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1. Introduction

A group divisible design (GDD) is a decomposition of the complete multipartite graph into complete
subgraphs. The complete subgraphs used are the blocks of the GDD and are presented by giving the
subset of the vertices they span. The partite sets are groups. Formally a #-GDD is a triple (V, £,9)
where

1. V is a finite set of points;

2. A is a collection of subsets of V', where |B| € ¢, for all B € %;

3. ¢ is a partition of V into groups.

4. Every pair of points is in exactly one block or group.
The type of a GDD is the multiset of its group sizes. Thus a decomposition of Ky, 4, g,,...,,_, into complete
subgraphs is a GDD of type {go, 91,92, .., 9t—1}. If the GDD has t; groups of size g; it is our custom to
specify the type with the notation: g\°g}'gs? - - - g Also if # = {k} we write k-GDD instead of {k}-GDD.

The blocks of a 3-GDD are usually called triples or triangles. For example a 3-GDD of type 432! is a
decomposition of K4 442 into triangles.
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Theorem 1.1. For a 3-GDD of type g1ga---gs with g1 > -+ > gy > 1,8 > 2, and v =)_._, g; to ewist,
necessary conditions include (Colbourn [2]):

1. (3) = X2 (%) (mod 3);
.gi=v (mod 2) for1<i<s;

2
3 g1 <5 0i
4. whenever a; € {0,1} for 1 <i<s andvy =Y i_, vy,

Vo v — Vo > gi
vo(v —wg) <2 [<2> +< 9 ) —;(2)]
5. 29293 > gilg2 + g3 — Doy 9i]; and
6. if g1 = 320_5 i then 2gsgs > (91 — g2)lgs + 94 — 275 9il.

These conditions are known to be sufficient when

1. (Wilson [8, 9]) g1 = -+ = gs;

2. (Colbourn, Hoffman, and Rees [5]) g1 =+ = gs—1 0r g2 = -+ = gs;

3. (Colbourn, Cusack, and Kreher [3]) 1<t <s, g1 = =g, and g41 =---=¢gs = 1;
4. (Bryant and Horsley [1]) g5 =+ =gs = 1; and

5. (Colbourn [2]) >>7_, ¢; < 60.

Surprisingly, in no other cases are necessary and sufficient conditions known for any other class of
3-GDDs (of index 1). Partial results are known when g3 = --- = g5 = 2 [6]. Theorem 1.1 establishes that no
3-GDD with two groups exists; every 3-GDD with three groups has g1 = g2 = g3; and every 3-GDD with four
groups has type ¢* or g>u'; moreover, the first and second sufficient conditions ensure that all such 3-GDDs
exist. Turning to five groups, the situation is much less satisfactory. While Theorem 1.1 handles all types
g°, g*u', and g; - -- g5 with Zle g; < 60, many more cases are possible. Indeed it may happen that a
3-GDD with five groups has all groups of different sizes; for example, a 3-GDD of type 17'11191715! exists
[2]. Hence the general existence problem for five groups appears to be substantially more complicated

than cases with fewer groups. We address one part of this problem, when there are only two group sizes.

The focus of this article is to prove

Theorem 1.2 (Main Theorem). A 3-GDD of type g3u? exists if and only if g = u (mod 2), u = 0
(mod 3), and u < 3g.

If a 3-GDD of type g3u? exist, then v = 3g + 2u = 2u (mod 3) and v = g (mod 3). Thus it follows
from Theorem 1.1 conditions (1) and (2) that ¢ = w (mod 2) and v = 0 (mod 3). Condition 3 of
Theorem 1.1 is exactly the necessary conditions for the existence of a 3-GDD of type g>u? are established
by Theorem 1.1. Sufficiency is proved in the sections that follow.

2. 3-GDDs of type g3u?

Let v;j¢ be the number of triples that contain points of groups G;, G, and G. Elementary counting

establishes that when |G1| = |Ga| = |G3| = g and |G4| = |G5| = u, we have y123 = g? — 2 (u(3g — u)),

Y124 = 7125 = Y134 = 7135 = 7234 = 7235 = %(U(3g —u)), and Y145 = Vo5 = Y345 = %U2- An easy case

arises when u = 3g¢:
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Lemma 2.1. There exists a 3-GDD of type g>(3g)?, for all g.

