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Abstract: We show that there are exactly 4285 symmetric (45,12,3) designs that admit nontrivial automor-
phisms. Among them there are 1161 self-dual designs and 1562 pairs of mutually dual designs. We
describe the full automorphism groups of these designs and analyze their ternary codes. R. Mathon
and E. Spence have constructed 1136 symmetric (45,12,3) designs with trivial automorphism group,
which means that there are at least 5421 symmetric (45,12,3) designs. Further, we discuss trigeodetic
graphs obtained from the symmetric (45, 12, 3) designs. We prove that k-geodetic graphs constructed
from mutually non-isomorphic designs are mutually non-isomorphic, hence there are at least 5421
mutually non-isomorphic trigeodetic graphs obtained from symmetric (45, 12, 3) designs.
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1. Introduction

The terminology and notation in this paper for designs and codes are as in [2, 3, 6].

One of the main problems in design theory is that of classifying structures with given parameters.
Classification of designs has been considered in detail in the monograph [17]. Complete classification
of designs with certain parameters has been done just for some designs with relatively small number
of points, and in the case of symmetric designs complete classification is done just for a few parameter
triples (see [22]). The classification of projective planes of order 9 has been solved in 1991 (see [20]), and
Kaski and Östergård classified all biplanes with k=11 in 2008 (see [18]). Hence, the parameter triple
(45,12,3) is the next for symmetric designs of order 9 to be classified. Since the complete classification
of symmetric (45,12,3) designs seems to be out of reach with the current techniques and computers, only
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partial classification of such designs, with certain constrains, is possible. In this paper we manage to
classify all symmetric (45,12,3) designs with nontrivial automorphisms.

The first symmetric (45,12,3) design was constructed in [1], and further two symmetric (45,12,3)
designs were constructed in [23] as (45,12,3) difference sets. Later on, Kölmel [19] and Ćepulić [5]
have independently constructed symmetric (45,12,3) designs having an automorphism of order 5. In his
doctoral dissertation [19] Kölmel also determined all (45,12,3) designs having a fixed-point-free auto-
morphism of order 3. Finally, Mathon and Spence [25] showed that there are at least 3752 symmetric
(45,12,3) designs, 1136 of them having a trivial automorphism group. Furthermore, Coolsaet, De Jager
and Spence, established in [7] that there are exactly 78 non-isomorphic strongly regular graphs with
parameters (45,12,3,3), meaning that there are exactly 78 symmetric designs having symmetric incidence
matrix with zero diagonal. Ternary codes spanned by the adjacency matrices of these strongly regular
graphs (i.e. incidence matrices of the corresponding symmetric designs) have been studied in [8]. The
symmetric (45,12,3) design admitting a primitive action of the group PSp(4, 3) is described in [10] and
[12].

In this paper we give the classification of all symmetric (45,12,3) designs having a nontrivial automor-
phism group. We show that there exist exactly 4285 symmetric (45,12,3) designs that admit nontrivial
automorphisms, which means that there are at least 5421 symmetric (45,12,3) designs. Furthermore,
we discuss trigeodetic graphs obtained from the symmetric (45, 12, 3) designs and prove that mutually
non-isomorphic designs produce mutualy non-isomorphic k-geodetic graphs.

The paper is organized as follows: after the brief introduction, in Section 2 we give basic information
concerning the construction method, in Section 3 we describe the construction of symmetric (45,12,3)
designs with nontrivial automorphisms and give a list of the designs and their full automorphism groups,
Section 4 gives information about the codes of the constructed designs, and in Section 5 we discuss
trigeodetic graphs obtained from the symmetric (45, 12, 3) designs.

For the construction of designs we have used our own computer programs. For isomorphism testing,
and to obtain and analyze the full automorphism groups of the designs we have used [14] and [30]. The
codes have been analyzed using Magma [4].

2. Outline of the construction

An incidence structure D = (P,B, I), with point set P, block set B and incidence I is a t-(v, k, λ)
design, if |P| = v, every block B ∈ B is incident with precisely k points, and every t distinct points
are together incident with precisely λ blocks. A design is called symmetric if it has the same number of
points and blocks. An automorphism of a design D is a permutation on P which sends blocks to blocks.
The set of all automorphisms of D forms its full automorphism group denoted by Aut(D).

