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Abstract: In this paper, we establish exact-special solutions of the generalized nonlinear dispersion GNLS(m,n,k,l) equation. We use
the ansatz method for acquiring the compactons, solitary patterns, solitons and other types of solutions.
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1 Introduction

The mathematical modeling of scientific events usually is expressed by nonlinear evolution equations. So, it is crucial to
reach general solutions, which give some behaviors about the character and the structure of the equations for researchers,
of these corresponding nonlinear equations. Many effective methods have been improved to provide much information
for physicians and engineers to present the actual physical characters of solutions [1]. We recall that most of these
methods use the wave variable transformation to reduce the nonlinear PDE to ODE in order to acquire the solution.
Severals are the generalized Miura [2], Darboux [3], Cole-Hopf [4], Hirota’s dependent variable [5], the Backlund [6]
transformations and sine-cosine [7], homogeneous balance (HB) [8], similarity reduction [9], automated tanh-function
[10], Exp-function [11], (G

′
/G)-expansion [12] methods and there are many papers about the basis of compactons

[13–32].

De Angelis studied [14] the cubic quintic nonlinear Schrödinger equation;

ipx + ptt + γ p|p|2 +α p|p|4 = 0, (1)

Yan [15] studied NLS(m,n) equation;

ipt +
(

p|p|m−1
)

xx
+µ p|p|n−1 = 0, (2)

and obtained envelope compactons and solitary pattern solutions.

Agrawal and Zeng studied [16],[17] w.r.t. the GNLS equation;

ipt +Apxx +Bp|p|2 + iCpxxx + iD
(

p|p|2
)

x
= 0, (3)
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Hirota introduced [18] another GNLS equation in the following form

ipt +Apxx +Bp|p|2 + iCpxxx + iD|p|2 px = 0. (4)

Yan introduced and studied [19] the GNLS equation with nonlinear dispersion (called GNLS(m,n,k,l) equation) and the
equation given by

ipt +A
(

p|p|m−1
)

xx
+Bp|p|n−1 + iC

(
p|p|k−1

)
xxx

+ iD
(

p|p|l−1
)

x
= 0, (5)

where A, B, C and D are arbitrary constants.

For this paper our aim is to apply the ansatz method [20–23] to Eq. (5) in light of the above-mentioned studies and then
we give some explanations about the solutions and conclusions in the last section.

2. Ansatz method

For initially, the solution of the equation is considered(
dv
dy

)2

= A0 −A1v2 (6)

where A0 ̸= 0 and A1 ̸= 0 are constants. When A1 > 0, Eq. (6) has the solutions:

v1 =±
√

A0
A1

sin
[√

A1 (y+a)
]
,

v2 =±
√

A0
A1

cos
[√

A1 (y+a)
]
,

(7)

where a is constant. If A1 < 0 then the Eq. (6) has the solutions:

v3 =±
√

A0
A1

sinh
[√

A1 (y+a)
]
,

v4 =±i
√

A0
A1

cosh
[√

A1 (y+a)
]
,

(8)

where i =
√
−1. For secondly, if the solutions of the other equation is considered,(

dv
dy

)2

= v2 (A2 +A3v2) (9)

where A2 ̸= 0 and A3 ̸= 0 are constants. When A2 < 0, Eq. (9) has the solutions

v5 =±
√

A2
A3

sec
[√

−A2y
]
,

v6 =±
√

A2
A3

csc
[√

−A2y
]
,

(10)

If A2 > 0 in Eq. (9), then the solutions are

v7 =±
√

A2
A3

sech
[√

−A2y
]
,

v6 =±i
√

A2
A3

csch
[√

−A2y
]
,

(11)

2.1 Nonlinear Dispersive GNLS(m,n,k,l) Equation

If we take the solution with transform u(x, t) = ϕ (ξ )exp(iσ t)with
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ξ = c(x−λ t) ,(c,λandσareconstants) we have the following ODE:

−σϕ +Ac2(ϕ m)′′+Bϕ n + i
[
−λcϕ ′+Cc3

(
ϕ k
)′′′

+Dc
(

ϕ l
)′]

= 0 (12)

By separating real and imaginary parts of the above equation and then by integration of imaginary part we have

−σϕ +Ac2(ϕ m)′′+Bϕ n = 0 (13)