Proof. A 3-GDD of type (3g)® exists. Partition one of the groups into three groups of size g on these
groups place the triples of a 3-GDD of type g°. O

A one-factor on a set S is a set of |S|/2 vertex-disjoint edges. A holey one-factor on a set S with
hole H is a set of (|S| — |H|)/2 vertex-disjoint edges in which no edge is incident to a vertex in H. We
use the following result.

Lemma 2.2. (Rees [7]) Let h > 1 and 0 < r < 2h, (h,r) € {(1,2),(3,6)}. There exists a {2,3}-GDD
of type (2h)3 which is resolvable into r parallel classes of blocks of size 3 and 4h — 2r parallel classes of
blocks of size 2. Consequently whenever 0 < x < r, the edges of Kap op,2n can be partitioned into 4h — 2r
one-factors, 3z holey one-factors (x for each group), and r — x parallel classes of triples.

Theorem 2.3. If there exists a 3-GDD of type x3u? with g = x (mod 2) and g > 2x+u, then there exists
a 3-GDD of type g>u?.

Proof. Write h = 95%. Without loss of generality, u # 0 so u > 3. Because g > 2x + u, then
h > % > 2. When h = 3, we have (g,z,u) € {(7,1,3),(9,3,3)}, and the required GDDs are from
Theorem 1.1. Henceforth h ¢ {1,3}. Choose groups {G; : 1 < ¢ < 5} with |G1] = |G2| = |G3] = ¢
and |G4| = |Gs| = u. For i € {1,2,3} partition G, into parts G;1 and G;» where |G;1| = = and
|Gi2| = g —x = 2h. Place a 3-GDD of type 23u? aligning the groups on G141, G21, G31, G4, and Gs.
Nowr=2h—u=g—z—u>2r+u—z—u=2z Souse Lemma 2.2 with groups G1,2, G222, G32 to
construct a partition of Ko, o5 25 into 4h — 2r one-factors {F, : y € G4 U G5}; for ¢ € {1,2,3}, = holey
one-factors {H; , : © € G;1} missing G, 2; and r — x parallel classes of triples. Include all (2h)(r — x)
triples in the r — x parallel classes. Then for each y € G4 U G5, adjoin y to each edge in F),, forming
2u(3(2h)) triples. Finally, for ¢ € {1,2,3} and = € G, 1, adjoin point x to each edge in H; , to form 6zh
additional triples. O

ot

Corollary 2.4. There erists a 3-GDD of type g>u?, whenever g > su, v = 0 (mod 3), and g = u
(mod 2).

Proof. Apply Theorem 2.3 with = u/3. O

In the remainder, the expression give weight w to the point x means to replace = with a set of
w new points 1, Za,...,Ty,; and if S = {s1,s2,...,sk} is a set of points given weights (w(s;) : 1 <
i < k), then to place a 3-GDD of type {w(s1),w(s2),...,w(sk)} on S means to include all triples in
a 3-GDD of type {w(s1), w(s2),...,w(sk)} with groups {{s;1,5i2,58i3, - ,Siws)} : 1 <@ < k}. A
synonymous expression is to fill the inflated block with a 3-GDD of type {w(s1),w(s2),...,w(sg)}. This
is illustrated in the following.

Lemma 2.5. If a 3-GDD of type (g/w)>(u/w)? ewists, then a 3-GDD of type g3u? also ewists.

Proof. Starting with a 3-GDD of type (g/w)3(u/w)?, give weight w to the points using a 3-GDD of type
w3, which always exists. O

Recall that a 5-GDD of type kP is equivalent to 3 mutually orthogonal Latin squares of order k, which
are known to exist when k ¢ {2,3,6,10} [4]. (When k = 10 existence remains uncertain, but they do not
exist for k € {2,3,6}.)

Lemma 2.6. If there erists a 5-GDD of type k®, and integers g,u with g = u =k (mod 2), 3k < g,u <
9k, and u =0 (mod 3), then there exists a 3-GDD of type g3u?.
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Proof. Form a 5-GDD of type k% with groups G1, G2, G3, Gy, G5. Let the points of G; be {x;1,. ..,z },
so that {z1x, Tok, T3k, Tak, T5r} is a block.

