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Abstract: In this paper, we establish several inequalities for different convex mappings that are connected with the Riemann-Liouville
fractional integrals. Our results have some relationships with certain integral inequalities in the literature.
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1 Introduction

Let f : I ⊆ R→ R be a convex function and let a,b ∈ I, with a < b. The following inequality;

f
(

a+b
2

)
≤ 1

b−a

∫ b

a
f (x)dx ≤ f (a)+ f (b)

2
(1)

is known in the literature as Hadamard’s inequality. Both inequalities hold in reversed direction if f is concave.

In [1], Godunova and Levin introduced the following class of functions.

Definition 1. A function f : I ⊆ R→ R is said to belong to the class of Q(I) if it is nonnegative and for all x,y ∈ I and
λ ∈ (0,1) satisfies the inequality;

f (λx+(1−λ )y)≤ f (x)
λ

+
f (y)

1−λ
. (2)

They also noted that all nonnegative monotonic and nonnegative convex functions belong to this class and also proved
the following motivating result:

If f ∈ Q(I) and x,y,z ∈ I, then

f (x)(x− y)(x− z)+ f (y)(y− x)(y− z)+ f (z)(z− x)(z− y)≥ 0. (3)

In fact (3) is even equivalent to (2). So it can alternatively be used in the definition of the class Q(I).

In [9], Dragomir et.al., defined the following new class of functions.
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Definition 2. A function f : I ⊆ R→ R is P function or that f belongs to the class of P(I), if it is nonnegative and for all
x,y ∈ I and λ ∈ [0,1], satisfies the following inequality;

f (λx+(1−λ )y)≤ f (x)+ f (y). (4)

The power mean Mr(x,y;λ ) of order r of positive numbers x,y is defined by

Mr(x,y;λ ) =

{
(λxr +(1−λ )yr)

1
r , r ̸= 0

xλ y1−λ , r = 0.

In [14], Pearce et al. generalized this inequality to r−convex positive function f which is defined on an interval [a,b], for
all x,y ∈ [a,b] and λ ∈ [0,1];

f (λx+(1−λ )y)≤ Mr( f (x) , f (y) ;λ ) =

{
(λ [ f (x)]r +(1−λ ) [ f (y)]r)

1
r , i f r ̸= 0

[ f (x)]λ [ f (y)]1−λ i f r = 0
.

We have that 0−convex functions are simply log-convex functions and 1−convex functions are ordinary convex
functions.

In [19], Varošanec introduced the following class of functions.

Definition 3. Let h : J ⊂R→R be a positive function. We say that f : I ⊂R→R is h−convex function or that f belongs
to the class SX(h, I), if f is nonnegative and for all x,y ∈ I and λ ∈ (0,1), we have

f (λx+(1−λ )y)≤ h(λ ) f (x)+h(1−λ ) f (y). (5)

If the inequality in (5) is reversed, then f is said to be h−concave, i.e., f ∈ SV (h, I).

Obviously, if h(λ ) = λ , then all nonnegative convex functions belong to SX (h, I) and all nonnegative concave functions
belong to SV (h, I); if h(λ ) = 1

λ , then SX(h, I) = Q(I); if h(λ ) = 1, then SX(h, I) ⊇ P(I) and if h(λ ) = λ s, where
s ∈ (0,1) , then SX(h, I) ⊇ K2

s . For some recent results for h−convex functions we refer to the interested reader to the
papers [3], [4] and [15].

In [9], Dragomir et.al. proved two inequalities of Hadamard type for class of Godunova-Levin functions and P−
functions.

Theorem 1. Let f ∈ Q(I), a,b ∈ I with a < b and f ∈ L1[a,b]. Then the following inequality holds:

f
(

a+b
2

)
≤ 4

b−a

∫ b

a
f (x)dx. (6)

Theorem 2. Let f ∈ P(I), a,b ∈ I with a < b and f ∈ L1[a,b]. Then the following inequality holds:

f
(

a+b
2

)
≤ 2

b−a

∫ b

a
f (x)dx ≤ 2[ f (a)+ f (b)]. (7)
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In [11], Ngoc et al., established following theorem for r−convex functions:

Theorem 3. Let f : [a,b] → (0,∞) be r−convex function on [a,b] with a < b.Then the following inequality holds for
0 < r ≤ 1:

1
b−a

b∫
a

f (x)dx ≤
(

r
r+1

) 1
r

( f r(a)+ f r(b))
1
r . (8)

For related results on r−convexity see the papers [10] and [20].

