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Abstract: In this paper, we establish several inequalities for different convex mappings that are connected with the Riemann-Liouville
fractional integrals. Our results have some relationships with certain integral inequalities in the literature.
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1 Introduction

Let f:1 CR — R be a convex function and let a,b € I, with a < b. The following inequality;

f(“;b><bia/abf(x)dx<w ()

is known in the literature as Hadamard’s inequality. Both inequalities hold in reversed direction if f is concave.
In [1], Godunova and Levin introduced the following class of functions.

Definition 1. A function f: I C R — R is said to belong to the class of Q(I) if it is nonnegative and for all x,y € I and

A € (0,1) satisfies the inequality;

Flhst(1-ay) < L0 SO @

They also noted that all nonnegative monotonic and nonnegative convex functions belong to this class and also proved
the following motivating result:

If f € Q(I) and x,y,z € I, then

FOx=y)x=2)+f0)0—x)y—2)+f()(z—x)(z—y) > 0. 3)

In fact (3) is even equivalent to (2). So it can alternatively be used in the definition of the class Q(I).

In [9], Dragomir et.al., defined the following new class of functions.
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Definition 2. A function f : I CR — R is P function or that f belongs to the class of P(I), if it is nonnegative and for all
x,y € Iand A € [0,1], satisfies the following inequality;

JAx+(1=2)y) < f(x)+f(¥). ©)
The power mean M, (x,y;A) of order r of positive numbers x,y is defined by

1
A"+ (1=2A)y")7, 0
Mr(xyy;l)Z{( ! § H)y) r7

x*y r=0

In [14], Pearce et al. generalized this inequality to r—convex positive function f which is defined on an interval [a, b], for
all x,y € [a,b] and A € [0,1];

ALY+ =[G, if r£0

Ax —A (f(x), A) =
f( +(1 )y)SM(f()f()’) ) { [f(x)]x[f(y)}l_l if r=0

We have that O—convex functions are simply log-convex functions and 1—convex functions are ordinary convex

functions.
In [19], VaroSanec introduced the following class of functions.

Definition 3. Let h: J C R — R be a positive function. We say that f : 1 C R — R is h—convex function or that f belongs
to the class SX (h,I), if f is nonnegative and for all x,y € I and A € (0,1), we have

FAx+(1=2A)y) <h(A)f(x) +h(1=2)f(y). (5)
If the inequality in (5) is reversed, then f is said to be h—concave, i.e., f € SV (h,1).
Obviously, if #(A) = A, then all nonnegative convex functions belong to SX (k,I) and all nonnegative concave functions
belong to SV (h,1I); if h(A) = %, then SX(h,I) = Q(I); if h(A) = 1, then SX(h,I) D P(I) and if h(A) = A*, where
s € (0,1), then SX(h,I) D K?. For some recent results for 7—convex functions we refer to the interested reader to the

papers [3], [4] and [15].

In [9], Dragomir et.al. proved two inequalities of Hadamard type for class of Godunova-Levin functions and P—

functions.

Theorem 1. Let f € Q(I), a,b € I witha < b and f € Li[a,b]. Then the following inequality holds:

b 4 b
£(457) < 52 [ 0. ©)

Theorem 2. Let f € P(I), a,b € I witha < b and f € Ly|a,b]. Then the following inequality holds:

£(550) <52 [ s <2000+ 501 "
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In [11], Ngoc et al., established following theorem for r—convex functions:

Theorem 3. Let f : [a,b] — (0,00) be r—convex function on |a,b] with a < b.Then the following inequality holds for
0<r<i1:
1
b—a

/b fx)dx < (r+r1) % (f (@) + f7(b))7 - ®)

For related results on r—convexity see the papers [10] and [20].
In [16], Sarikaya et al. proved the following Hadamard type inequalities for z—convex functions.

Theorem 4. Let f € SX(h,I), a,b € I witha < b and f € Li[a,b]. Then

1 a+b 1 b 1
Zh(é)f( 2 ) < b—a/a f(x)dXS [f(a)‘Ff(b)]/O h(a)doc. 9)

In [17], Sarikaya et al. proved the following Hadamard type inequalities for fractional integrals as follows.