Write g =3a+9(k—1—a)+bwith0<a<k-—1andbe {3,5,7,9}. Write u = 3c+ 9(k — ¢) with
0<c¢<k. Set

b if 1<i<3andj=k,

3if 1<i<3andl1<j<aq,
w(zy;) =< 3 if 4<i<5and1<j<cg,

9if 1<i<3anda+1<j<k,

9if 4<i<bandc+1<j<k.

According to [2], there exist 3-GDDs of types 3°, 5134 7134 9134 915133 5332 917133 7332 9233 925132
927132, 9332, 9253, 935131, 937131 9273 9431 9451 947! and 9°. Each block of the 5-GDD of type k°
has weights forming one of these types, so we place a 3-GDD on the points arising from each. O

Theorem 2.7. Suppose u = 0 (mod 3), u = g (mod 2) and 3 < u < 3g. Then a 3-GDD of type g3u>
exists, except possibly when 3g + 2u > 60 and

3
g €49,10,11,13, 18,20, 22,30, 32,34} and =9 <u<3g; or (1)
g=1 (mod 3) and u=3g —6; or (2)
)
u e {18,30} and u < g < U (3)

Proof. Using Lemma 2.1 and Corollary 2.4, assume that %g <u < 3g. Write u =3¢ and g =3m +r,
where r € {0,1,2}; then £ = m (mod 2) if and only if » € {0,2}. To handle cases with v > ¢ and
g ¢S =1{24,6,8910,11,13,18,20,22,30,32,34}, apply Lemma 2.6 with £k = m when r € {0,2} and
k =m — 1 when r = 1. When applied with £k = m — 1, u < 9m — 9, leading to the possible exceptions
in (2). When g € {2,4,6,8} and u < 3g, all required GDDs are from [2]. Thus when u > g, the possible
exceptions are listed in (1) and (2).

To handle cases when v < g and u &€ T = {6,9,18,30}, apply Lemma 2.6 with k¥ = ¢. When
u € {6,9} and u < g < 2u, all required GDDs are from [2]. Thus when u < g, the possible exceptions are
listed in (3). O

Lemma 2.8. There exists a 3-GDD of type 133152,

Proof. Begin with a 5-GDD of type 5°. Fix a block B and give weights 1,1,1,3,3 to it. On the remaining
points give weight 3. Fill the inflated blocks with 3-GDDs of type 133!, 113%, 3% from [2]. O

Theorem 2.9. A 3-GDD of type g3u? exists if and only if g = u (mod 2) and u = 0 (mod 3) except
possibly when g =1 (mod 3), g > 16, and u = 3g — 6; or

93212, 10%242, 113152, 113212, 113272, 133212, 133272, 133332,
gAu? e ¢ 183422, 183482, 20%422, 203482, 20%542, 223422, 223482, 223542,
223602, 303842, 323782, 323902, 343842, 343962

Proof. Apply Lemma 2.1, Lemma 2.5, Theorem 2.3, and Theorem 2.7. Then apply Lemma 2.6 with
k = 4 to handle types 183u! for u € {12,24} and 223u’ for u € {24,30,36}; and with k = 8 to handle
303ul for u € {24,48,72}, 323u! for u € {30,42,54,66}, and 343u! for u € {24,36,48,60,72}. Apply
Lemma 2.8 to handle 133152 O
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3. Incomplete group divisible designs

Let K be a set of positive integers, each at least 2. An incomplete group divisible design (K-1GDD)
of type (g1 : h1)" -+ (gs : hs)"* is a quadruple (V, B,¥, H) where

1. Visaset of Y., u;g; elements;
2. H C V, the hole, contains Y ;_, u;h; elements;

3.9 ={G1,...,Gp} is a partition of V into m = >_7_, u; groups G1,... Gy, so that u; of the groups
have size g; and contain h; points of H, for 1 <i < s;

4. A is a set of blocks with |B| € K whenever B € %, so that every pair of elements that are in the
hole or in a group do not appear in a block, and every other pair occurs in exactly one block.

When K = {k}, we write k-IGDD.

Lemma 3.1. Suppose that K is a set of odd positive integers. If a K-1GDD of type (g1 : hi)" -+ (gs : hg)¥s
exists and w > 2, then a 3-1GDD of type (wgy : why)" - - (wgs : whs)Ys exists.