Let D = (P,B, I) be a symmetric (v, k, λ) design and G ≤ Aut(D). The group action of G produces
the same number of point and block orbits (see [21, Theorem 3.3]). We denote that number by t, the point
orbits by P1, . . . ,Pt, the block orbits by B1, . . . ,Bt, and put |Pr| = ωr and |Bi| = Ωi. An automorphism
group G is said to be semi-standard if, after possibly renumbering orbits, we have ωi = Ωi, for i = 1, . . . , t.
We denote by γir the number of points of Pr which are incident with a representative of the block orbit
Bi. For these numbers the following equalities hold (see [5, 9, 16]):

t∑
r=1

γir = k , (1)

t∑
r=1

Ωj
ωr
γirγjr = λΩj + δij · (k − λ) . (2)

Definition 2.1. A (t × t)-matrix (γir) with entries satisfying conditions (1) and (2) is called an orbit
matrix for the parameters (v, k, λ) and orbit lengths distributions (ω1, . . . , ωt), (Ω1, . . . ,Ωt).
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The construction of designs admitting an action of a presumed automorphism group, using orbit
matrices, consists of the following two basic steps (see [5, 9, 16]):

1. Construction of orbit matrices for the given automorphism group,

2. Construction of block designs for the orbit matrices obtained in this way. This step is often called
an indexing of orbit matrices.

In order to construct the orbit matrices for an action of a presumed automorphism group we have
to determine all possibilities for the orbit lengths distributions. The following facts, that one can use in
that purpose, can be found in [21].

Theorem 2.2. An automorphism ρ of a symmetric design fixes an equal number of points and blocks.
Moreover, ρ has the same cyclic structure, whether considered as a permutation on points or on blocks.

Theorem 2.3. Suppose that a nonidentity automorphism ρ of a nontrivial symmetric (v, k, λ) design
fixes f points. Then

f ≤ v − 2n and f ≤ λ

k −
√
n
v,

where n = k − λ is the order of the design. Moreover, if equality holds in either inequality, ρ must be an
involution and every non-fixed block contains exactly λ fixed points.

Theorem 2.4. Suppose that D is a nontrivial symmetric (v, k, λ) design, with an involution ρ fixing f
points and blocks. If f 6= 0, then

f ≥
{

1 + k
λ , if k and λ are both even,

1 + k−1
λ , otherwise.

Suppose that D is a symmetric (v, k, λ) design with an automorphism ρ of prime order p fixing
f points. Then f ≡ v (mod p), and 〈ρ〉 acts semi-standardly on D. In that case, since the action
of G = 〈ρ〉 is semi-standard, it is sufficient to determine point orbit lengths distribution (ω1, . . . , ωt).
After determining the orbit lengths distributions we proceed with the construction of orbit matrices and
corresponding designs, as described in [9].

3. Classification of symmetric (45,12,3) designs with nontrivial
automorphisms

In this section we give the classification of all symmetric (45,12,3) designs that admit nontrivial
automorphisms. It is known that if ρ is a nonidentity automorphism of a symmetric (45,12,3) design,
then |ρ| ∈ {2, 3, 5, 11} (see [25]). It has been shown in [5, 19, 25] that there are exactly 13 symmetric
(45,12,3) designs with an automorphism of order 5, and exactly one symmetric (45,12,3) design with an
automorphism of order 11. To complete the classification of symmetric (45,12,3) designs with nontrivial
automorphisms, we have to classify all symmetric (45,12,3) designs that admit an automorphism of order
2 or 3.

