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Abstract: A right module 𝑀 over an associative ring with unity is a 𝑄𝑇𝐴𝐺-module if every finitely generated submodule of any 

homomorphic image of 𝑀 is a direct sum of uniserial modules. In this paper we focus our attention to the socles of fully invariant 

submodules and introduce a new class of modules, which we term socle-regular 𝑄𝑇𝐴𝐺-modules. This class is shown to be large and 

strictly contains the class of fully transitive modules. Also, here we investigated some basic properties of such modules. 
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1.  Introduction and preliminaries  

The study of 𝑄𝑇𝐴𝐺-modules was initiated by Singh [9]. Mehdi, Abbasi etc. worked a lot on this module [7]. They 

studied dfferent notions and structures on 𝑄𝑇𝐴𝐺-modules and developed the theory of these modules by introducing 

several notions and some in-teresting properties of these modules and characterized different submodules of 𝑄𝑇𝐴𝐺-

modules. Yet there is much to explore. 

Throughout this paper, all rings will be associative with unity and modules 𝑀 are unital 𝑄𝑇𝐴𝐺-modules. An element 

𝑥 ∈ 𝑀 is uniform, if 𝑥𝑅 is a non-zero uniform (hence uniserial) module and for any 𝑅-module 𝑀 with a unique 

composition series, 𝑑(𝑀) denotes its composition length. For a uniform element 𝑥 ∈ 𝑀, 𝑒(𝑥) = 𝑑(𝑥𝑅) and 𝐻𝑀(𝑥) =

sup {𝑑 (
𝑦𝑅

𝑥𝑅
) |𝑦 ∈ 𝑀, 𝑥 ∈ 𝑦𝑅 and 𝑦 uniform} are the exponent and height of 𝑥 in 𝑀, respectively. 𝐻𝑘(𝑀) denotes the 

submodule of 𝑀 generated by the elements of height at least 𝑘 and 𝐻𝑘(𝑀) is the submodule of 𝑀 generated by the 

elements of exponents at most 𝑘. 𝑀 is ℎ-divisible if 𝑀 = 𝑀1 = ⋂ 𝐻𝑘(𝑀)∞
𝑘=0  and it is ℎ-reduced if it does not contain 

any ℎ-divisible submodule. In other words it is free from the elements of infinite height. 𝑀 is called separable if 𝑀1 =

0. 

For an ordinal 𝜎, a submodule 𝑁 of 𝑀 is said to be 𝜎-pure, if 𝐻𝛽(𝑀) ⋂ 𝑁 = 𝐻𝛽(𝑁) for all 𝛽 ≤ 𝜎 and a submodule 𝐾 of 

𝑀 is said to be isotype in 𝑀, if it is 𝜎-pure for every ordinal 𝜎. [3] 

A 𝑄𝑇𝐴𝐺-module 𝑀 defines a well ordered sequence of submodules 𝑀 = 𝑀0 ⊃ 𝑀1 ⊃ 𝑀2 ⊃ ⋯ ⊃ 𝑀𝑇 = 0 for some 

ordinal 𝜏. Here 

𝑀1 ⋂ 𝐻𝑘(𝑀)

𝑘∈𝜔

, 𝑀𝜎+1 = (𝑀𝜎)1 and 𝑀𝜎 = ⋂ 𝑀𝜌

𝜌<𝜎

, 

if 𝜎 is a limit ordinal. 𝑀𝜎 is said to be the 𝜎𝑡ℎ-Ulm submodule of 𝑀. The 𝜎𝑡ℎ-Ulm invariant of 𝑀, 𝑓𝑀(𝜎) is the 

cardinality of 𝑔(𝑆𝛼(𝐻𝛼(𝑀)) Soc(𝐻𝜎+1(𝑀))⁄ ). It is interesting to note that the results which hold for TAG-modules 

also hold good for 𝑄𝑇𝐴𝐺-modules [9]. 

http://www.ntmsci.com/
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2. The class of socle-regular 𝑸𝑻𝑨𝑮-modules 

The classification of all fully invariant submodules of reduced 𝑄𝑇𝐴𝐺-modules is a vast subject. We start these 

investigations by characterizing the socles of fully invariant modules. Here we deal with the socles of fully invariant 

submodules of reduced 𝑄𝑇𝐴𝐺-modules. 

To study fully invariant modules, the concept of U-sequences is extensively used. In a QTAG-module M, for x ∈

M, U(x), the U-sequence for x is a monotonically increasing sequence of ordinals {σ1}, i ≥ 0, σ1 < length of M [8]. 