Proof. Give weight w to each point and fill with a 3-GDD of type w* for k € K. O
Corollary 3.2. A 3-1GDD of type (12 : 3)1(6 : 3)* exists.

Proof. A {3,5}-1GDD of type (4 : 1)}(2 : 1)* exists with groups {{d;,z;} : 0 < i < 3} U {y, 21,22, 23},
hole {do,d1,ds,ds,y}, and blocks {{d;, Z(i1j) moa 4,2} : 0 < i < 3,1 < j < 3} and {zo, 71,2, 73,y}-
Apply Lemma 3.1 with w = 3. O

Lemma 3.3. If a 3-IGDD of type (3g : 3h)% and a 3-1GDD of type (g : h)3 exist, then a 3-1IGDD of type
(39 : 3h)%(g : h)? exists.

Proof. Fill one group of the 3-1GDD of type (3¢ : 3h)3 with the 3-1GDD of type (g : h)3. O
Corollary 3.4. When 1 < h < %g, a 3-1GDD of type (3g : 3h)?(g : h)3 exists. In particular, a 3-IGDD of
type (6 : 3)%(2: 1) and a 3-1GDD of type (12 : 3)%(4 : 1)3 emist.

Proof. A 3-1GDD of type (g : h)3 is equivalent to a latin square of side g with a subsquare of side h,
which exist whenever 1 < h < % g, [4]. O

Lemma 3.5. A 3-1GDD of type (4 : 1)¥(2: 1)5~% exists when i € {0,2}. Hence a 3-1GDD of type (6 : 3)°
and a 3-1GDD of type (12 : 3)%(6 : 3)3 ewist.

Proof. When i = 0, form blocks {{a;,7 + 1,7 4+ 4},{a;,i + 2,7 + 3} : i € Zs} with groups {a;,i} and
hole {a; : i € Zs}.

When i = 2, a solution follows:

Blocks: {5,7,10}, {5,6,11}, {4,9,10}, {4,8,12}, {4,7,13}, {3,8,10}, {3,6,12}, {3,4,11}, {2,9,12},
{2,7,11}, {2,6,13}, {2,5,8}, {1,8,11}, {1,7, 12}, {1,4,6}, {1,2,10}, {0,9,11}, {0,8, 13}, {0, 6,10},
{0,5,12}, {0,3,7}, {0,2,4}.

Groups: {0,1}, {2,3}, {4,5}, {6,7,8,9}, {10,11,12,13}.
Hole: {1,3,5,9,13}.

Use Lemma 3.1 with weight 3 to obtain the specific IGDDs. O

139
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Lemma 3.6. There exist 3-IGDDs of type (4 :1)3(6 : 3)1(12 : 3)2~¢ for i € {0,1,2}.

Proof. When i = 0, apply Corollary 3.4. When ¢ = 2, start with points {z; : * € Zs, j € Zs};
elements with the same z-coordinate are in the same group of the 1GDD. Place orbits of triples {0o, 1o, 20},
{00,30,40}, {10,30,41}, and {29, 30,42}, developing the subscript modulo 3. Then the remaining pairs
{z;,y;} with z # y can be partitioned into a holey 1-factor missing {z¢, z1, z2} for € {0,1, 2} and three
holey 1-factors missing {xg, 1, z2} for x € {3,4}. Extending these 9 holey 1-factors gives the 9 points in
the hole of the 1GDD.

To construct a 3-1GDD of type (4 :1)%(6: 3)' (12 : 3)" first form seven sets of size 3: {A; = {a} : j €
Z3} 11 € Z3}, B = {b] 1 j € Zg}, and {Cl = {C; 1 j € Zg} 11 € Zg} Let H = {Oéi,ﬁi,’}/i 11 € Zg} be 9
additional points. We construct the 3-1GDD with groups:

(Ao U {ao}) ; (Al U {041}) ; (A2 U {CY2}) ; (B U {Bo, B1, 32}) ) (Co uCiuCa U {70771772})
and hole H. Now form
1. the triples of a 3-GDD of type 3% on groups {0, 81, B2}, A;, and C; for i € Z3,
2. {{vi by, al}, {vir a0l Py i € Zs),
3. {{aw ai™ Y {au, a1 {au by i} 10, € Zs),
4. {{bj’aj-‘rl? 3112} {ija;ilz, §+1} i,j € L3},
A{faf. i, a5} g € Zs},

. {{a?,ajl-+l,a?+2} 1 j € Zs}.

ot

(=)

It is an easy but tedious exercise to verify that these triples provide the desired 1GDD. O

Lemma 3.7. A 3-1GDD of type (5:1)3(9: 3)? exists.

