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Abstract: A handicap distance antimagic labeling of a graph G = (V, E) with n vertices is a bijection f : V —
{1,2,...,n} with the property that f(x;) = ¢ and the sequence of the weights w(x1), w(z2), ..., w(zx)
(where w(z;) = Y.  f(z;)) forms an increasing arithmetic progression with difference one. A

zj EN(z;)

graph G is a handicap distance antimagic graph if it allows a handicap distance antimagic labeling.
We construct (n — 7)-regular handicap distance antimagic graphs for every order n = 2 (mod 4) with
a few small exceptions. This result complements results by Kovar, Kovarova, and Krajc [P. Kovar, T.
Kovarova, B. Krajc, On handicap labeling of regular graphs, manuscript, personal communication,
2016] who found such graphs with regularities smaller than n — 7.
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1. Motivation

The study of handicap distance antimagic graphs has been motivated by incomplete round-robin
type tournaments with various properties.

A complete round robin tournament of n teams is a tournament in which every team plays the
remaining n — 1 teams. When the teams are ranked 1,2, ...,n according to their strength, it is apparent
that the sum of rankings of all opponents of the i-th ranked team, denoted w(i), is w(i) = n(n+1)/2 —1,
and the sequence w(1),w(2),...,w(n) is a decreasing arithmetic progression with difference one. Because
complete round robin tournaments are generally considered to be fair, a tournament of n teams in which
every team plays precisely r opponents, where r < n — 1 and the sequence w(1),w(2),...,w(n) is a
decreasing arithmetic progression with difference one is called a fair incomplete round robin tournament.
A disadvantage of such a tournament is that the best team plays the weakest opponents, while the weakest
team plays the strongest opponents. This disadvantage is eliminated in equalized incomplete round robin
tournaments in which the sum of rankings of all opponents of every team is the same. Some results on
fair incomplete round robin tournaments can be found in [6] and [3].
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However, if we want to give the weaker teams a better chance of winning, the weakest team should
play the weakest opponents, while the strongest one should play the strongest opponents. That is, the
sequence w(1),w(2),...,w(n) should be an increasing arithmetic progression. A tournament in which
this condition is satisfied, and every team plays r < n — 1 games, is called a handicap incomplete round
robin tournament.

The existence of such tournaments with n = 0 (mod 4) is studied by the authors in [D. Froncek
and A. Shepanik, Handicap incomplete tournaments of order n = 0 (mod 4), manuscript, personal com-
munication, 2016], Kovar [P. Kovaf, On regular handicap graphs, personal communication, June 16,
2016] and Kovarova [T. Kovafova, On regular handicap graphs, personal communication, June 16, 2016].
Kovar, Kovarova, and Krajc [P. Kovaf, T. Kovarova, B. Krajc, On handicap labeling of regular graphs,
manuscript, personal communication, 2016] found such tournaments for n = 2 (mod 4) and r < n — 11
and proved that they can exist only when r is odd and at most n — 7. We provide a construction of
handicap incomplete round robin tournaments for n = 2 (mod 4) and the missing regularity r = n — 7
with a few small exceptions.

2. Basic notions

By a graph G = (V, E') we mean a finite undirected graph without loops or multiple edges. For graph
theoretic terminology we refer to Chartrand and Lesniak [2].

Motivated by properties of magic squares, Vilfred [12] introduced the concept of sigma labelings. The
same concept was introduced by Miller et al. [10] under the name 1-vertex magic vertex labeling. Sugeng
et al. [11] introduced the term distance magic labeling, which currently seems to be most commonly
used. A survey on distance magic graphs was published recently [1]. Many newer results can by found
in an extensive survey with much wider focus by Gallian [7].

Definition 2.1. A distance magic labeling of a graph G of order n is a bijection f :V — {1,2,...,n}

with the property that there is a positive integer p such that > f(y) = p for every x € V. The constant
yEN(z)

w is called the magic constant of the labeling f. The sum > f(y) is called the weight of the vertex x
yEN (z)

and is denoted by w(x).

When we think of the vertices as of teams and identify their labels with their rankings, we can see
that a distance magic graph is providing a structure of a fair incomplete tournament described above.

In [4] the first author introduced two closely related concepts, namely the distance antimagic and
handicap distance antimagic labelings (which was called an ordered distance antimagic labeling in that
paper) and showed their relationship to certain types of incomplete round robin tournaments. The
term “handicap distance antimagic labeling” was originally coined by Kovarova [T. Kovarova, On regular
handicap graphs, personal communication, June 16, 2016].

Definition 2.2. A distance d-antimagic labeling of a graph G = (V, E) with n wvertices is a bijection
f:V = {1,2,...,n} with the property that there exists an ordering of the vertices of G such that the
sequence of the weights w(x1),w(xa), ..., w(x,) forms an arithmetic progression with difference d. When
d =1, then f is called just distance antimagic labeling. A graph G is a distance d-antimagic graph if it
allows o distance d-antimagic labeling, and a distance antimagic graph when d = 1.