3.1. Symmetric (45,12,3) designs admitting Z2 as an automorphism group

Let ρ be an involutory automorphism of a symmetric (45, 12, 3) design fixing f points. Then 5 ≤
f ≤ 15 and f ≡ 1 (mod 2), hence f ∈ {5, 7, 9, 11, 13, 15}. Up to isomorphism there are 682 orbit
structures, that produce 2987 mutually non-isomorphic designs. Information about the number of the
orbit structures and the designs are given in Table 1.
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Table 1. Symmetric (45,12,3) designs having Z2 as an automorphism group

number of fixed points 5 7 9 11 13 15
number of orbit structures 233 397 32 4 11 5
number of orbit structures that produce designs 45 271 30 0 7 5
number of designs 603 1898 524 0 225 28

3.2. Symmetric (45,12,3) designs admitting Z3 as an automorphism group

It was determined in [8] that there are exactly 591 orbit matrices for the group Z3 acting on symmetric
(45,12,3) designs. From these orbit matrices we have obtained up to isomorphism exactly 2108 symmetric
(45,12,3) designs that admit an automorphism of order three. Information about the number of the orbit
matrices and the constructed designs are presented in Table 2.

Table 2. Symmetric (45,12,3) designs having Z3 as an automorphism group

number of fixed points 0 3 6 9
number of orbit structures 293 245 49 4
number of orbit structures that produce designs 19 25 24 4
number of designs 244 482 125 1775

3.3. All symmetric (45,12,3) designs admitting a nontrivial automorphism
group

Comparing the designs described in subsections 3.1 and 3.2 we conclude that up to isomorphism
there are exactly 4280 symmetric (45,12,3) designs that admit an automorphism of order 2 or 3. It is
known from [5, 19, 25] that there are exactly 13 symmetric (45,12,3) designs with an automorphism of
order 5, and only four of them have the full automorphism group whose order is not divisible by 2 or 3.
Further, there is exactly one symmetric (45,12,3) design with an automorphism of order 11, and the full
automorphism group of that designs is Z11. That shows that there exist exactly 4285 symmetric (45,12,3)
designs with a nontrivial automorphism group. Among them there are 1161 self-dual designs and 1562
pairs of mutually dual designs. Information about these 4285 designs and their full automorphism groups
are given in Table 3. Some od the automorphism groups have the same description of the structure, but
they are not isomorphic. In that case, nonisomorphic groups with the same structure are listed in separate
rows of Table 3 (e.g. two groups of order 324 having the structure (E27 : Z3) : E4). Since Mathon and
Spence have constructed 1136 symmetric (45,12,3) designs with a trivial automorphism group (see [25]),
we conclude that up to isomorphism there are at least 5421 symmetric (45,12,3) designs.

4. Ternary codes from symmetric (45,12,3) designs

The code CF (D) of a design D = (P,B, I) over the finite field F is the space spanned by the incidence
vectors of the blocks over F . If Q is any subset of the point set P, then we will denote the incidence vector
of Q by vQ. Thus CF (D) = 〈vB |B ∈ B〉, and is a subspace of FP , the full vector space of functions from
P to F . The following theorem, that can be found in [2], shows that the code CF (D) over a field F of
characteristic p is not interesting if p does not divide the order of D. In Theorem 4.2 rankp(D) denotes
the dimension of CF (D), and j denotes the all-one vector.
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Table 3. Symmetric (45,12,3) designs with nontrivial automorphisms

|Aut(D)| Structure of Aut(D) no. designs |Aut(D)| Structure of Aut(D) no. designs