Proof. Form a set X = Zz x Zy X Zg of points. Let G; = {i} x {0,1} x Zs for i € Z3, and let
Gj41=Z3x{j} xZy for j € {2,3}. On X with groups {G; : 0 < i < 4} we construct a partition of pairs
not in a group into one holey parallel class of ten pairs missing G; for each i € {0,1,2}; three parallel
clases of nine pairs missing G; for each i € {3,4}; and 48 triples. Once constructed, extending holey
parallel classes produces the desired 1GDD.

First we make the triples. Form a 3-GDD of type 4% on Z3 x Z4 having a parallel class on {Z3 x {j}
Jj € Z4} and groups on {{i} X Z4 : i € Z3}. This has 12 triples; give weight 2 to form 48 triples.

For i € Z3 let

{(2’,2,0),(2’,3,0)}7 {(i,2, 1),(1’,3,1)},
Fo— {(i—l—1,2,0)7(1'—5-1,37 1)},{(i+1,0,0) (i—i—172,1)},{(i—i—171,1),(1'4—1,370)}7
v {(i+2,2,1),(i+2,3,0)},{(i+2,0, 1) (z—|—2,2,0)},{(z+2,1,0),(i+2,3,1)},
{(i+1,0,1), (i +2,0,0)}, {(i+ 1,1,0), (i + 2,1, 1) }.

Then Fj; is a holey parallel class for G; for i € Z3.
For i€ Zsand o € Zy let 3 =1 — 0 and let

((i+1,0,0), (i +2,0,9)},{(1.7,0), (i + 1,7, 0)}, ((1,7,9), (1 +2.7,9)},
Hi, =< {(i,0,0),(i,247,0)}, {(i+1,0,0),(i+1,24+7,0)},{(i +2,7,0),(i+2,2+7,0)},
{(,0,9),(4,2+7,5)}, {(i+1,5,0),(i+1,247,0)},{(i+2,0,0),(i+2,2+7,5)}
Then {H;, : i € Z3} contains three holey parallel classes for G3, for o € Zs. O
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4. Using incomplete group divisible designs

Theorem 4.1. Let m, k be integers. If 5 < m < k < 3m, m =k (mod 2), and m & {6,10}, then there
exist 3-GDDs of type (3m + 1)3(3k + 3)? and (3m + 3)3(3k + 3)2.

Proof. There exists a 5-GDD of type m® that has a parallel class P of blocks (this is equivalent to three
idempotent MOLS of side m, see [4]). Let G1,G2,G3, G4, G5 be its groups. Give weight 3 to all points
in G; UG2 U G3. In each of % of the blocks of P give weight 3 to the two points of the block in G4

or G; for the remaining ’“Tm of the blocks of P, give weight 9.

Add a set H of 15 or 9 points distributed 3,3,3,3,3 or 1,1,1,3,3 to the groups to obtain group
types (3m + 3)3(3k + 3)? and (3m + 1)3(3k + 3)? respectively. Fill blocks not in the parallel class P
with a 3-GDD of type 93°~% i = 0,1 or 2 from [2|. Fill blocks that are in the parallel class P with a
3-1G¢DD of type (6 : 3)° and a 3-1GDD of type (6 : 3)(12 : 3)%, or a 3-1GDD of type (4 : 1)3(6 : 3)? and a
3-1GDD of type (4 : 1)3(12 : 3)2, all having hole H. Fill H with a 3-GDD of type 3° or a 3-GDD of type 1332
respectively. O

Corollary 4.2. There exist 3-GDDs with g = 1 (mod 3), g > 16, g & {19,31}, and u = 3g — 6; and when
Fu? e {183422, 183482, 223492 293482 293542, 223602, 305842, 343842, 343962 }