−λϕ +Cc2
(

ϕ k
)′′

+Dϕ l = 0 (14)

To reach compactons, solitary patterns, solitons and periodic solutions of nonlinearly dispersive GNLS equation firstly
assume the following constraints:

λ = σ , A =C, B = D, m = k and n = l (15)

then by the following transformation

dϕ m

dξ
= z,

d2ϕ m

dξ 2 = z
dz

dϕ m (16)

substituting (16) into (13) leads to the following equation,

Ac2

2

(
nϕ

n−3
2

dϕ
dξ

)2

=
nσ

n+1
− nB

m+n
ϕ n−1. (17)

Letting ϕ = w
2

n−1 , we have

ϕ = w
2

n−1 ⇒ dϕ =
2

n−1
ϕ

2
n−1−1dw (18)

which changes Eq. (13) to

2Ak2n

(m−1)2

(
w

n−m
m−1

dw
dξ

)2

=
σ

n+1
− n

m+n
w2. (19)

Case I. If we take n = 2m−1 in Eq. (19), then we get:

p1 (x, t) = exp [iσ t]
[
± 1

A4

(
A5 −A4

2k2(x−λ t)2 ±2A4
2k2(x−λ t)2A6 −A4

2A6
2
)] 1

m−1
(20)

where

A4 =
B(m−1)2

2Ak2 (3m−1)(2m−1)
and A5 =

(m−1)2

4Ak2m(2m−1)

.

Case II. If m = n we know that Eq. (19) becomes

(
dw
dξ

)2

=
σ(m−1)2

2Ak2m(m+1)
− B(m−1)2

4Ak2m2 w2. (21)
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in which we assume that m ̸=−1 and A,B,k,λ ̸= 0.

If AB > 0, it becomes from Eqs. (6) and (21) that

p2 (x, t) = exp [iτt]

(
2σm

B(m+1)
sin2

[
m−1
2m |k|

√
B
A
(c(x−λ t)+a)

]) 1
m−1

, (22)

p3 (x, t) = exp [iτt]

(
2σm

B(m+1)
cos2

[
m−1
2m |k|

√
B
A
(c(x−λ t)+a)

]) 1
m−1

, (23)

If AB < 0, it becomes from Eqs. (7) and (21) that

p4 (x, t) = exp [iτt]

(
− 2σm

B(m+1)
sinh2

[
m−1
2m |c|

√
−B

A
(c(x−λ t)+a)

]) 1
m−1

, (24)

p5 (x, t) = exp [iτt]

(
2σm

B(m+1)
cosh2

[
m−1
2m |c|

√
−B

A
(c(x−λ t)+a)

]) 1
m−1

. (25)

Theorem 1. The nonlinear dispersion GNLS equation has solutions under the constraint (15) described as follows.

1. When AB > 0 and m > 1

p(x, t) =

 exp [iτt]
(

2σm
B(m+1)cos2

[
m−1
2m|c|

√
B
A (c(x−λ t)+a)

]) 1
m−1

,
∣∣∣ m−1

2m|c|

√
B
A (c(x−λ t))

∣∣∣≤ π
2

0, Otherwise
(26)

is the solitary wave solution(s.w.s) with compact support of GNLS equation.

2. When AB > 0 and m > 1

p(x, t) =

 exp [iτt]
(

2σm
B(m+1) sin2

[
m−1
2m|c|

√
B
A c(x−λ t)

]) 1
m−1

, 0 ≤ m−1
2m|c|

√
B
A c(x−λ t)≤ π

0, Otherwise
(27)

is a compacton solution.

3. When AB < 0 and m < 1

p(x, t) = exp [iτt]

(
B(m+1)

2σm
csc2

[
m−1
2m |c|

√
B
A

c(x−λ t)

]) 1
1−m

(28)

is a s.w.s for GNLS Eq. for 0 < (x−λ t)< 2m|c|
m−1

√
A
B π.

4. When AB < 0and m < 1

p(x, t) = exp [iτt]

(
B(m+1)

2σm
sec2

[
m−1
2m |c|

√
B
A

c(x−λ t)

]) 1
1−m

(29)
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is a s.w.s for the GNLS equation for |x−λ t|< 2m|c|
m−1

√
A
B π.

Theorem 2. The nonlinear dispersion GNLS equation has the following solutions with m=n under the constraint (19).

