥; 𝛽) = 𝑐1 𝑒𝑥𝑝 (𝑟1
𝑥𝛽

𝛽
)  + 𝑐2

𝑥𝛽

𝛽
𝑒𝑥𝑝 (𝑟1

𝑥𝛽

𝛽
).  (15) 

 

First boundary condition yields 

 

𝑋(0) = 𝑐1 = 0.        (16) 

 

Hence the solution becomes 

 

𝑋(𝑥; 𝛽) = 𝑐2
𝑥𝛽

𝛽
𝑒𝑥𝑝 (𝑟1

𝑥𝛽

𝛽
).     (17) 

 

Similarly last boundary condition yields 

 

𝑋(𝑙) = 𝑐2
𝐿𝛽

𝛽
𝑒𝑥𝑝 (𝑟1

𝐿𝛽

𝛽
)  ⟹ 𝑐2 = 0,    (18) 

 

which implies that there is no solution for Case 2. 

 

Case 3, 𝐵2 − 4𝐴𝜆(𝛽) < 0:  

 

There are two complex roots −
𝐵

2𝐴
± 𝑖

√4𝐴𝜆(𝛽)−𝐵2

2𝐴
 which 

provides the solution to problem (6)-(7) in the following 

form: 

 

𝑋(𝑥; 𝛽) =𝑒𝑥𝑝 (−
𝐵

2𝐴

𝑥𝛽

𝛽
) [𝑐1 𝑐𝑜𝑠 (

√4𝐴𝜆(𝛽)−𝐵2

2𝐴

𝑥𝛽

𝛽
)  + 𝑐2

𝑠𝑖𝑛 (
√4𝐴𝜆(𝛽)−𝐵2

2𝐴

𝑥𝛽

𝛽
) ].         (19) 

 

First boundary condition yields 

 

𝑋(0; 𝛽) = 𝑐1 = 0     

   (20) 

 

Hence the solution becomes 

 

𝑋(𝑥; 𝛽) = 𝑐2 𝑒𝑥𝑝 (−
𝐵

2𝐴

𝑥𝛽

𝛽
) 𝑠𝑖𝑛 (

√4𝐴𝜆(𝛽)−𝐵2

2𝐴

𝑥𝛽

𝛽
) .   (21) 

 

Similarly last boundary condition yields 

 

𝑋(𝐿) = 𝑐2 𝑒𝑥𝑝 (−
𝐵

2𝐴

𝐿𝛽

𝛽
) 𝑠𝑖𝑛 (

√4𝐴𝜆(𝛽)−𝐵2

2𝐴

𝐿𝛽

𝛽
)  = 0   (22) 

 

which indicates that 

 

𝑠𝑖𝑛 (
√4𝐴𝜆(𝛽)−𝐵2

2𝐴

𝐿𝛽

𝛽
)  = 0.       (23) 

 

Hence the corresponding eigenvalues become 

 

𝜆𝑛(𝛽) =
(2𝑛𝜋𝛽𝐴)2+𝐵2𝐿2𝛽

4𝐴𝐿2𝛽 , 0 < 𝜆1(𝛽) < 𝜆2(𝛽) < 𝜆3(𝛽) … 

(24) 

As a result, the solution to the problem (6)-(7) is concluded 

in the following form: 

𝑋𝑛(𝑥; 𝛽) =𝑒𝑥𝑝 (−
𝐵

2𝐴

𝑥𝛽

𝛽
) 𝑠𝑖𝑛 (𝑛𝜋

𝑥𝛽

𝐿𝛽) , 𝑛 = 1,2,3, …   (25) 

 

The fractional differential equation of 𝑇 for each 

eigenvalue 𝜆𝑛(𝛽) is given as follows:  

  
𝑑𝛼𝑇(𝑡;𝛼,𝛽)

𝑑𝑡𝛼 = (𝐶 − 𝜆(𝛽))𝑇(𝑡; 𝛼, 𝛽)       (26) 

 

which has the following solutions 

 

𝑇𝑛(𝑡; 𝛼, 𝛽) =𝑒𝑥𝑝 ((𝐶 −
(2𝑛𝜋𝛽𝐴)2+𝐵2𝐿2𝛽

4𝐴𝐿2𝛽 )
𝑡𝛼

𝛼
) , 𝑛 = 1,2,3, … 

        (27) 

