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Abstract: Lipchitz class of function had been introduced by McFadden[7}.Recently dealing with degree of approximation of 
Fourier series of a function of Lipchitz class Nigam[4] and Misra et al [2],[3] have established certain theorems. Extending their 

results in  this paper, a theorem on degree of approximation of a function   ,pf W L t by product summability   , ,E q N pn of 

Fourier series associated with  f , has been established.  
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1. Introduction and Preliminaries 

Let  na  be a given infinite series with the sequence of partial sums ns . Let np  be a sequence of positive real 

numbers such that    

  


n

n pP
0

 , n  , ( 0,0   ipP ii ).                                               (1) 

The sequence –to-sequence transformation  

   



n

n
n sp

P
t

0

1


 ,                                                                                   (2) 

defines the sequence   nt  of the  npN ,  -mean of the sequence   ns  generated by the  sequence of coefficient 

 np . If 

       stn  ,as n  ,                                                                                 (3) 

then  the series  na  is said to be  npN ,  summable  to s  . 

The conditions for regularity of     npN , - summability  are easily seen to be 
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The sequence –to-sequence transformation [1]   
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defines the sequence  nT   of the  qE ,   mean of the sequence   ns  . 

If 

     sTn   , as n  ,        (6) 

then the series  na  is said to be  qE ,  summable to s . 

Clearly   qE ,   method is regular. Further, the  qE ,  transform of the  npN ,  transform of  ns   is defined by  
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If  

                   sn  , as n ,       (8) 

then    na  is said to be   npNqE ,, -summable to s .                        

Let )(tf   be a periodic function with period 2 and integrable in the sense of Lebesgue over (-,) . Then the 

Fourier series associated with f  at any point x is defined by  
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Let  xfsn ;  be the n-th partial sum of (1.9). The L -norm of a function  RRf :  is defined by  
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and the L -norm is defined by  
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The degree of approximation of a function RRf :  by a trigonometric polynomial )(xPn  of degree n   under 

norm  


.  is defined by [5] 
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and the degree of approximation  )( fEn  of a function  Lf   is given by  
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This method of approximation is called Trigonometric Fourier approximation[6]. 

 A function   f x Lip  , if  
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and    ,f x Lip r , for 0 2x    , if 
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For a given positive increasing function  t , the function      rtLipxf , , if  
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For a given positive increasing function  t  and an integer 1p  the function      ,pf x W L t , if  
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 We use the following notation throughout this paper: 
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Further, the method   npNqE ,,  is assumed to be regular  throughout the paper. 

 Dealing with The degree of approximation by the product    1,, CqE -mean of Fourier series, Nigam et al [4] 

proved the following theorem. 
 

Theorem 1. If a function 2,f - periodic, belonging to class Lip , then its degree of approximation by 

   1,, CqE  summability mean on its Fourier series 
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 Misra et al [2] proved the following theorem using    npNqE ,,  mean of Fourier series. 

 

Theorem 2.  If  f  is a  2  periodic function of class Lip , then degree of approximation by the product 

  npNqE ,,  summability  means of its Fourier series (9) of )(xf  is given by 
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 Recently, Misra et al [3] proved the following theorem using    npNqE ,,  mean of the Fourier series 

using  a  2  periodic function of class   ,Lip t r . 

 

Theorem 3.  Let  t  be a positive increasing function. If  f  is a  2  Periodic function of the class 

  , , 1, 0Lip t r r t   , then degree of approximation by the product   npNqE ,,  summability  means  of 
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2 Main Theorem  

In this paper, we have proved a theorem on degree of approximation by the product mean    npNqE ,,   of the 

Fourier series of a function of  class   ,pW L t  . We prove. 
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hold uniformly in x  with 
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3 Required Lemma 
 We require the following Lemma for the proof the theorem. 
 
Lemma 1. 
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4 Proof of Theorem 4 
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using Lemma 1 and (22) 
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since  t is a positive increasing function, so is     1/ / 1/y y . Using second mean value theorem we get         
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(25) 

Then  from (24) and (25) , we have  
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This completes the proof of the theorem.     
 

5 Corollaries 
 Following corollaries can be derived from the main theorem. 
 

Corollary 1. The degree of approximation of a function f belonging to the class  , ,0 1, 1Lip r r    is 

given by 

                                     
1

1 .r
n r

f O n
      

 
 

Proof: The corollary follows by putting 0  and  t t  in the main theorem. 

Corollary 2. The degree of approximation of a function f belonging to the class   ,0 1Lip    is given by 

                                                    1 .n f O n
 


    

Proof:  The corollary follows by letting r  in corollary 6.1. 
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