51840 PSp(4, 3) : Z2 1 45 Z15 × Z3 1
19440 (E81 : SL(2, 5)) : Z2 1 36 S3 × S3 4
1296 E27 : (S4 × Z2) 1 36 E9 : Z4 1
486 E81 : Z6 1 36 Z2 × (E9 : Z2) 1
486 E81 : S3 1 32 Z4 : Q8 1
432 ((S3 × S3) : Z2)× S3 2 30 Z5 × S3 1
360 (Z15 × Z3) : Z8 1 27 E27 11
324 (E27 : Z3) : E4 1 27 Z9 : Z3 6
324 (E27 : Z3) : E4 1 27 E9 : Z3 4
216 (Z3 × S3 × S3) : Z2 3 24 Z3 ×Q8 1
216 (E9 : Z4)× S3 2 20 Z5 : Z4 1
216 S3 × S3 × S3 2 20 Z5 : Z4 1
192 (E4 ×Q8) : S3 2 18 Z3 × S3 87
162 E27 : Z6 8 18 Z6 × Z3 4
162 E27 : S3 5 18 E9 : Z2 4
162 E27 : S3 1 16 QD16 7
162 S3 × (E9 : Z3) 1 16 Z2 ×D8 2
144 (E9 : Z8) : Z2 2 16 (Z4 × Z2) : Z2 1
108 S3 × (E9) : Z2) 4 15 Z15 2
108 E27 : Z4 2 12 D12 65
108 E27 : E4 1 11 Z11 1
108 Z3 × S3 × S3 1 9 E9 213
81 E27 : Z3 4 8 D8 12
81 E27 : Z3 1 8 Q8 7
64 (E4.(Z4 × Z2)) : Z2 1 8 Z8 4
64 ((Z2 ×Q8) : Z2) : Z2 1 8 E8 2
54 E27 : Z2 24 8 Z4 × Z2 2
54 E27 : Z2 9 6 S3 446
54 (Z9 : Z3) : Z2 6 6 Z6 104
54 E9 × S3 6 5 Z5 4
54 E9 : Z6 3 4 E4 128
48 (Z3 ×Q8) : Z2 3 4 Z4 71
48 Z2 × S4 1 3 Z3 1051
48 (Z4 × Z4) : Z3 1 2 Z2 1931

Theorem 4.1. Let D = (P,B, I) be a nontrivial 2-(v, k, λ) design of order n. Let p be a prime and let
F be a field of characteristic p, where p does not divide n. Then

rankp(D) ≥ (v − 1)

with equality if and only if p divides k; in the case of equality we have that CF (D) = 〈j〉⊥ and otherwise
CF (D) = FP .

Since the order of a symmetric (45,12,3) design is 9, we consider only the ternary codes of the
constructed designs, i.e. codes over the field of order 3. The ternary codes of the 4285 symmetric
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(45,12,3) designs with nontrivial automorphisms are divided in 1005 equivalence classes. In Table 4
we give information about code parameters and orders of automorphism groups of representatives of
equivalence classes, where the definitions of automorphisms and equivalence of codes are the same as in
Magma [4]. The following theorem states that all the codes obtained are self-orthogonal.

Theorem 4.2. Let D be a symmetric (45,12,3) design and C(D) be the ternary code of the design D.
Then the code C(D) is self-orthogonal, and j ∈ C(D)⊥.

Proof. The code C(D) is spanned by the rows of the row-point incidence matrix of D. Since each
row of D has 12 points, and any two blocks intersect in 3 points, the code C(D) is self-orthogonal. It is
obvious that j ∈ C(D)⊥, because each row of the design D consist of 12 points.

Table 4. Ternary codes of the symmetric (45,12,3) designs with nontrivial automorphisms

Parameters (|Aut(C)|, no. of inequivalent codes)
[45, 22, 9] (11,1)
[45, 21, 6] (60466176,1), (5832,1), (2592,1), (1944,1), (216,1), (108,1), (24,3), (12,1), (9,8), (8,4),

(6,3), (4,10), (3,4), (2,19)
[45, 20, 12] (2,3)
[45, 20, 9] (15,1), (9,8), (6,4), (3,7), (2,2)
[45, 20, 6] (45349632,1), (31104,1), (23328,1), (11664,1), (10368,1), (5832,1), (3888,2), (1944,2),

(1152,1),(972,1), (648,2), (324,3), (288,1), (216,1), (162,5), (108,2), (72,6), (54,4),
(36,10), (27,3), (24,11), (18,1), (12,34), (9,5), (8,6), (6,7), (5,2), (4,59), (3,1), (2,139)

[45, 19, 12] (64,1), (32,1), (4,1), (2,1)
[45, 19, 9] (162,1), (81,4), (54,2), (27,2), (18,1), (9,6), (4,1), (3,4)
[45, 19, 6] (226748160,1), (52488,1), (23328,1), (17496,1), (11664,1), (5832,3), (4608,1), (1944,1),

