NEW TRENDS IN MATHEMATICAL SCIENCES
Vol. 2, No. 2, 2014, p129-133
ISSN 2147-5520 - www.ntmsci.com

Socle-regular QTAG-modules

Fahad Sikander?, Ayazul Hasan?, Alveera Mehdi®

College of Computation and Informatics Saudi Electronic University, Jeddah-23442, Kingdom of Saudi Arabia
2Department of Mathematics, Integral University, Lucknow-226026(India)
3Department of Mathematics, Aligarh Muslim University, Aligarh-202002(India)
E- mails: fahadsikander@gmail.com, 2ayaz.maths@gmail.com
3alveera_mehdi@rediffmail.com

Abstract: A right module M over an associative ring with unity is a QTAG-module if every finitely generated submodule of any
homomorphic image of M is a direct sum of uniserial modules. In this paper we focus our attention to the socles of fully invariant
submodules and introduce a new class of modules, which we term socle-regular QT AG-modules. This class is shown to be large and
strictly contains the class of fully transitive modules. Also, here we investigated some basic properties of such modules.
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1. Introduction and preliminaries

The study of QTAG-modules was initiated by Singh [9]. Mehdi, Abbasi etc. worked a lot on this module [7]. They
studied dfferent notions and structures on QTAG-modules and developed the theory of these modules by introducing
several notions and some in-teresting properties of these modules and characterized different submodules of QTAG-
modules. Yet there is much to explore.

Throughout this paper, all rings will be associative with unity and modules M are unital QTAG-modules. An element
x € M is uniform, if xR is a non-zero uniform (hence uniserial) module and for any R-module M with a unique
composition series, d(M) denotes its composition length. For a uniform element x € M, e(x) = d(xR) and Hy(x) =

sup {d (g) ly € M,x € yRand y uniform} are the exponent and height of x in M, respectively. H, (M) denotes the

submodule of M generated by the elements of height at least k and H*(M) is the submodule of M generated by the
elements of exponents at most k. M is h-divisible if M = M = N§_, H, (M) and it is h-reduced if it does not contain
any h-divisible submodule. In other words it is free from the elements of infinite height. M is called separable if M =
0.

For an ordinal o, a submodule N of M is said to be o-pure, if Hg(M) N N = Hg(N) for all § < o and a submodule K of
M is said to be isotype in M, if it is o-pure for every ordinal o. [3]

A QTAG-module M defines a well ordered sequence of submodules M = M° > M! 5 M2 5 --- o MT = 0 for some
ordinal 7. Here

M1 ﬂ H, (M), M°*! = (M°) and M° = ﬂ MP,

kEw p<o

if o is a limit ordinal. M7 is said to be the o*-Ulm submodule of M. The ot"-Ulm invariant of M, f,,(o) is the
cardinality of g(S,(H,(M))/Soc(Hy41(M))). It is interesting to note that the results which hold for TAG-modules
also hold good for QT AG-modules [9].
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2. The class of socle-regular QT AG-modules

The classification of all fully invariant submodules of reduced QTAG-modules is a vast subject. We start these
investigations by characterizing the socles of fully invariant modules. Here we deal with the socles of fully invariant
submodules of reduced QT AG-modules.

To study fully invariant modules, the concept of U-sequences is extensively used. In a QTAG-module M, for x €
M, U(x), the U-sequence for x is a monotonically increasing sequence of ordinals {o;},i = 0, o; < length of M [8].
The symbol co may be included in this U-sequence i.e. the sequence be oo from some point on but that if a gap occurs
between oy and oy, the o-Ulm invariant of M is non zero.

To study the socles of fully invariant submodules, we define the following:

Definition 2.1. A h-reduced QTAG-module M is said to be socle-regular if for all fully invariant submodules N of M,
there exists an ordinal ¢ such that Soc(N) = Soc(HJ(M)). Hence o depends on N.

Definition 2.2. For a submodule N of M, put ¢ = min{H(x)|x € Soc(N)} and denote o = inf(Soc(N)). Here
Soc(N) € Soc(H,(M)).

Remark 2.1. If K is submodule of M containing N, inf(Soc(N)) may be calculated with respect to N and M
respectively. To differentiate we write inf (Soc(N)), and inf(Soc(N)),, respectively, but if K is an isotype submodule

of M, then inf (Soc(N)), = inf(Soc(N)), . However if K is not an isotype submodule of M, then inf(Soc(N)), <
inf(Soc(N)), -

To study these modules we need the following elementary facts:

Proposition 2.1. (i) If N is a submodule of the h-reduced QTAG-module M such that Soc(Hk(M)) C Soc(N) for some
integer k, then inf (Soc(N)) is finite.

(i) If N is a fully invariant submodule of M and inf (Soc(N)) = k, k < w, then Soc(N) = Soc(H,(M)).