In [16], Sarıkaya et al. proved the following Hadamard type inequalities for h−convex functions.

Theorem 4. Let f ∈ SX(h, I), a,b ∈ I with a < b and f ∈ L1[a,b]. Then

1
2h
( 1

2

) f
(

a+b
2

)
≤ 1

b−a

∫ b

a
f (x)dx ≤ [ f (a)+ f (b)]

∫ 1

0
h(α)dα . (9)

In [17], Sarıkaya et al. proved the following Hadamard type inequalities for fractional integrals as follows.

Theorem 5. Let f : [a,b]→ R be positive function with 0 ≤ a < b and f ∈ L1[a,b]. If f is convex function on [a,b], then
the following inequalities for fractional integrals hold:

f
(

a+b
2

)
≤ Γ (α +1)

2(b−a)α
[
Jα

a+(b)+ Jα
b−(a)

]
≤ f (a)+ f (b)

2
(10)

with α > 0.

Now we give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used
throughout this paper.

Definition 4. Let f ∈ L1[a,b]. The Riemann-Liouville integrals Jα
a+ f and Jα

b− f of order α > 0 with a ≥ 0 are defined by

Jα
a+ f (x) =

1
Γ (α)

x∫
a

(x− t)α−1 f (t)dt, x > a

and

Jα
b− f (x) =

1
Γ (α)

b∫
x

(t − x)α−1 f (t)dt, x < b

respectively where Γ (α) =
∞∫
0
e−uuα−1du. Here is J0

a+ f (x) = J0
b− f (x) = f (x).

In the case of α = 1, the fractional integral reduces to the classical integral.

For some recent results connected with fractional integral inequalities see [2], [5]-[8], [12], [13], [17] and [18].

The main purpose of this paper is to present new Hadamard’s inequalities for fractional integrals via functions that
belongs to the classes of Q(I), P(I), SX(h, I) and r−convex.
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2 MAIN RESULTS

Theorem 6. Let f ∈ Q(I), a,b ∈ I with 0 ≤ a < b and f ∈ L1[a,b]. Then the following inequality for fractional integrals
hold:

f
(

a+b
2

)
≤ 2Γ (α +1)

(b−a)α
[
Jα

a+(b)+ Jα
b−(a)

]
(11)

with α > 0.

Proof. Since f ∈ Q(I), we have

2( f (x)+ f (y))≥ f
(

x+ y
2

)
for all x,y ∈ I (with λ = 1

2 in (1.2)).

If we choose x = ta+(1− t)b and y = (1− t)a+ tb in above inequality, we get

2 [ f (ta+(1− t)b)+ f ((1− t)a+ tb)]≥ f
(

a+b
2

)
. (12)

Then multiplying both sides of (12) by tα−1 and integrating the resulting inequality with respect to t over [0,1], we obtain

2
∫ 1

0
tα−1 [ f (ta+(1− t)b)+ f ((1− t)a+ tb)]dt ≥ f

(
a+b

2

)∫ 1

0
tα−1dt

2
∫ b

a

(
b−u
b−a

)α−1

f (u)
du

b−a
+2

∫ b

a

(
v−a
b−a

)α−1

f (v)
dv

b−a
≥ 1

α
f
(

a+b
2

)
2Γ (α +1)
(b−a)α

[
Jα

a+(b)+ Jα
b−(a)

]
≥ f

(
a+b

2

)
.

The proof is complete.

Remark. If we choose α = 1 in Theorem 6, then the inequalities (11) become the inequalities (6).

Theorem 7. Let f ∈ P(I), a,b ∈ I with a < b and f ∈ L1[a,b]. Then one has inequality for fractional integrals:

f
(

a+b
2

)
≤ Γ (α +1)

(b−a)α
[
Jα

a+(b)+ Jα
b−(a)

]
≤ 2( f (a)+ f (b)) (13)

with α > 0.