The symbol ∞ may be included in this U-sequence i.e. the sequence be ∞ from some point on but that if a gap occurs 

between σk and σk+1, the σk
th-Ulm invariant of M is non zero. 

To study the socles of fully invariant submodules, we define the following: 

Definition 2.1. A h-reduced 𝑄𝑇𝐴𝐺-module 𝑀 is said to be socle-regular if for all fully invariant submodules 𝑁 of 𝑀, 

there exists an ordinal 𝜎 such that 𝑆𝑜𝑐(𝑁) = 𝑆𝑜𝑐(𝐻𝜎(𝑀)). Hence 𝜎 depends on 𝑁. 

 Definition 2.2. For a submodule N of M, put 𝜎 = 𝑚𝑖𝑛{𝐻(𝑥)|𝑥 ∈ 𝑆𝑜𝑐(𝑁)} and denote 𝜎 = 𝑖𝑛𝑓(𝑆𝑜𝑐(𝑁)). Here 

𝑆𝑜𝑐(𝑁) ⊆ 𝑆𝑜𝑐(𝐻𝜎(𝑀)). 

Remark 2.1. If 𝐾 is submodule of 𝑀 containing 𝑁, 𝑖𝑛𝑓(𝑆𝑜𝑐(𝑁)) may be calculated with respect to 𝑁 and 𝑀 

respectively. To differentiate we write 𝑖𝑛𝑓(𝑆𝑜𝑐(𝑁))
𝐾

 and 𝑖𝑛𝑓(𝑆𝑜𝑐(𝑁))
𝑀

 respectively, but if 𝐾 is an isotype submodule 

of 𝑀, then 𝑖𝑛𝑓(𝑆𝑜𝑐(𝑁))
𝐾

= 𝑖𝑛𝑓(𝑆𝑜𝑐(𝑁))
𝑀

. However if 𝐾 is not an isotype submodule of 𝑀, then 𝑖𝑛𝑓(𝑆𝑜𝑐(𝑁))
𝐾

≤

𝑖𝑛𝑓(𝑆𝑜𝑐(𝑁))
𝑀

. 

To study these modules we need the following elementary facts: 

Proposition 2.1. (𝑖) If 𝑁 is a submodule of the h-reduced 𝑄𝑇𝐴𝐺-module 𝑀 such that 𝑆𝑜𝑐(𝐻𝑘(𝑀)) ⊆ 𝑆𝑜𝑐(𝑁) for some 

integer 𝑘, then 𝑖𝑛𝑓 (𝑆𝑜𝑐(𝑁)) is finite. 

(𝑖𝑖) If 𝑁 is a fully invariant submodule of 𝑀 and 𝑖𝑛𝑓(𝑆𝑜𝑐(𝑁)) =  𝑘, 𝑘 < 𝜔, then 𝑆𝑜𝑐(𝑁) = 𝑆𝑜𝑐(𝐻𝑘(𝑀)). 

Proof. (𝑖) Let 𝜎 = 𝑖𝑛𝑓(𝑆𝑜𝑐(𝑁)). Now 𝜎 ≤ min{𝐻𝑀(𝑥)|𝑥 ∈ 𝑆𝑜𝑐(𝐻𝑘(𝑀))}. If 𝜎 ≥ 𝜔, then 𝑆𝑜𝑐(𝐻𝑘(𝑀)) ⊆ 𝐻𝜔(𝑀) =

𝐻𝜔(𝐻𝑘(𝑀)). Thus 𝑆𝑜𝑐(𝐻𝑘(𝑀)) ⊆ 𝐻𝜔(𝐻𝑘(𝑀)). This means 𝐻𝑘(𝑀) is ℎ-divisible (if not zero) which is not possible 

because 𝑀 is ℎ-reduced. Thus 𝑖𝑛𝑓(𝑆𝑜𝑐(𝑁)) < 𝜔. 

(𝑖𝑖) Since 𝑖𝑛𝑓(𝑆𝑜𝑐(𝑁)) = 𝑘, 𝑆𝑜𝑐(𝑁) ⊆ 𝑆𝑜𝑐(𝐻𝑘(𝑀)). Let 𝑥 be a uniform element of 𝑆𝑜𝑐(𝑁) such that 𝐻𝑀(𝑥) = 𝑘, 

then there exists 𝑦 ∈ 𝑀 such that 𝑑 (
𝑦𝑅

𝑥𝑅
) = 𝑘. Since every element of exponent one and finite height can be embedded 

in a direct summand, by [5] 𝑦𝑅 is a summand of 𝑀 containing 𝑥. Therefore 𝑀 = 𝑦𝑅 ⨁ 𝑀′, for some 𝑀′ of 𝑀. If 𝑧 is an 

arbitrary uniform element of 𝑆𝑜𝑐(𝐻𝑘(𝑀)), then there exists 𝑢 ∈ 𝑀 such that 𝑑 (
𝑢𝑅