Proof. (i) Let o = inf(Soc(N)). Now o < min{Hy, (x)|x € Soc(H,(M))}. If 6 > w, then Soc(H,(M)) € H, (M) =
H,(H,(M)). Thus Soc(H,(M)) € H, (H,(M)). This means H, (M) is h-divisible (if not zero) which is not possible
because M is h-reduced. Thus inf (Soc(N)) < w.

(it) Since inf(Soc(N)) = k,Soc(N) € Soc(H,(M)). Let x be a uniform element of Soc(N) such that Hy(x) = k,
then there exists y € M such that d (i—}’:) = k. Since every element of exponent one and finite height can be embedded
in a direct summand, by [5] yR is a summand of M containing x. Therefore M = yR @ M’, for some M’ of M. If z is an
arbitrary uniform element of Soc(Hk(M)), then there exists u € M such that d (%) = k. Now e(u) = k + 1, we may

define a homomorphism f: M — M such that y — u, f(M") = 0 and f(x) = z. Since Soc(N) is fully invariant in M,
z € Soc(N) and Soc(H,(M)) < Soc(N), proving the result.

Remark 2.2. For a fully invariant submodule N of a separable module M, inf(Soc(N)) is finite. Hence M is socle-
regular.

Let us recall the definition of fully transitive QT AG-modules [6]:

Definition 2.3. A QTAG-module M is fully transitive if for every pair of uniform elements x,y € M, Hy,(x;) < Hy (y;)
for all i > 0 implies that there exists an endomorphism of M that maps x onto y. Here d (%) =d (J;L:) =1
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Remark 2.3. We may extend this definition for all the elements if we consider U-sequences of the elements [4],
consisting of ordinals and the symbol co. In other words if U(x) = (ay, a3, ...) and U(y) = (By, B, ...) such that a, <
B, then there exists an endomorphism of M that maps x onto y.

Definition 2.4. Let {a;} be a monotonically increasing sequence of ordinals defined for i > 0. If A is the length of a
module M and a; < A except that the sequence be oo from some point on, {a;} is called a U-sequence relative to M.
Whenever a gap occurs between a,,_; and a,,, the a*-Ulm invariant of M is non-zero.

Now we prove the following:
Theorem 2.1. If M is a fully transitive QT AG-module, then M is socle-regular.

Proof. The fully invariant submodule N € M is generated by the elements x such that U(x) = U, where U = {a;} is a
U-sequence relative to M. If x € Soc(N), then U(x) = (B,0,..) for some ordinal § = a,, therefore x €

Soc (Hay(M)) and Soc(N) € Soc (Hq,(M)). On the other side if z € Soc (He,(M)) then U(z) = (8o, ...) where
B = ap. Now U(z) 2 U, therefore z € N and Soc (He,(M)) € Soc(N) and Soc(N) = Soc (Hg,(M)). Thus M is
socle-regular.
To investigate the properties of socle-regular QT AG-modules we need the following lemmas:
Lemma 2.1. Let M be QTAG-module suchthat M = @ M;. If N is a fully invariant submodule of M, then
i€l

(@O)N= & (M;nN);

iel
(ii) each M; n N is fully invariant in M;.
fi [

fz fa
K.Now f(N®O0) € f,(N)® f,(N) € N f,(N) because N is fully invariant in M. Since f, is a homomorphism from

M to K and K is separable, f, maps H, (M) to zero. Also N € H, (M), f,(N) = 0 therefore f(N@®0) € N0 and N
is fully invariantin M @ K.

Proof. An endomorphism f of M @ K may be expresed as the matrix ( ) Here £, is a homomorphism from M to

Theorem 2.2. Let M = N @ K be a QTAG-module with K, separable. Then M is socle-regular if and only if N is socle-
regular.

Proof. Suppose that N is socle-regular and L is fully invariant in M. By Lemma 2.1, L= (LN N)®(L NnK)and LN N,
LN K are fully invariant in N and K respectively. If LN K # 0 then inf(Soc(L n K))K is finite because K is
separable. Now Soc(L) = Soc(L N N) @ Soc(L N K) thus inf(Soc(L))M < inf(Soc(L n K))M. Being a direct
summand, K is h-pure in M, therefore inf(Soc(L n K))M = inf(Soc(L n K))K. This implies inf(Soc(L))M is also
finite and by Proposition 2.1, Soc(L) = Soc(H,(M)), for some integer k.

If LnK =0, then L is a fully invariant submodule of the socle-regular QTAG-module N. Therefore Soc(L) =
Soc(H,(N)) for some ordinal a. If @ > w, H,M = H,(N) as K is separable and Soc(L) = Soc(H,(M)) and if « < w,
Soc(L) = Soc(H,(N)) for some k and L is a fully invariant submodule of N. Now by Proposition 2.1 (i),
inf(Soc(L)), is finite. Being a direct summand N is h-pure in M, therefore inf(Soc(L)),, is also finite and by

Proposition 2.1 (ii), Soc(L) = Soc(H,(M)) for some integer k.