Proof. According to (4) with x = ta+(1− t)b, y = (1− t)a+ tb and λ = 1
2 , we find that

f
(

a+b
2

)
≤ f (ta+(1− t)b)+ f ((1− t)a+ tb) (14)

c⃝ 2015 BISKA Bilisim Technology



NTMSCI 3, No. 2, 110-117 (2015) / www.ntmsci.com 114

for all t ∈ [0,1]. Thus multiplying both sides of (14) by tα−1 and integrating the resulting inequality with respect to t over
[0,1], we have

f
(

a+b
2

)∫ 1

0
tα−1dt ≤

∫ 1

0
tα−1 [ f (ta+(1− t)b)+ f ((1− t)a+ tb)]dt

1
α

f
(

a+b
2

)
≤ Γ (α)

(b−a)α
[
Jα

a+(b)+ Jα
b−(a)

]
f
(

a+b
2

)
≤ Γ (α +1)

(b−a)α
[
Jα

a+(b)+ Jα
b−(a)

]
and the first inequality is proved.

Since f ∈ P(I), we have
f (ta+(1− t)b)≤ f (a)+ f (b)

and
f ((1− t)a+ tb)≤ f (a)+ f (b).

By adding these inequalities, we get

f (ta+(1− t)b)+ f ((1− t)a+ tb)≤ 2 [ f (a)+ f (b)] . (15)

Then multiplying both sides of (15) by tα−1 and integrating the resulting inequality with respect to t over [0,1], we have

∫ 1

0
tα−1 [ f (ta+(1− t)b)+ f ((1− t)a+ tb)]dt ≤ 2 [ f (a)+ f (b)]

∫ 1

0
tα−1dt

Γ (α +1)
(b−a)α

[
Jα

a+(b)+ Jα
b−(a)

]
≤ 2( f (a)+ f (b))

and thus the second inequality is proved.

Remark. If we choose α = 1 in Theorem 7, then the inequalities (13) become the inequalities (7).

Theorem 8. Let f : [a,b]→ (0,∞) be r−convex function on [a,b] with a < b and 0 < r ≤ 1.Then the following inequality
for fractional integral inequlities holds:

Γ (α +1)
(b−a)α

[
Jα

a+(b)+ Jα
b−(a)

]
≤

[(
1

α + 1
r

)r

[ f (a)]r +
(

β (α,
r+1

r
)

)r

[ f (b)]r
] 1

r

+

[(
β (α,

r+1
r

)

)r

[ f (a)]r +

(
1

α + 1
r

)r

[ f (b)]r
] 1

r

.

Proof. Since f is r-convex function and r > 0, we have

f (ta+(1− t)b)≤ (t [ f (a)]r +(1− t) [ f (b)]r)
1
r

and
f ((1− t)a+ tb)≤ ((1− t) [ f (a)]r + t [ f (b)]r)

1
r
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for all t ∈ [0,1].

By adding these inequalities we have

f (ta+(1− t)b)+ f ((1− t)a+ tb)≤ (t [ f (a)]r +(1− t) [ f (b)]r)
1
r +((1− t) [ f (a)]r + t [ f (b)]r)

1
r .

Then multiplying both sides of above inequality by tα−1 and integrating the resulting inequality with respect to t over
[0,1], we obtain ∫ 1

0
tα−1 [ f (ta+(1− t)b)+ f ((1− t)a+ tb)]dt

≤
∫ 1

0
tα−1 (t [ f (a)]r +(1− t) [ f (b)]r)

1
r dt +

∫ 1

0
tα−1 ((1− t) [ f (a)]r + t [ f (b)]r)

1
r dt.

It is easy to observe that

∫ 1

0
tα−1 [ f (ta+(1− t)b)+ f ((1− t)a+ tb)]dt =

Γ (α)

(b−a)α
[
Jα

a+(b)+ Jα
b−(a)

]
Using Minkowski inequality, we have

∫ 1

0
tα−1 (t [ f (a)]r +(1− t) [ f (b)]r)

1
r dt ≤

[(∫ 1

0
tα+ 1

r −1 f (a)dt
)r

+

(∫ 1

0
tα−1(1− t)

1
r f (b)dt

)r] 1
r

=

[(
1

α + 1
r

)r

[ f (a)]r +
(

β (α,
r+1

r
)

)r

[ f (b)]r
] 1

r

and similarly

∫ 1

0
tα−1 ((1− t) [ f (a)]r + t [ f (b)]r)

1
r ≤

[(∫ 1

0
tα−1(1− t)

1
r f (a)dt

)r

+

(∫ 1

0
tα+ 1

r −1 f (b)dt
)r] 1

r

=

[(
β (α,

r+1
r

)

)r

[ f (a)]r +

(
1

α + 1
r

)r

[ f (b)]r
] 1

r

.