Theorem 5. Let f : [a,b] — R be positive function with 0 < a < b and f € Li[a,D]. If f is convex function on |a,b], then

the following inequalities for fractional integrals hold:

r(42) < o e g ) < L0 1)

with a > 0.

Now we give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used
throughout this paper.

Definition 4. Let f € Li[a,b]. The Riemann-Liouville integrals J*. f and Ji* f of order & > 0 with a > 0 are defined by

I f(x) = ﬁ/ (=) f(1)dt, x>a

and
b

T f(x) = F(la)/ (=% f(t)dt, x<b
respectively where I' (@) = 76’”u°"ldu. Here is Jg+f(x) = Jg,f(x) = f(x).
0

In the case of & = 1, the fractional integral reduces to the classical integral.

For some recent results connected with fractional integral inequalities see [2], [5]-[8], [12], [13], [17] and [18].

The main purpose of this paper is to present new Hadamard’s inequalities for fractional integrals via functions that
belongs to the classes of Q(I), P(I), SX (h,I) and r—convex.
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2 MAIN RESULTS

Theorem 6. Let f € Q(I), a,b € I with0 < a < b and f € L|a,b]. Then the following inequality for fractional integrals

hold: ) ar( D
a+ o+ a a
f( 5 ) <o _ape [J% (b) + T (a)] (11)
with o > 0.
Proof. Since f € Q(I), we have
270+ 00 > 1 (*57)

forall x,y € I (with 2 = 1 in (1.2)).

If we choose x =ta+ (1 —¢)b and y = (1 —t)a +tb in above inequality, we get

2[f(ta+ (1 —1)b)+ f((1 —1t)a+1b)] zf<“;b>. (12)

Then multiplying both sides of (12) by #*~! and integrating the resulting inequality with respect to ¢ over [0, 1], we obtain

2/01ta1[f(;a+(1—t)b)+f((1—t)a—i—tb)]dtZf(a‘;b> /Oltafldt

brb—u\*! du bly—a\*! dv 1 a+b
Z/a (b—a) f(u)b—aJrz/a (b—a) f(v)b—azocf< 2 )

2r(a+1) o a+b
W[Jﬁ(b)"'-]bf(a)] Zf( ) )

The proof is complete.

Remark. If we choose @ = 1 in Theorem 6, then the inequalities (11) become the inequalities (6).

Theorem 7. Let f € P(I), a,b € I witha < b and f € Ly|a,b]. Then one has inequality for fractional integrals:

a+b I'la+1) 4 o
f< : >< s U (D) (@)] <200+ £(0) (13)

with o > 0.

Proof. According to (4) withx =ta+ (1—1)b,y = (1—t)a+tband A = %, we find that

f(““;b> < f(ta+ (1 —1)b)+ f((1—1)a+1b) (14)
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for all ¢ € [0, 1]. Thus multiplying both sides of (14) by %! and integrating the resulting inequality with respect to  over
[0,1], we have

/ (T) /olf‘“d; < /OI’OL1 [flta+(1=0)b) + f((1 = t)a+1b)] dr

2 (50) < o e+ 92 (@)

2 b—a)®
atb L+ 6 4
f( 2 >< (b—a)™ [Ja+(b)+~]h7(a)]

and the first inequality is proved.

Since f € P(I), we have
f(ta+(1=1)b) < f(a) + f(b)

and
f((1=t)a+1b) < f(a)+ f(b).

By adding these inequalities, we get
flat+(1=0)b) + f((1=t)a+1b) <2[f(a) + f(b)]. (15)

Then multiplying both sides of (15) by #*~! and integrating the resulting inequality with respect to ¢ over [0,1], we have

[ G (- 0) £ - at )] <2(5(a) + £(8) [ 1

0 0
I'la+1)

b—a) [z (B) + T ()] <2(f(a) + £ (b))

and thus the second inequality is proved.
Remark. If we choose oo = 1 in Theorem 7, then the inequalities (13) become the inequalities (7).