Proof. Apply the first statement of Theorem 4.1 with (m, k) = (%,g — 3) when g = 1 (mod 3),
g >16, g ¢ {19,31} and u = 3g — 6. Apply the first statement with m = 7 and k € {13,15,17,19} to
treat the cases with g = 22; and with m = 11 and k € {27,31} to treat the cases with g = 34. Apply the
second statement with m =5 and k € {13,15} to handle the cases with g = 18, and with (m, k) = (9, 27)
to handle 303842. O

It remains to treat

8,2 ¢ 93212, 103242, 113152, 113212, 113272, 133212, 133272, 133332,
g 193512, 203422, 203482, 203542, 313872, 323782, 323902.

Next we extend Theorem 4.1:

Theorem 4.3. Let m > 5 be an integer with m ¢ {6,10,14,18,22}. Let k = m (mod 2) be an integer,
where m < k < 3m. Let a be an integer with 1 < a < m, and let a be an integer for which a < a < 3«
and a = o« (mod 2). Then a 3-IGDD of type ((3m + a : a)?(3k + 3a : 3a)? exists. If in addition a
3-GDD of type a®(3a)? exists, then a 3-GDD of type (3m + a)?(3k + 3)? ewists.

Proof. There are 4 MOLS of order m [4] and hence there exists a 5-GDD of type m® with a disjoint

parallel classes {P; : 1 <i < a}. Let G1,G2,G3, Gy, G5 be its groups. Give weight 3 to all the points in

G1UG2 UGj3. In each of G4 and G5 give weight 3 to w of the points and weight 9 to the remaining

k—m
2

or one new points in each of G1, G2, G3 according to whether 7 < 5% or not.

points. Now for 1 < ¢ < a, let H; contain three new points in each of G4 and G5; and either three

Fill blocks not in (i, P, using a 3-GDD of type 9135~% with i € {0, 1,2}. For each parallel class P;,
fill each block with an 1GDD of type (6 : 3)3(12: 3)2, (6 : 3)4(12 : 3)!, or (6 : 3)®, that has hole H;; these
are from Corollary 3.2 and Lemma 3.5. This produces the 3-1GDD of type ((3m + a : a)?(3k + 3a : 3a)%.
If a 3-GDD of type a®(3a)? exists, use it to fill the hole. O

Corollary 4.4. There exist 3-GDDs of types 193512, 203u? for u € {42,48,54}, 313872, and 323u? for
u e {78,901

Proof. Theorem 4.3 handles 193512 using (m, a,a) = (5,2,4) and k = 15; 203u? for u € {42,48,54}
using (m, a, a) = (5,3,5)and k € {11,13,15}; 313872 using (m, o, a) = (9,2,4) and k = 27; and 323u? for
u € {78,90} using (m,a,a) = (9,3,5) and k € {23,27}. O

141
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It remains only to treat a few cases with g < 13. A variant of Theorem 4.3 uses a different weighting:

Theorem 4.5. Let m > 5 be an integer with m ¢ {6,10,14,18,22}. Let « be an integer with
1 < a < m, and let a be an integer for which a« < a < 3a and a = « (mod 2). Then a 3-IGDD of
type ((m + a: a)3(3m +a : a)? exists. If in addition a 3-GDD of type oa? exists, then a 3-GDD of type
((m+ a)3(3m + a)? ewists.

Proof. Let Gq,G2,G3,G4, G5 be the groups of a 5-GDD of type m® with « disjoint parallel classes
{P;:1<i<a}. Give weight 1 to all points in G; U G2 U G3, and weight 3 to all points in G4 U G5. Fill
blocks not in | J;_, P, using a 3-GDD of type 1332,

For 1 < i < o, let H; contain three new points in each of G1, G2, G3; and either three or one new

points in each of G4 and G5 according to whether 7 < 5% or not. For 1 < ¢ < %5, fill each block of P;

with an 3-1GDD of type (2 : 1)3(6 : 3)? that has hole H;. For 5% < i < q, fill each block of P; with an
3-1GDD of type (2 :1)3(4 : 1)? that has hole H;. This produces the 3-1GDD of type ((m +a: a)3(3k +a:
a)?. O

Corollary 4.6. There exist 3-GDDs of types 93212, 103242, 113272, 133272, and 133332.