𝑧𝑅
) = 𝑘. Now 𝑒(𝑢) = 𝑘 + 1, we may 

define a homomorphism 𝑓: 𝑀 → 𝑀 such that 𝑦 → 𝑢, 𝑓(𝑀′) = 0 and 𝑓(𝑥) = 𝑧. Since 𝑆𝑜𝑐(𝑁) is fully invariant in 𝑀, 

𝑧 ∈ 𝑆𝑜𝑐(𝑁) and 𝑆𝑜𝑐(𝐻𝑘(𝑀)) ⊆ 𝑆𝑜𝑐(𝑁), proving the result. 

Remark 2.2. For a fully invariant submodule 𝑁 of a separable module 𝑀, 𝑖𝑛𝑓(𝑆𝑜𝑐(𝑁)) is finite. Hence 𝑀 is socle-

regular. 

Let us recall the definition of fully transitive 𝑄𝑇𝐴𝐺-modules [6]: 

Definition 2.3. A 𝑄𝑇𝐴𝐺-module 𝑀 is fully transitive if for every pair of uniform elements 𝑥, 𝑦 ∈ 𝑀, 𝐻𝑀(𝑥𝑖) ≤ 𝐻𝑀(𝑦𝑖) 

for all 𝑖 ≥ 0 implies that there exists an endomorphism of 𝑀 that maps 𝑥 onto 𝑦. Here 𝑑 (
𝑥𝑖𝑅

𝑥𝑅
) = 𝑑 (

𝑦𝑖𝑅

𝑦𝑅
) = 𝑖. 
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Remark 2.3. We may extend this definition for all the elements if we consider U-sequences of the elements [4], 

consisting of ordinals and the symbol ∞. In other words if 𝑈(𝑥) = (𝛼1, 𝛼2, … ) and 𝑈(𝑦) = (𝛽1, 𝛽2, … ) such that 𝛼𝜌 <

𝛽𝜌, then there exists an endomorphism of 𝑀 that maps 𝑥 onto 𝑦. 

Definition 2.4. Let {𝛼𝑖} be a monotonically increasing sequence of ordinals defined for 𝑖 ≥ 0. If 𝜆 is the length of a 

module 𝑀 and 𝛼𝑖 < 𝜆 except that the sequence be ∞ from some point on, {𝛼𝑖} is called a 𝑈-sequence relative to 𝑀. 

Whenever a gap occurs between 𝛼𝑛−1 𝑎𝑛𝑑 𝛼𝑛, the 𝛼𝑛
𝑡ℎ-Ulm invariant of 𝑀 is non-zero. 

Now we prove the following: 

Theorem 2.1. If 𝑀 is a fully transitive 𝑄𝑇𝐴𝐺-module, then 𝑀 is socle-regular. 

Proof. The fully invariant submodule 𝑁 ⊆ 𝑀 is generated by the elements 𝑥 such that 𝑈(𝑥) ≥ 𝑈, where 𝑈 = {𝛼𝑖} is a 

𝑈-sequence relative to 𝑀. If 𝑥 ∈ 𝑆𝑜𝑐(𝑁), then 𝑈(𝑥) = (𝛽, ∞, … ) for some ordinal 𝛽 ≥ 𝛼0, therefore 𝑥 ∈

𝑆𝑜𝑐 (𝐻𝛼0
(𝑀)) and 𝑆𝑜𝑐(𝑁) ⊆ 𝑆𝑜𝑐 (𝐻𝛼0

(𝑀)). On the other side if 𝑧 ∈ 𝑆𝑜𝑐 (𝐻𝛼0
(𝑀)) then 𝑈(𝑧) = (𝛽, ∞, … ) where 

𝛽 ≥ 𝛼0. Now 𝑈(𝑧) ≥ 𝑈, therefore 𝑧 ∈ 𝑁 and 𝑆𝑜𝑐 (𝐻𝛼0
(𝑀)) ⊆ 𝑆𝑜𝑐(𝑁) and 𝑆𝑜𝑐(𝑁) = 𝑆𝑜𝑐 (𝐻𝛼0

(𝑀)). Thus 𝑀 is 

socle-regular. 