(1296,1), (972,1), (648,1), (486,2), (324,1), (288,2), (216,2), (108,3), (72,7), (54,4),
(36,20), (24,9), (20,1), (18,9), (16,3), (12,37), (9,2), (8,6), (6,32), (4,51), (3,16), (2,132)

[45, 18, 12] (20,1)
[45, 18, 9] (18,2), (9,1), (6,2), (2,2)
[45, 18, 6] (209952,1), (52488,1), (23328,1), (8748,1), (7290,1), (5832,1), (1944,2), (1296,3),

(432,1), (324,3), (216,2), (162,2), (108,6), (72,7), (54,4), (48,3), (36,14), (27,1), (24,1),
(18,11), (16,1), (12,18), (8,5), (6,22), (4,16), (3,8), (2,34)

[45, 17, 12] (192,2), (48,2)
[45, 17, 9] (360,1), (81,1)
[45, 17, 6] (69984,1), (3888,1), (2916,1), (1944,2), (486,1), (432,1), (324,6), (288,1), (216,1), (162,1),

(144,1), (108,3), (54,1), (36,3), (18,1), (16,2), (12,4), (9,1), (8,1), (6,3), (4,1), (2,1)
[45, 16, 9] (486,1), (324,1)
[45, 16, 6] (972,1), (432,1), (216,1), (108,1)
[45, 15, 12] (51840,1)
[45, 15, 9] (19440,1)

In Table 5 we give information about the dual codes of the codes presented in Table 4. According
to [15] and [26], the [45,28,8] code has the greatest minimum distance among the known ternary [45,28]
codes. Further, the best known ternary [45,30] code has minimum distance 7, hence the [45,30,6] code
has minimum distance one less than the best known code.

A linear code whose dual code supports the blocks of a t-design admits one of the simplest decoding
algorithms, majority logic decoding (see [28]). If a codeword x = (x1, . . . , xn) ∈ C is sent over a
communication channel, and a vector y = (y1, . . . , yn) is received, for each symbol yi a set of values
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y
(1)
i , . . . , y

(ri)
i of ri linear functions defined by the blocks of the design are computed, and yi is decoded as

the most frequent among the values y(1)i , . . . , y
(ri)
i . The following result have been obtained by Rudolph

[28].

Theorem 4.3. If C is a linear [n, k] code such that C⊥ contains a set S of vectors of weight w whose
supports are the blocks of a 2-(n,w, λ) design, the code C can correct up to

e =

⌊
r + λ− 1

2λ

⌋
errors by majority logic decoding, where r = λ n−1w−1 .

Consequently, the codes listed in Table 5 can correct up to two errors by majority logic decoding.

Table 5. Dual codes of ternary codes of the symmetric (45,12,3) designs with nontrivial auto-
morphisms

Parameters (|Aut(C)|, no. of inequivalent codes)
[45, 30, 6] (51840,1), (19440,1)
[45, 29, 6] (972,1), (486,1), (432,1), (324,1), (216,1), (108,1)
[45, 28, 8] (48,1)
[45, 28, 6] (69984,1), (3888,1), (2916,1), (1944,2), (486,1), (432,1), (360,1), (324,6), (288,1),

(216,1), (192,2), (162,1), (144,1), (108,3), (81,1), (54,1), (48,1), (36,3), (18,1), (16,2),
(12,4), (9,1), (8,1), (6,3), (4,1), (2,1)

[45, 27, 6] (209952,1), (52488,1), (23328,1), (8748,1), (7290,1), (5832,1), (1944,1), (1296,3),
(432,1), (324,3), (216,2), (162,2), (108,6), (72,7), (54,4), (48,3), (36,14), (27,1), (24,1),
(20,1), (18,13), (16,1), (12,18), (9,1), (8,5), (6,24), (4,16), (3,8), (2,36)

[45, 26, 8] (3,2)
[45, 26, 6] (226748160,1), (52488,1), (23328,1), (17496,1), (11664,1), (5832,1), (4608,1), (1944,1),