Proof. Apply Theorem 4.5 with (m,a,a) = (5,4,6) to handle 93212; (m, a,a) = (7,3,3) to handle
10324%; (m,a,a) = (7,4,6) to handle 11327%; (m,a,a) = (7,6,6) to handle 133272; and (m,a,a) =
(9,4,6) to handle 133332 O

Theorem 4.7. If there exist 3-GDDs of types g>u® and a®*b? and a 3-1GDD of type (g+a : a)3(u+b: b)?,
then for all w > 3 there also exists a 3-GDD of type (wg + a)(wu + b)?.

Proof. Let {G;:1 <i <5} be groups of size g, g, g, u, u respectively and set 4 = U?:l G;. Let {H; :
1 < ¢ < 5} be groups of size a, a, a, b, b respectively and set 5 = U?:l H;. If T € 4, then we denote by z,
the w-element set © = T X Zy, and set G; = (Jzcg; ©. We construct the 3-GDD of type (wg + a)®(wu+0b)?
on groups {(G; U H;) : 1 <¢ <5}

fZ,5,2€9, let P(x,y,z2) = {{f x {i},gyx{i},zx {i}}:i € Zw}; this is a parallel class of triples.

Because w > 3 there is an idempotent latin square of side w; consequently a 3-GDD of type w3 can be
constructed with groups z,y, z that contains the parallel class P(z,y, z). Let D(z,y, z) be the triples in
this GDD that are not in P(z,y, 2).

Let A be a 3-1GDD of type (g +a: a)*>(u+b :i)2 on the groups (G; U H;), i = 1,2,3,4,5 and hole
. Let B be a 3-GDD of type g3u? on the groups G;, i = 1,2,3,4,5.

To construct the 3-GDD of type (wg + a)3(wu + b)? we take the triples in: {{h, T x {i},y x {i}} :
i € Zy} whenever {h,f,@} is a triple in A intersecting the hole 5 in the point h; P(x,y, 2) whenever
{f, y,z} is a triple in A disjoint from the hole 5#°; D(x,y, z) whenever {E, y,z} is a triple in B; and a
3-GDD of type a®b? on the hole 7. O

Corollary 4.8. There exists a 3-GDD of type 133212,

Proof. There exist 3-GDDs of types 4362 and 1332 and a 3-1GDD of type (5:1)3(9 : 3)? from Lemma
3.7. Apply Theorem 4.7 with w = 3. O

Theorem 4.9. If there exist 3-GDDs of types g>u? and a®b? and a 3-1GDD of type (g+a : a)®(u+b:b)?,
then for all w > 3 there also exists a 3-GDD of type (wg + (w — 1)a)3(wu + (w — 1)b)2.
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AP BS CR EV FW HM IO KU gG hL io jq kD 1N mJ nT pQ rX
BU CO DV ER FQ HT JS LM gm ho iN jI kW 1K nG pX qP rA
AM BW CN DX GV HQ IT KR gU hm iE jF kn 10 oP pL gS rJ
AU CM DQ GN HR JW KO LS gV hT iq jE kP 1m nX oF pB rI
AS BV CW EQ IX JN gM hD il jO kF 1T mK nP oR pG gqH rU
AT EP HS IU KX LO aG bC cD dB eW £J mQ nF oV pM gN rR
AW BX EM FN GQ IR KP aS bH cO dU eD fp mT nL oC qJ rV
A0 BM DW FR GP HX JV LU aE br cq dQ eC fT mI nN oS pK
CV DT FM HU IW JR LQ ap bP cX dN eA fO mS nK oE gB rG
DN ET FU GM JP KW LX aQ bV cm dI eB fS nH oA p0 gR rC
AX BQ DO FV IS KM LW ag bE cG dP eR fC hN iU jT kH 1J
AN BT CP DS EW FO GU IV JX KQ aL bM cl dg ei fk hR jH
AR BO CU DM FS GT HV IN LP ai bk cW dJ eX f1 gQ hE jK
BP CT DR EU GS HN JO KV aX bW ci dh eQ fA gI jM kL 1F
DP EN FX GO HW JQ KT LV aI bh cA dC ej fU gB iM kR 18
aB bJ ck dp eL fD gK hI iA jm 1E nC oH qG rF
ao bL cp di eI fH gA hG jB kK 1C mE nJ gF rD
an bF cE dr eK fg hA iB jG kC 1H mL oJ pI gD
aF bB cC dm eG fL gJ hr iK jn kI 1A oD pH qE
aD bl cF dL eE fj gn hB iC kA mG oK pJ qI rH
al bo cJ dH eg fI hF iD jA kG mC nB pE gK rL
am bG cL dK en fE gF hH iI jJ ko 1D pA qC rB
aC bA cB dF eH fK gD hJ im jo kp 1G nI qL rE
aJ bI cK dE eo fG gC hq iH jL kB 1r mA nD pF
aV bQ cM dn el fW gR hP iX jp kN mO oU qT rS
aP bT co d0 eM fr gq hW iS jR kQ 1X mN nU pV
ar bg cS dX eV fh iR jP kT 1M mU nW oQ pN qO
aU bX cR dk e0 fP gW hS ir jV 1n mM oN pT qQ
aT bR cU dS eN fi go h0 jQ km 1V nM pW gX rP
aM b0 cQ dT eq fo gP hV in jN kS 1U mX pR rW
aN bj cT do eS fQ gX hU iV k0O 1g mW nR pP rM
ak bN cV dM em fR gp hX iQ jU 1P nS o0 qW rT
aR bn cN dq eP fX gT hM i0 jS kU 1p mV oW rQ