Theorem 8. Let f : [a,b] — (0,°0) be r—convex function on [a,b] with a < b and 0 < r < 1.Then the following inequality

(a1+1> @]+ (ﬁ(mrtl))r[f(b)]’]

(B ) [f(a)]’+<ai1> [f(b)]’] .

Proof. Since f is r-convex function and r > 0, we have

for fractional integral inequlities holds:

I'a+1)
(b—a)*

[t (b) + - (@)] <

+

S

flat+(1=0)b) < (t[f(@)]"+ (1 =0) [f(D)]')

and

~i—

f(A=ta+1b) < ((1=1)[f(@)] +t[f()]')
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forall ¢ € [0,1].
By adding these inequalities we have

Flta+(1=0)b) + F(1=a+1b) < (t[F@) + (1 =) [FB)])7 + (1 =) [f@)]) +1[f(B)])" .

Then multiplying both sides of above inequality by #*~! and integrating the resulting inequality with respect to ¢ over

[0,1], we obtain

/]z“*‘ [f(ta+ (1 —=1)b)+ f((1 —t)a+1b)]dt

0
1

1 . 1
< [ @y + A=l ®)) dit [ (=0 @) + )7 d.

0

It is easy to observe that

a

/Olta_l[f(ta—i—(l—t)b)+f((1—t)a+tb)]dt: F((Z) [J% (b) + T (a)]

Using Minkowski inequality, we have

[ etr@r+a-oisenya < [( [ aan) +([ea-o) o) |

and similarly

Thus

This proof is complete.

Remark. In Theorem 8, if we choose o = 1, then we obtain the inequalities (8).
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Theorem 9. Let f € SX(h,1), a,b € I with a < b and f € Li[a,b]. Then one has inequality for h—convex functions via

fractional integrals

1 a+b I'la) ;4 o
ah(é)f< > > < b—a) [J%(b) + T (a)] (16)

< 1@ +10) [ 1 o) + (1 ).

Proof. According to (5) withx=ta+ (1—1)b,y = (1—t)a+tband o = 1 we find that

f(“;b> gh(i) f(ta+(1—t)b)+h(;> F((1=1)a+1b) (17)
<h (;) [f(ta+ (1—1)b)+ f((1 —t)a+1b)].

Then multiplying the firts inequalitiy in (17) by r*~! and integrating the resulting inequality with respect to ¢ over [0, 1],
we obtain

f (a;b> /olta"dt <h (D ./; (7 f(eat (1=0)b) + £((1 = t)a+1b)}dt

a+b I'la
f( 5 >< (a) [/ (b) + 7" ()] (18)
and the first inequality in (16) is proved.

Since f € SX(h,I), we have
flex+(1=1)y) <h(t)f(x) +h(1=1)f(y)

and

S =t)x+1y) <h(1=1)f(x) +h(0) f(y)-
By adding these inequalities we get
flx+ (1 =0)y) + f((L=t)x+1y) < [h(t) +h(1=1)] [f (x) + f(¥)]- (19)
By using (19) with x = a and y = b we have
flta+ (1 =0b)+ f((1=t)a+1b) < [h(t) +h(1 =1)][f(a) + f()]. (20)

Then multiplying both sides of (20) by #*~! and integrating the resulting inequality with respect to ¢ over [0, 1], we get

/1 1 [flta+ (1= 1)) + F((1 —1)a+ b)) dr < /O1 1% () +h(1 1)) [f (@) + £ (b)) di,

0

F((X) a o ! o—
oy e )T @) < 1@+ )] [0 o)+ =) en

and thus the second inequality is proved. We obtain inequalities (16) from (18) and (21).The proof is complete.

Remark. In Theorem 9;
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—if we choose h(f) = 1, then the inequalities (16) become the inequalities (10) of Theorem 5.
—if we take or = 1, then we obtain the inequalities (9).
—Let oo = 1. If we choose i(¢) =t and h(z) = 1, then (16) reduce to (1) and (7), respectively.
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