Thus

Γ (α +1)
(b−a)α

[
Jα

a+(b)+ Jα
b−(a)

]
≤

[(
1

α + 1
r

)r

[ f (a)]r +
(

β (α ,
r+1

r
)

)r

[ f (b)]r
] 1

r

+

[(
β (α ,

r+1
r

)

)r

[ f (a)]r +

(
1

α + 1
r

)r

[ f (b)]r
] 1

r

.

This proof is complete.

Remark. In Theorem 8, if we choose α = 1, then we obtain the inequalities (8).

c⃝ 2015 BISKA Bilisim Technology



NTMSCI 3, No. 2, 110-117 (2015) / www.ntmsci.com 116

Theorem 9. Let f ∈ SX(h, I), a,b ∈ I with a < b and f ∈ L1[a,b]. Then one has inequality for h−convex functions via
fractional integrals

1
αh
( 1

2

) f
(

a+b
2

)
≤ Γ (α)

(b−a)α
[
Jα

a+(b)+ Jα
b−(a)

]
(16)

≤ [ f (a)+ f (b)]
∫ 1

0
tα−1 [h(t)+h(1− t)]dt.

Proof. According to (5) with x = ta+(1− t)b, y = (1− t)a+ tb and α = 1
2 we find that

f
(

a+b
2

)
≤ h

(
1
2

)
f (ta+(1− t)b)+h

(
1
2

)
f ((1− t)a+ tb) (17)

≤ h
(

1
2

)
[ f (ta+(1− t)b)+ f ((1− t)a+ tb)] .

Then multiplying the firts inequalitiy in (17) by tα−1 and integrating the resulting inequality with respect to t over [0,1],
we obtain

f
(

a+b
2

)∫ 1

0
tα−1dt ≤ h

(
1
2

)∫ 1

0
tα−1 [ f (ta+(1− t)b)+ f ((1− t)a+ tb)]dt

1
αh
( 1

2

) f
(

a+b
2

)
≤ Γ (α)

(b−a)α
[
Jα

a+(b)+ Jα
b−(a)

]
(18)

and the first inequality in (16) is proved.

Since f ∈ SX(h, I), we have
f (tx+(1− t)y)≤ h(t) f (x)+h(1− t) f (y)

and
f ((1− t)x+ ty)≤ h(1− t) f (x)+h(t) f (y).

By adding these inequalities we get

f (tx+(1− t)y)+ f ((1− t)x+ ty)≤ [h(t)+h(1− t)] [ f (x)+ f (y)] . (19)

By using (19) with x = a and y = b we have

f (ta+(1− t)b)+ f ((1− t)a+ tb)≤ [h(t)+h(1− t)] [ f (a)+ f (b)] . (20)

Then multiplying both sides of (20) by tα−1 and integrating the resulting inequality with respect to t over [0,1], we get

∫ 1

0
tα−1 [ f (ta+(1− t)b)+ f ((1− t)a+ tb)]dt ≤

∫ 1

0
tα−1 [h(t)+h(1− t)] [ f (a)+ f (b)]dt,

Γ (α)

(b−a)α
[
Jα

a+(b)+ Jα
b−(a)

]
≤ [ f (a)+ f (b)]

∫ 1

0
tα−1 [h(t)+h(1− t)]dt (21)

and thus the second inequality is proved. We obtain inequalities (16) from (18) and (21).The proof is complete.

Remark. In Theorem 9;
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–if we choose h(t) = t, then the inequalities (16) become the inequalities (10) of Theorem 5.
–if we take α = 1, then we obtain the inequalities (9).
–Let α = 1. If we choose h(t) = t and h(t) = 1, then (16) reduce to (1) and (7), respectively.
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