It should be obvious that a graph G is distance magic if and only if its complement G is distance
antimagic.

In distance antimagic graphs the weight of a vertex is not tied to its own label. All that we require is
that the sequence w(x1), w(xs),. .., w(x,) forms an arithmetic progression. We now impose an additional
condition on the labeling and require that a vertex with a lower label has a lower weight than a vertex
with a higher label.
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Definition 2.3. A handicap distance d-antimagic labeling of a graph G = (V, E) with n vertices is
a bigection f : V. — {1,2,....n} with the property that f(x;) = i and the sequence of the weights
w(zy),w(x2),...,w(x,) forms an increasing arithmetic progression with difference d. When d = 1, the
labeling is called just a handicap distance antimagic labeling (or a handicap labeling for short).

A graph G is a handicap distance d-antimagic graph if it allows a handicap distance d-antimagic
labeling, and a handicap distance antimagic graph or a handicap graph when d = 1.

Again, if we identify each team in a tournament with its ranking, then an r-regular handicap distance
d-antimagic graph is nothing else than a model of a handicap incomplete round robin tournament, since
the sum of rankings of opponents of team i is its weight w(i) and the sequence of weights is an increasing
arithmetic progression.

Our constructions will be based on the properties of magic rectangles, which are a generalization of
the magic squares mentioned above.

Definition 2.4. A magic rectangle M R(a,b) is an a X b array whose entries are 1,2,... ab, each ap-
pearing once, with all row sums equal to a constant p and all column sums equal to a constant o.

It is easy to observe that a and b must be either both even or both odd. The following existence
result was proved by Harmuth [8, 9] more than 130 years ago.

Theorem 2.5. [8, 9] A magic rectangle M R(a,b) exists if and only if a,b > 1, ab > 4, and a = b
(mod 2).

3. Known results

Kovar, Kovarova, and Krajc [P. Kovar, T. Kovarova, B. Krajc, On handicap labeling of regular
graphs, manuscript, personal communication, 2016], Kovai [P. Kova¥, On regular handicap graphs, per-
sonal communication, June 16, 2016] and Kovafova [T. Kovafova, On regular handicap graphs, personal
communication, June 16, 2016] proved the following results.

Theorem 3.1. Let G be an r-regular handicap graph on n vertices, where n = 2 (mod 4). Then r = 3
(mod 4) and r <n —171.

Theorem 3.2. Forn =2 (mod 4), there exists an r-regular handicap graph if 3<r <n-—11 andr =3
(mod 4) except when r =3 and n < 26.

Their result leaves open the case of n =2 (mod 4) and r = n—7 for n > 14. In the following section,
we prove the existence of such graphs with the exception of n = 14,18, 22, 26, 34, 38, which remain in
doubt.

In our constructions, we will also use the following result by Kovai [P. Kovar, On regular handicap
graphs, personal communication, June 16, 2016] and Kovarova [T. Kovafova, On regular handicap graphs,
personal communication, June 16, 2016].

Theorem 3.3. For n =0 (mod 4) there exists an (n — 7)-regular handicap graph whenever n > 16.

In [5] the first author made made an observation, which was a special case of the following.

Observation 3.4. Let G be an r-regular distance 2-antimagic graph with vertices x1,xs, ..., Ty, labeling
f and weight function w such that f(x;) = i and w(x;) = k — 2i for some constant k. Then G, the
complement of G, is an (n —r — 1)-reqular handicap graph with labeling f and weight function W such
that W(x;) = n(n+1)/2 — k +i. The converse is obviously also true.

Proof. Label the vertices of the complete graph K,, so that vertex z; is labelled i. The sum of labels
of all neighbors of z; is then indeed equal to n(n+ 1)/2 —i. Every neighbor of x,; contributes its label to
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either w(z;) or wW(x;). Therefore, we have
w(z;) +w(z;) =nn+1)/2—1i
and
w(z;) =n(n+1)/2 —i—w(z;).
Because w(z;) = k — 21, it follows that
W(a;) =nln+1)/2 —i— (k—2) =n(n+1)/2 — k +i.

This completes the proof. O

We will use the observation in our constructions and instead of constructing directly (n — 7)-regular
handicap graphs, we will construct 6-regular distance 2-antimagic graphs satisfying assumptions of Ob-
servation 3.4. We will call such graphs genuine distance 2-antimagic graphs and the labeling will be called
a genuine distance 2-antimagic labeling.

The following observation was proved in a more general form in [4]. To avoid introduction of a new
notion that would be only used in its special form, we state the observation as follows.