Hence the function corresponding to each eigenvalue 

𝜆𝑛(𝛽) is defined as 

 

𝑢𝑛(𝑥, 𝑡; 𝛼, 𝛽) =𝑒𝑥𝑝 ((𝐶 −
(2𝑛𝜋𝛽𝐴)2+𝐵2𝐿2𝛽

4𝐴𝐿2𝛽 )
𝑡𝛼

𝛼
) 

𝑒𝑥𝑝 (−
𝐵

2𝐴

𝑥𝛽

𝛽
) 𝑠𝑖𝑛 (𝑛𝜋

𝑥𝛽

𝐿𝛽)        (28) 

 

which satisfies      equation (1) and boundary conditions 

but not the initial condition. In order to acquire the solution 

to      problem (1)-(3), we construct the following series 
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𝑢(𝑥, 𝑡; 𝛼, 𝛽) = ∑ 𝑑𝑛𝑒𝑥𝑝 ((𝐶 −
(2𝑛𝜋𝛽𝐴)2+𝐵2𝐿2𝛽

4𝐴𝐿2𝛽 )
𝑡𝛼

𝛼
)  ∞

𝑛=1

𝑒𝑥𝑝 (−
𝐵

2𝐴

𝑥𝛽

𝛽
) 𝑠𝑖𝑛 (𝑛𝜋

𝑥𝛽

𝐿𝛽)        (29) 

 

which also satisfies both the fractional equation (1) and 

boundary condition (2). In order to make this solution 

satisfy the initial condition (3), we must determine the 

coefficients 𝑑𝑛 accurately. Taking the initial condition (3), 

we get 

  

𝑢(𝑥, 0) = ∑ 𝑑𝑛 𝑒𝑥𝑝 (−
𝐵

2𝐴

𝑥𝛽

𝛽
) 𝑠𝑖𝑛 (𝑛𝜋

𝑥𝛽

𝐿𝛽)  = 𝑓(𝑥; 𝛽)∞
𝑛=1

𝑒𝑥𝑝 (−
𝐵

2𝐴

𝑥𝛽

𝛽
) .        (30) 

Utilizing the weighted inner product, the coefficients 𝑑𝑛 

are computed for 𝑛 = 1,2,3, … as follows:  

 

𝑑𝑛 =
2𝛽

𝐿𝛽 ∫ 𝑓(𝑥; 𝛽) 𝑠𝑖𝑛 (𝑛𝜋
𝑥𝛽

𝐿𝛽) 
1

𝑥1−𝛽 𝑑𝑥
𝐿

0
, 𝑛 = 1,2,3, … (31) 

 

where the weighted inner product of two functions 

𝑓(𝑥), 𝑔(𝑥) is defined as follows: 

 

〈𝑓(𝑥), 𝑔(𝑥)〉 =
2𝛽

𝐿𝛽 ∫ 𝑓(𝑥)𝑔(𝑥)
𝐿

0
𝑒𝑥𝑝 (

𝐵

𝐴

𝑥𝛽

𝛽
) 

1

𝑥1−𝛽 𝑑𝑥. 

 

4. Illustrative Example 

 

In this section, we present an example to illustrate 

how to implement the method explained in this study and 

to acquire the solution via this method. 

Firstly, we consider the following initial boundary 

value problem with integer-order derivatives: 

 

𝑢𝑡(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡) + 𝑢𝑥(𝑥, 𝑡) − 𝑢(𝑥, 𝑡),    (32)

  

𝑢(0, 𝑡) = 0, 𝑢(2, 𝑡) = 0,                   (33) 

 

𝑢(𝑥, 0) = 𝑠𝑖𝑛 (
𝜋

2
𝑥) exp (−

1

2
𝑥),    (34) 

 

which has the solution in the following form:  

 

𝑢(𝑥, 𝑡) =𝑠𝑖𝑛 (
𝜋

2
𝑥) exp (−

1

2
𝑥) exp (− (

𝜋2

4
+

5

4
) 𝑡) (35) 

 

where 0 ≤ 𝑥 ≤ 2, 𝑡 ≥ 0. 