(1296,1), (972,1), (648,1),(486,2), (324,1), (288,2), (216,2), (162,1), (108,3), (81,4), (72,7),
(64,1), (54,6), (36,20), (32,1), (27,2), (24,9), (20,1), (18,10), (16,3), (12,37), (9,8), (8,6),
(6,32), (4,53), (3,18), (2,133)

[45, 25, 8] (15,1), (2,2), (3,1)
[45, 25, 6] (45349632,1), (31104,1), (23328,1), (11664,1), (10368,1), (5832,1), (3888,2), (1944,2),

(1152,1), (972,1), (648,2), (324,3), (288,1), (216,1), (162,5), (108,2), (72,6), (54,4), (36,10),
(27,3), (24,11), (18,1), (12,34), (9,13), (8,6), (6,11), (5,2), (4,59), (3,7), (2,142)

[45, 24, 6] (60466176,1), (5832,1), (2592,1), (1944,1), (216,1), (108,1), (24,3), (12,1), (9,8),
(8,4), (6,3), (4,10), (3,4), (2,19)

[45, 23, 9] (11,1)

5. On k-geodetic graphs from symmetric (45, 12, 3) designs

In this section we present results concerning 3-geodetic (trigeodetic) graphs. We prove that k-
geodetic graphs constructed from mutually non-isomorphic designs are mutually non-isomorphic. For
applications of k-geodetic graphs in the topological design of computer networks the reader may consult
[13]. For further reading on k-geodetic graphs we refer the reader to [27] and [29].

For every 2-(v, k, λ) design D with replication number r and b blocks it is possible to construct
k−connected biregular block K∗v (r, k, λ) (a block is a graph with vertex connectivity > 1) of diameter 4
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or 5 with vertex degrees r and k, in which there are at most µ paths of minimum length between any
pair of vertices, where

µ = max {max {|Bi ∩Bj | : i, j = 1, 2, . . . , b, i 6= j} , λ} ,

B1, B2, . . . , Bb being blocks of the design (see [29]).

K∗v (r, k, λ) has v(r + 1) vertices and vr(k+1)
2 edges. If D is a symmetric design then K∗v (r, k, λ) is

k−regular graph in which there are at most λ paths of minimum length between each pair of vertices.
Graphs in which every pair of nonadjacent vertices has a unique path of minimum length between them
are called geodetic graph, bigeodetic graphs are graphs in which each pair of nonadjacent vertices has at
most two paths of minimum length between them and graphs in which each pair of nonadjacent vertices
has at most k paths of minimum length between them are called k-geodetic graphs (see [13], [29]).

We follow the construction of K∗v (r, k, λ) from a 2-(v, k, λ) design given in [29]. If Bi = {Pi1 , . . . Pik},
1 ≤ i ≤ b, is a block of a design D, then {xi1i, . . . , xiki} are vertices of the complete graph (Kk)i. Graphs
(Kk)i , 1 ≤ i ≤ b, together with v vertices xi0, 1 ≤ i ≤ v, xi0 and xst being adjacent if i = s, form the
graph K∗v (r, k, λ) for the design D.

The adjacency matrix of a graph K∗v (r, k, λ) is given as follows

A =


(Jk − Ik) 0k . . . 0k M1

0k (Jk − Ik) · · · 0k M2

...
...

. . .
...

...
0k 0k · · · (Jk − Ik) Mb

MT
1 MT

2 . . . MT
b 0v

 ,

where Mi = [mr,s], 1 ≤ i ≤ b, are k × v matrices with m1,i1 = m2,i2 = ... = mk,ik = 1 for
Bi = {Pi1 , . . . Pik}, 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ v and mr,s = 0 otherwise, 0k is the k × k zero-matrix, Jk
is the k × k all-one matrix, and Ik is the k × k identity matrix. Rows of Mi, 1 ≤ i ≤ b, are labeled with
xi1i, ..., xiki, and columns of Mi, 1 ≤ i ≤ b, are labeled with x10, ..., xv0. The number of columns labeled
with xs0, 1 ≤ s ≤ v in which matrices Mi and Mj both have an entry 1 is equal to |Bi ∩ Bj |, since in
the column xs0 there is an entry 1 in both matrices if and only if Ps ∈ Bi ∩ Bj . Moreover, the matrix
Mi is determined by the ith row of the incidence matrix IM = [di,s] of the design D. Vice versa, the ith
row of the incidence matrix IM = [di,s] is determined by the matrix Mi, putting di,s = 1 if there exists
a row of Mi having 1 on the position xs0.