To investigate the properties of socle-regular 𝑄𝑇𝐴𝐺-modules we need the following lemmas: 

Lemma 2.1. Let 𝑀 be 𝑄𝑇𝐴𝐺-module such that 𝑀 = ⨁
𝑖 ∈ 𝑙

𝑀𝑖. If 𝑁 is a fully invariant submodule of 𝑀, then 

(𝑖) 𝑁 = ⨁
𝑖 ∈ 𝑙

(𝑀𝑖 ∩ 𝑁); 

(𝑖𝑖) each 𝑀𝑖 ∩ 𝑁 is fully invariant in 𝑀𝑖. 

Proof. An endomorphism 𝑓 of 𝑀 ⨁ 𝐾 may be expresed as the matrix (
𝑓1 𝑓2

𝑓3 𝑓4
). Here 𝑓2 is a homomorphism from 𝑀 to 

𝐾. Now 𝑓(𝑁 ⨁ 0) ⊆ 𝑓1(𝑁) ⨁ 𝑓2(𝑁) ⊆ 𝑁 ⨁ 𝑓2(𝑁) because 𝑁 is fully invariant in 𝑀. Since 𝑓2 is a homomorphism from 

𝑀 to 𝐾 and 𝐾 is separable, 𝑓2 maps 𝐻𝜔(𝑀) to zero. Also 𝑁 ⊆ 𝐻𝜔(𝑀), 𝑓2(𝑁) = 0 therefore 𝑓(𝑁 ⨁ 0) ⊆ 𝑁 ⨁ 0 and 𝑁 

is fully invariant in 𝑀 ⨁ 𝐾. 

Theorem 2.2. Let 𝑀 = 𝑁 ⨁ 𝐾 be a 𝑄𝑇𝐴𝐺-module with 𝐾, separable. Then 𝑀 is socle-regular if and only if 𝑁 is socle-

regular. 

Proof. Suppose that 𝑁 is socle-regular and 𝐿 is fully invariant in 𝑀. By Lemma 2.1,  𝐿 = (𝐿 ∩ 𝑁) ⨁(𝐿 ∩ 𝐾) and 𝐿 ∩ 𝑁, 

𝐿 ∩ 𝐾 are fully invariant in 𝑁 and 𝐾 respectively. If    𝐿 ∩ 𝐾 ≠ 0 then 𝑖𝑛𝑓(𝑆𝑜𝑐(𝐿 ∩ 𝐾))
𝐾

 is finite because 𝐾 is 

separable. Now 𝑆𝑜𝑐(𝐿) = 𝑆𝑜𝑐(𝐿 ∩ 𝑁) ⨁ 𝑆𝑜𝑐(𝐿 ∩ 𝐾) thus 𝑖𝑛𝑓(𝑆𝑜𝑐(𝐿))
𝑀

≤ 𝑖𝑛𝑓(𝑆𝑜𝑐(𝐿 ∩ 𝐾))
𝑀

. Being a direct 

summand, 𝐾 is ℎ-pure in 𝑀, therefore 𝑖𝑛𝑓(𝑆𝑜𝑐(𝐿 ∩ 𝐾))
𝑀

= 𝑖𝑛𝑓(𝑆𝑜𝑐(𝐿 ∩ 𝐾))
𝐾

. This implies 𝑖𝑛𝑓(𝑆𝑜𝑐(𝐿))
𝑀

 is also 

finite and by Proposition 2.1, 𝑆𝑜𝑐(𝐿) = 𝑆𝑜𝑐(𝐻𝑘(𝑀)), for some integer 𝑘. 

If 𝐿 ∩ 𝐾 = 0, then 𝐿 is a fully invariant submodule of the socle-regular 𝑄𝑇𝐴𝐺-module 𝑁. Therefore 𝑆𝑜𝑐(𝐿) =

𝑆𝑜𝑐(𝐻𝛼(𝑁)) for some ordinal 𝛼. If 𝛼 ≥ 𝜔, 𝐻𝛼𝑀 = 𝐻𝛼(𝑁) as 𝐾 is separable and 𝑆𝑜𝑐(𝐿) = 𝑆𝑜𝑐(𝐻𝛼(𝑀)) and if 𝛼 < 𝜔, 

𝑆𝑜𝑐(𝐿) = 𝑆𝑜𝑐(𝐻𝑘(𝑁)) for some 𝑘 and 𝐿 is a fully invariant submodule of 𝑁. Now by Proposition 2.1 (𝑖), 

𝑖𝑛𝑓(𝑆𝑜𝑐(𝐿))
𝑁

 is finite. Being a direct summand 𝑁 is ℎ-pure in 𝑀, therefore 𝑖𝑛𝑓(𝑆𝑜𝑐(𝐿))
𝑀

 is also finite and by 

Proposition 2.1 (𝑖𝑖), 𝑆𝑜𝑐(𝐿) = 𝑆𝑜𝑐(𝐻𝑘(𝑀)) for some integer 𝑘. 