 

Now, take the same problem with space and time 

fractional derivatives: 

 

𝜕𝛼𝑢(𝑥,𝑡;𝛼,𝛽)

𝜕𝑡𝛼 =
𝜕2𝛽𝑢(𝑥,𝑡;𝛼,𝛽)

𝜕𝑥2𝛽 +
𝜕𝛽𝑢(𝑥,𝑡;𝛼,𝛽)

𝜕𝑥𝛽 − 𝑢(𝑥, 𝑡; 𝛼, 𝛽), (36) 

𝑢(0, 𝑡; 𝛼, 𝛽) = 𝑢(2, 𝑡; 𝛼, 𝛽) = 0,       (37) 

𝑢(𝑥, 0; 𝛼, 𝛽) =𝑠𝑖𝑛 (𝜋
𝑥𝛽

2𝛽)  𝑒𝑥𝑝 (−
1

2

𝑥𝛽

𝛽
),       (38) 

 

where 0 < 𝛼 ≤ 1, 1 < 2𝛽 ≤ 2, 0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑡 ≤ 𝑇.   

 

Carrying out the separation of the variables to (36) yields 

 

𝑑𝛼𝑇(𝑡;𝛼,𝛽)

𝑑𝑡𝛼

1

𝑇(𝑡;𝛼,𝛽)
=

𝑑2𝛽𝑋(𝑥;𝛽)

𝑑𝑥2𝛽

1

𝑋(𝑥;𝛽)
+

𝑑𝛽𝑋(𝑥;𝛽)

𝑑𝑥𝛽

1

𝑋(𝑥;𝛽)
− 1 =

−𝜆(𝛽)        (39) 

 

which has the corresponding fractional Sturm-Liouville 

problem: 

 

𝑑2𝛽𝑋(𝑥;𝛽)

𝑑𝑥2𝛽 +
𝑑𝛽𝑋(𝑥;𝛽)

𝑑𝑥𝛽 + 𝜆(𝛽)𝑋(𝑥; 𝛽) = 0,     (40) 

𝑋(0; 𝛽) = 𝑋(2; 𝛽) = 0.        (41) 

 

The corresponding eigenvalues 𝜆𝑛(𝛽) and solutions 

𝑋𝑛(𝑥; 𝛽) to the problem (40)-(41) for 𝑛 = 1,2,3, … are 

acquired in the following form: 

 

𝜆𝑛(𝛽) =
(2𝑛𝜋𝛽)2+22𝛽

4.22𝛽 , 0 < 𝜆1(𝛽) < 𝜆2(𝛽) < 𝜆3(𝛽) < ⋯ 

         (42) 

𝑋𝑛(𝑥; 𝛽) = 𝑒𝑥𝑝 (−
1

2

𝑥𝛽

𝛽
) 𝑠𝑖𝑛 (𝑛𝜋

𝑥𝛽

2𝛽) .     (43) 

 

The fractional differential equation of 𝑇 for each 

eigenvalue 𝜆𝑛(𝛽) is given as follows: 

   

𝑑𝛼𝑇(𝑡;𝛼,𝛽)

𝑑𝑡𝛼 = (−1 −
(2𝑛𝜋𝛽)2+22𝛽

4.22𝛽 ) 𝑇(𝑡; 𝛼, 𝛽).       (44) 

The solution of which becomes 

 

𝑇𝑛(𝑡; 𝛼, 𝛽) = 𝑒𝑥𝑝 ((−1 −
(2𝑛𝜋𝛽)2+22𝛽

4.22𝛽 )
𝑡𝛼

𝛼
) , 𝑛 = 1,2,3, …       

         (45) 

Therefore, the specific solutions to problem (36)-(38) for 

𝑛 = 1,2,3, … are in the following form: 

𝑢𝑛(𝑥, 𝑡; 𝛼, 𝛽) = 𝑒𝑥𝑝 ((−1 −

(2𝑛𝜋𝛽)2+22𝛽

4.22𝛽 )
𝑡𝛼

𝛼
)  𝑒𝑥𝑝 (−

1

2

𝑥𝛽

𝛽
)  𝑠𝑖𝑛 (𝑛𝜋

𝑥𝛽

2𝛽) .    (46) 

 

As a result, the general solution to problem (36)-(38) 

becomes 

 