Theorem 5.1. Let D1 and D2 be 2-(v, k, λ) designs. Then the corresponding graphs K∗v (r, k, λ)1 and
K∗v (r, k, λ)2 are isomorphic if and only if the designs D1 and D2 are isomorphic.

Proof. Let D1 = (P1,B1, I1) and D2 = (P2,B2, I2) be 2-(v, k, λ) designs and α be an isomorphism from
D1 onto D2. Then there exists unique isomorphism β between the corresponding graphs K∗v (r, k, λ)1 and
K∗v (r, k, λ)2 that satisfy(

P 1
s α = P 2

t ∧B1
i α = B2

j

)
⇒
(

(Kk)
1
i β = (Kk)

2
j ∧ x

1
s0β = x2t0

)
,

where 1 ≤ s ≤ v, 1 ≤ i ≤ b.
Conversely, each isomorphism from the graph K∗v (r, k, λ)1 onto K∗v (r, k, λ)2 induces unique isomor-

phism from the design D1 onto D2. To prove this statement it is crusial to show that an isomorphism from
K∗v (r, k, λ)1 onto K∗v (r, k, λ)2 maps vertices {x110, . . . , x1v0} of K∗v (r, k, λ)1 onto vertices {x210, . . . , x2v0} of
K∗v (r, k, λ)2.

If the designs D1 and D2 are not symmetric, then r 6= k and since the vertices x110, . . . , x1v0 and
x210, . . . , x

2
v0 have degree r and the other vertices of K∗v (r, k, λ)1 and K∗v (r, k, λ)2 have degree k, it is clear

that an isomorphism from K∗v (r, k, λ)1 onto K∗v (r, k, λ)2 maps the set {x110, . . . , x1v0} onto {x210, . . . , x2v0}.
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If D1 and D2 are symmetric designs then r = k. A vertex x1i0 and a vertex adjacent to x1i0 have no
common neighbour, while a vertex that do not belong to {x110, . . . , x1v0} has k − 2 commmon neighbours
with any of its neighbour. Similarly, a vertex x2i0 and a vertex adjacent to him have no common neighbour,
while a vertex that do not belong to {x210, . . . , x2v0} has k − 2 commmon neighbours with any of its
neighbour. Hence, we conclude that {x110, . . . , x1v0} is mapped onto {x210, . . . , x2v0}.

So, an isomorphism from K∗v (r, k, λ)1 onto K∗v (r, k, λ)2 maps (Kk)
1
i onto (Kk)

2
j , and M1

i onto M2
j ,

and it induces unique isomorphism from the design D1 onto D2.

Graphs K∗45(12, 12, 3) constructed from symmetric (45,12,3) designs are 12-connected and 12-regular
graphs of diameter 4 with 585 vertices and 3510 edges. For each pair of nonadjacent vertices there are
at most three paths of minimum length between them. From all known triplanes of order nine one can
obtain 5421 non-isomorphic graphs K∗45(12, 12, 3), since non-isomorphic designs produce non-isomorphic
trigeodetic graphs. The following theorem, which is proved in [11], shows that Table 3 gives information
on automorphism groups of all trigeodetic graphs constructed from the symmetric (45,12,3) designs with
nontrivial automorphisms, and that there are at least 1136 trigeodetic graphs K∗45(12, 12, 3) having trivial
group as the full automorphism group.

Theorem 5.2. Let D be a 2-(v, k, λ) design. Then the full automorphism group of D is isomorphic to
the full automorphism group of the corresponding k-geodetic graph K∗v (r, k, λ).

All symmetric (45,12,3) designs admitting nontrivial automorphisms can be found at

http://www.math.uniri.hr/∼sanjar/structures/.
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