1.When B < 0 , σm(m+1)> 0

p(x, t) = exp [iτt]

(
− 2σm

B(m+1)
sinh2

[
m−1
2m |c|

√
−B

A
c(x−λ t)

]) 1
m−1

, (30)

is a solitary pattern solution (s.p.s).

1.When B < 0 , σm(m+1)< 0

p(x, t) = exp [iτt]

(
2σm

B(m+1)
cosh2

[
m−1
2m |c|

√
−B

A
c(x−λ t)

]) 1
m−1

, (31)

is a s.p.s, when m < 1, Eq. (31) is a bounded solution.

1.m=n <1 solutions (30) and (31) become s.w.s

p(x, t) = exp [iτt]

(
− 2σm

B(m+1)
csch2

[
m−1
2m |c|

√
−B

A
c(x−λ t)

]) 1
1−m

, (32)

which is the singular s.w.s. The solution improves a singularity at a finite point, i.e., for any fixed t = t0, there is blow up
of the solution [24], [25].

p(x, t) = exp [iτt]

(
2σm

B(m+1)
sech2

[
m−1
2m |c|

√
−B

A
c(x−λ t)

]) 1
1−m

, (33)

which is the bell-shaped s.w.s.

Case III. If n = 1 then the Eq. (19) becomes

(
dw
dξ

)2

= w2

(
σ(m−1)2

4Ac2m
+

−B(m−1)2

2Ac2 (m+1)
w2

)
. (34)

If σAm < 0 and m > 1 it becomes from Eqs. (9) and (34) that

p6 (x, t) = exp [iτt]
(

σ (m+1)
2Bm

sec2
[

m−1
2 |c|

√
− σ

Am
(c(x−λ t))

]) 1
m−1

, (35)

p7 (x, t) = exp [iτt]
(

σ (m+1)
2Bm

csc2
[

m−1
2 |c|

√
− σ

Am
(c(x−λ t))

]) 1
m−1

. (36)

Case IV. If σAm > 0 and m > 1 it becomes from Eqs. (10) and (34) that

p8 (x, t) = exp [iτt]
(

σ (m+1)
2Bm

sech2
[

m−1
2 |c|

√
− σ

Am
(c(x−λ t))

]) 1
m−1

, (37)
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which is the bell-shaped s.w.s.

p9 (x, t) = exp [iτt]
(
−σ (m+1)

2Bm
csch2

[
m−1
2 |c|

√
− σ

Am
(c(x−λ t))

]) 1
m−1

, (38)

which is the singular s.w.s. The solution improves a singularity at a finite point, i.e., for any fixed t = t0, there is blow up
of the solution [24], [25].

Case V. If σAm < 0 and m > 1

we have the following compacton solutions with the aid of Eqs. (37) and (38)

p10 (x, t) = exp [iτt]
(

2Bm
σ (m+1)

cos2
[

m−1
2 |c|

√
− σ

Am
c(x−λ t)

]) 1
1−m

, (39)

∣∣∣(m−1)(x−λ t)
√
− σ

Am

∣∣∣≤ π and p = 0 otherwise.

p11 (x, t) = exp [iτt]
(

2Bm
σ (m+1)

sin2
[

m−1
2 |c|

√
− σ

Am
c(x−λ t)

]) 1
1−m

, (40)

for 0 ≤
∣∣∣(m−1)(x−λ t)

√
− σ

Am

∣∣∣≤ 2π and p = 0otherwise.

Case VI. If σAm > 0 and m < 1

Using cosh(x) = cos(ix) and sinh(x) =−sin(ix) we have the following s.p.s

p12 (x, t) = exp [iτt]
(
− 2Bm

σ (m+1)
sinh2

[
m−1
2 |c|

√
− σ

Am
c(x−λ t)

]) 1
1−m

, (41)

p13 (x, t) = exp [iτt]
(

2Bm
σ (m+1)

cosh2
[

m−1
2 |c|

√
− σ

Am
c(x−λ t)

]) 1
1−m

(42)

4. Conclusions

We used the ansatz method with the aid of reducing the order of the equation for finding some new exact solutions for
GNLS(m, n, k, l) equation. We have acquired different types of exact solutions to the equation. The solutions obtained
are expressed in terms of s.w, s.p, compacton, bell shaped and singular.
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