𝑢(𝑥, 𝑡; 𝛼, 𝛽) = ∑ 𝑑𝑛𝑒𝑥𝑝 ((−1 −∞
𝑛=1

(2𝑛𝜋𝛽)2+22𝛽

4.22𝛽 )
𝑡𝛼

𝛼
)  𝑒𝑥𝑝 (−

1

2

𝑥𝛽

𝛽
)  𝑠𝑖𝑛 (𝑛𝜋

𝑥𝛽

2𝛽) .   (47) 
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In order to determine the unknown coefficients 𝑑𝑛,   we 

plug 𝑡 = 0 into the general solution (47) and proceed 

taking the initial condition (38) into account: 

 

𝑢(𝑥, 0) = ∑ 𝑑𝑛𝑒𝑥𝑝 (−
1

2

𝑥𝛽

𝛽
)  𝑠𝑖𝑛 (𝑛𝜋

𝑥𝛽

2𝛽)∞
𝑛=1  =

𝑠𝑖𝑛 (𝜋
𝑥𝛽

2𝛽) 𝑒𝑥𝑝 (−
1

2

𝑥𝛽

𝛽
).      (48) 

 

Through the inner product, the coefficients 𝑑𝑛 for 𝑛 =

1, 2, 3, . .. are determined as  

𝑑𝑛

=
2𝛽

2𝛽
∫ 𝑠𝑖𝑛 (𝜋

𝑥𝛽

2𝛽
)  𝑒𝑥𝑝 (−

1

2

𝑥𝛽

𝛽
)  𝑒𝑥𝑝 (−

1

2

𝑥𝛽

𝛽
)  𝑠𝑖𝑛 (𝑛𝜋

𝑥𝛽

2𝛽
)  𝑒𝑥𝑝 (

𝑥𝛽

𝛽
) 

1

𝑥1−𝛽
𝑑𝑥

2

0

 

 

After rearrangement, we have 

 

𝑑𝑛 =
2𝛽

2𝛽 ∫ 𝑠𝑖𝑛 (𝜋
𝑥𝛽

2𝛽)  𝑠𝑖𝑛 (𝑛𝜋
𝑥𝛽

2𝛽) 
1

𝑥1−𝛽 𝑑𝑥
2

0
. 

 

Orthogonality property provides us that 𝑑𝑛 = 0 for 𝑛 ≠ 1 

and for 𝑛 = 1, therefore we get 
 

𝑑1 =
2𝛽

2𝛽 ∫ (𝜋
𝑥𝛽

2𝛽)  
1

𝑥1−𝛽 𝑑𝑥
2

0
= 1. 

 

Thus the general solution to the time-space fractional 

problem is obtained in the following form: 

𝑢(𝑥, 𝑡; 𝛼, 𝛽) = 𝑒𝑥𝑝 ((−1 −

(2𝜋𝛽)2+22𝛽

4.22𝛽 )
𝑡𝛼

𝛼
) 𝑒𝑥𝑝 (−

1

2

𝑥𝛽

𝛽
) 𝑠𝑖𝑛 (𝜋

𝑥𝛽

2𝛽) .      (49) 

 

Notice that as fractional orders 𝛼 and 𝛽 gets close to 1, the 

solution (49) to the time-space fractional problem (36)-(38) 

approaches to the solution (35) of the corresponding initial 

boundary value problem (32)-(34). This points to the 

accuracy of the obtained solution. 
 

 
Figure 1. The graph of solutions 𝑥 = 0.5 for various 

values of 𝛼 and 𝛽. 

 
Figure 2. 3D graphs of solutions for various values of 𝛼 

and 𝛽. 

 

5. Conclusions  

 

In this research, analytic solutions to space-time 

fractional problems are calculated by means of the 

separation of variables method and inner product in one 

dimension. As the application of this method to initial 

boundary value problems of ordinary derivatives is 

performed, the corresponding Sturm-Liouville problem is 

taken into account to determine the eigenvalues of the 

problem, and then specific solutions are formed. Finally, 

with the help of the initial condition and orthogonality of 

the inner product, the general solution to the problem is 

acquired. An illustrative example is also provided to prove 

the effectiveness of the method for space-time fractional 

differential equations.  

In future studies, fuzzy space-time fractional 

problems will be considered as other applications of this 

method. 
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