aHO ahK ajW agA bKS bip bmD bqU cIP cgH chn cjr dAV dGR djD d1w
eFT eJU ehp ekr fBN fmF fnV fgM gES gLN gr0 hCQ iFP iGW iJT jCX
kEX kJM kqV 1IQ 1LR loB mBR mHP nAQ nEOQ oGX oIM oLT pCS pDU rKN

Figure 1. A partition of K6,6,6,12,12

Proof. Let {G; : 1 < i < 5} be groups of size g,g,g,u,u respectively and set 4 = Ule G;. Let
{H; : 1 < i < 5} be groups of size a,a,a,b,b respectively and set & = U?Zl H;. If T € 4, then we
denote by z, the w-element set x =T x Z,, and set G; = UfeGT- x. If h € 5, then we denote by h, the
(w — 1)-element set © = T X (Zy, \ {0}) and set H; = gz h. We construct the 3-GDD of type (wg +
(w —1)a)3(wu + (w — 1)b)? on groups {(G; U H;) : 1 <i < 5}. P(x,y,2) and D(z,vy,2) are as in the
proof of Theorem 4.7.
_ Let A be a 3-1GDD of type (g +a : a)*(u+ b : b)? on the groups (G; U H;), i = 1,2,3,4,5 and hole
. Let B be a 3-GDD of type g3u? on the groups G;, i = 1,2,3,4,5.

To construct the 3-GDD of type (wg+ (w—1)a)?(wu+(w—1)b)? we take the triples in: {{hx {j}, x

{i},g x{i+jmodw}}:4,j € Zy,j # 0} whenever {E, T, y} is a triple in A intersecting the hole /7 in
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the point h; D(z,vy, z) whenever {E, 37,2} is a triple in A disjoint from the hole ##; P(z,v, z) whenever
{E, @Z} is a triple in B; and a 3-GDD of type ((w — 1)a)?((w — 1)b)? on the hole U?Zl H;. O

Corollary 4.10. There exists a 3-GDD of type 113152,

Proof. There exist 3-GDDs of types 3332 and 1232 and a 3-1GDD of type (4 : 1)3(6 : 3)2. Apply Theo-
rem 4.9 with w = 3. O

Lemma 4.11. There exists a 3-GDD of type 113212,

Proof. Figure 1 provides a partition of K¢ 6,12,12 that was found using a hill-climbing algorithm on
points a-r and A-X with groups G; = a-f, Go = g-1, G3 = m-r, G4 = A-L, and G5 = M-X into five holey
parallel classes of pairs for each of G, G2, and G3; nine holey parallel classes of pairs for each of G4 and

G's; and 48 triples. To form a 3-1GDD of type (11 : 5)3(21 : 9)2, extend the holey parallel classes. Then
fill the hole with a 3-GDD of type 5392. O

This completes the proof of the Main Theorem.
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