Observation 3.5. [4| The graph G = K,OK, admits a genuine distance 2-antimagic labeling f such
that f(x) = p implies w(x) = (a + b)(ab+ 1)/2 — 2p for every x € V(G) whenever there exists a magic
rectangle M R(a,b).

4. New results

Lemma 4.1. There exists a 6-reqular genuine distance 2-antimagic graph on 12 vertices.

Proof. Let G = K30Ks. By Theorem 2.5 there exist a magic rectangle M R(2,6). The assertion
follows directly from Observation 3.5. O

Lemma 4.2. There exists a 6-reqular genwine distance 2-antimagic graph H on 30 vertices.

Proof. We denote the vertices of H by ys and zg for 1 < s < 3 and 1 <t < 5. The edge set will
consist of edges YstYpt, Zst2pt, and Ygr 254 for every for every 1 <s <p <3 and 1<t <5 witht #gq.

Let MR(3,5) be a 3 x 5 magic rectangle with entries mg; for 1 <r < 3 and 1 < s < 5. We label
the vertices ys; by entries mg,; in the natural way, that is, f(ys:) = ms while the vertices zz obtain the
labels raised by 15, that is, f(zs:) = ms + 15. Notice that the vertices ys; have the highest weights.

We now rename the vertices so that vertex ys or zg becomes z; when w(ys) = 124 — 24 or w(zs) =
124 — 24, respectively. One can check that this labeling has the required property and H is a 6-regular
genuine distance 2-antimagic graph. O

Now we are ready to present our construction.

Lemma 4.3. There exists a 6-reqular genuine distance 2-antimagic graph G on n wvertices for every
n =2 (mod 4) and n > 42.

Proof. We use two building blocks, graph H on 30 vertices from the previous Lemma, and a graph J
on m =0 (mod 4) vertices whose existence is guaranteed by Lemma 4.1 and Theorem 3.3. Our graph G
will then have n = m + 30 vertices.

Let H be the graph on 30 vertices constructed in Lemma 4.2 with vertices x1,xo, ..., Z30, genuine
distance 2-antimagic labeling fy and vertex weights wy satisfying fy(z;) =i and wy(x;) = 124 — 2i.
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It follows from Theorem 3.3 and Observation 3.4 that for any m =0 (mod 4) there exists a genuine
distance 2-antimagic labeling graph J with vertices ui,us, ..., un,, labeling f; and vertex weights w;
satisfying f(u;) = j and wy(u;) = 4m — 2j.

We use H and J as components of G and rename the vertices so that z; becomes v; fori =1,2,...,15,
u; becomes v;j415 for j = 1,2,...,m and x; becomes v; 4, for i = 16,17, ...,30. Then we label all vertices
using labeling function fg as fg(v;) =14 to obtain the desired genuine distance 2-antimagic labeling.

We can check that for i = 1,2,...,15 we have

we(v;) = wp(z;) +4m =124 — 2i+4m = 4(m + 30) + 4 — 2 = 4n + 4 — 21,

because v; has two neighbors in the “lower” part of H (that is, among vertices vy, vs, ..., v15) where the
labels have not changed, and four neighbors in the “upper” part (among vertices vy 416, Vm-+17; - - - » Um+30),
where each label was increased by m. For ¢ = 16,17,...,m 4+ 15 we have

wa(v) = wy(ui—15) +90 =4m +4 —2(i — 15) + 90 = 4(m + 30) + 4 — 2i = 4n + 4 — 24,

because the labels of all six neighbors were increased by 15. Finally, for i = m 4+ 16, m + 17,...,m + 30
we have

we(v;) = wh(Ti—m) +2m =124 — 2(i —m) + 2m = 4(m + 30) + 4 — 2 = 4dn + 4 — 24,
because v; has four neighbors in the “lower” part of H where the labels have not changed, and two
neighbors in the “upper” part where each label was increased by m. O
Our main result now follows directly from Lemma 4.3 and Observation 3.4.

Theorem 4.4. For n = 2 (mod 4), there exists an (n — 7)-reqular handicap graph when n = 30 or
n > 42.

This, together with the result by Kovar [P. Kovar, On regular handicap graphs, personal communi-
cation, June 16, 2016] and Kovarova [T. Kovafova, On regular handicap graphs, personal communication,
June 16, 2016], gives an almost complete characterization of handicap graphs for n =2 (mod 4).

Theorem 4.5. For n = 2 (mod 4), there exists an r-reqular handicap graph if and only if 3 < r <
n—7 and r = 3 (mod 4) except when r = 3 and n < 26 and possibly when r = n —7 and n €
{14,18,22,26,34,38}.

Since no magic rectangles of orders 14, 22, 26, 34, or 38 exist, one has to hope that a computer aided
search would help to settle the existence question for these orders. A construction for n = 18 similar to
that for n = 30 may exist, but the authors were unable to find one.
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