Conversely suppose that M is socle-regular. If N is not socle-regular then there exists a fully invariant submodule L of
M such that Soc(L) # (H,(N)) for any ordinal a. If inf(Soc(L)) is finite then by Proposition 2.1 (i), Soc(L) =
Soc(Hy(N)) for some finite k. This contradiction proves that inf (Soc(L)) is infinite and Soc(L) € H,,(N). Since N is
fully invariant in N, Soc(L) is also fully invariant in N. Now by Lemma 2.2, Soc(L) is fully invariant in a socle-reguler
module M. Therefore Soc(L) = Soc(Ha(M)), for some ordinal a. Since Soc(L) € H, (M), a must be infinite. Also
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H,(K) = 0,Soc(L) = Soc(H,(N)) @ Soc(H,(K)) = Soc(H,(N)), which is a contradiction. Therefore N is socle-

regular.

Theorem 2.3. The QTAG-module M is socle-regular if and only if the direct sum of 5 copies of M, @& M, is socle-
y<B

regular for any cordinal g.

Proof. Let K be a fully invariant submodule of @ M,, then by Lemma 2.1, K = @& (M, nK), where each M, is

y<B y<B
isomorphic to M. Now Soc(K) = @ Soc(M, nK) and each M, N K is fully invariant in M,. Since M is socle-
y<B
reguler, each Soc(My n K) = Soc (Hay (My)) for ordinals a,’s are not equal, the submodule @ Soc (Hay (My)) is

y<pB

not fully invariant, therefore Soc(K) = Soc (Ha &) My> where a = a,, for all y.
y<B8

Conversely suppose @ M, is socle-reguler and N an arbitrary fully invariant sub-module of M. Now & N, is
y<Bp y<B

fully invariant in @ M, which is socle-regular. Therefore we have Soc( ® Ny> = Soc Ha< ® M],> for
y<pB y<pB y<B
some ordinal a and Soc(N) = Soc(H,(M)) implying that M is socle-regular.

Proposition 2.2. Let M be a socle-regular QTAG-module and L a fully invariant sub-module of M such that H,, (L) =
H,(M). Then L is socle-regular.

Proof. Let K be a fully invariant submodule of L. Then K is also fully invariant in M. Since M is socle-regular
Soc(K) = Soc(H,(M)) = Soc(H,(L)) for all ordinals @ > w. Therefore Soc(K) = Soc(H,(M)) = Soc(Hy(L)) if
a = w and if « is finite, then Soc(K) = Soc(H,(M)) 2 Soc(H, (L)) and by Proposition 2.1 (i), inf(Soc(K))L is
finite. Again by Proposition 2.1 (ii), Soc(K) = Soc(H;(L)) for some j and L is socle-regular.

Remark 2.4. For any large submodule L of M, H,, (L) = H,, (M), therefore large sub-modules are socle-regular.
For a QTAG-module M, the property of being socle-regular is shared with H,, (M) under certain conditions.

Theorem 2.4. Let M be a QTAG-module such that M/H, (M) is a direct sum of uniserial modules. Then M is socle-
regular if and only if H, (M) is socle-regular.

Proof. Let N be a fully invariant submodule of M. If Soc(N) & Soc(H,,(M)), then inf(Soc(N)) is finite and by
Proposition 2.1, Soc(N) = Soc(H,(M)), for some k € Z*and if Soc(N) < Soc(H,(M)), Soc(N) is fully invariant in
H,(M). Since H,(M) is socle-regular, Soc(N) = Soc (Ha(Hw(M))) for some ordinal a« and Soc(N) =

Soc(Hy4q(M)) and M is socle-regular. Necessity is trivial.

Theorem 2.5. Let M = N @ K be a socle-regular module such that every homomorphism from N to K is small, then N
is socle-regular.

Proof. Let L be a fully invariant submodule of N. If inf(Soc(L)) is finite then by Proposition 2.1, Soc(L) =
Soc(Hy(N)) for some k € Z*, otherwise Soc(L) € Soc(H,,(N)). Since any endomorphism f of M may be expressed

as the matrix (51 52) where £, € Hom (N, K) i.. f; is small. Now f(Soc(L @ 0)) € f;(Soc(L)) @ f,(Soc(L)) and

1 2
Soc(L) € H,(N) imply that fz(Soc(L)) =0 as f, is small. Therefore Soc(L) @0 is fully invariant in M and

Soc(L) ® 0 = Soc(H;(M)) for some ordinal . Thus Soc(L) = Soc(H;(N)) and N is socle-regular.

We end this paper with the following open problem:
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Problem. Are all the QTAG-modules of length w + 1 regular?
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