Conversely suppose that 𝑀 is socle-regular. If 𝑁 is not socle-regular then there exists a fully invariant submodule 𝐿 of 

𝑀 such that 𝑆𝑜𝑐(𝐿) ≠ (𝐻𝛼(𝑁)) for any ordinal 𝛼. If 𝑖𝑛𝑓(𝑆𝑜𝑐(𝐿)) is finite then by Proposition 2.1 (𝑖), 𝑆𝑜𝑐(𝐿) =

𝑆𝑜𝑐(𝐻𝑘(𝑁)) for some finite 𝑘. This contradiction proves that 𝑖𝑛𝑓(𝑆𝑜𝑐(𝐿)) is infinite and 𝑆𝑜𝑐(𝐿) ⊆ 𝐻𝜔(𝑁). Since 𝑁 is 

fully invariant in 𝑁, 𝑆𝑜𝑐(𝐿) is also fully invariant in 𝑁. Now by Lemma 2.2, 𝑆𝑜𝑐(𝐿) is fully invariant in a socle-reguler 

module 𝑀. Therefore 𝑆𝑜𝑐(𝐿) = 𝑆𝑜𝑐(𝐻𝛼(𝑀)), for some ordinal 𝛼. Since 𝑆𝑜𝑐(𝐿) ⊆ 𝐻𝜔(𝑀), 𝛼 must be infinite. Also 
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𝐻𝛼(𝐾) = 0, 𝑆𝑜𝑐(𝐿) = 𝑆𝑜𝑐(𝐻𝛼(𝑁)) ⨁ 𝑆𝑜𝑐(𝐻𝛼(𝐾)) = 𝑆𝑜𝑐(𝐻𝛼(𝑁)), which is a contradiction. Therefore 𝑁 is socle-

regular. 

Theorem 2.3. The 𝑄𝑇𝐴𝐺-module 𝑀 is socle-regular if and only if the direct sum of 𝛽 copies of 𝑀, ⨁
𝛾 < 𝛽

𝑀𝛾 is socle-

regular for any cordinal 𝛽. 

Proof. Let 𝐾 be a fully invariant submodule of ⨁
𝛾 < 𝛽

𝑀𝛾, then by Lemma 2.1, 𝐾 = ⨁
𝛾 < 𝛽

(𝑀𝛾 ∩ 𝐾), where each 𝑀𝛾 is 

isomorphic to 𝑀. Now 𝑆𝑜𝑐(𝐾) = ⨁
𝛾 < 𝛽

𝑆𝑜𝑐(𝑀𝛾 ∩ 𝐾) and each 𝑀𝛾 ∩ 𝐾 is fully invariant in 𝑀𝛾. Since 𝑀 is socle-

reguler, each 𝑆𝑜𝑐(𝑀𝛾 ∩ 𝐾) = 𝑆𝑜𝑐 (𝐻𝛼𝛾
(𝑀𝛾)) for ordinals 𝛼𝛾’s are not equal, the submodule ⨁

𝛾 < 𝛽
𝑆𝑜𝑐 (𝐻𝛼𝛾

(𝑀𝛾)) is 

not fully invariant, therefore 𝑆𝑜𝑐(𝐾) = 𝑆𝑜𝑐 (𝐻𝛼 ⨁
𝛾 < 𝛽

𝑀𝛾) where 𝛼 = 𝛼𝛾 for all 𝛾. 

Conversely suppose ⨁
𝛾 < 𝛽

𝑀𝛾 is socle-reguler and 𝑁 an arbitrary fully invariant sub-module of 𝑀. Now ⨁
𝛾 < 𝛽

𝑁𝛾 is 

fully invariant in ⨁
𝛾 < 𝛽

𝑀𝛾 which is socle-regular. Therefore we have 𝑆𝑜𝑐 ( ⨁
𝛾 < 𝛽

𝑁𝛾) = 𝑆𝑜𝑐 (𝐻𝛼 ( ⨁
𝛾 < 𝛽

𝑀𝛾)) for 

some ordinal 𝛼 and 𝑆𝑜𝑐(𝑁) = 𝑆𝑜𝑐(𝐻𝛼(𝑀)) implying that 𝑀 is socle-regular. 

Proposition 2.2. Let 𝑀 be a socle-regular 𝑄𝑇𝐴𝐺-module and 𝐿 a fully invariant sub-module of 𝑀 such that 𝐻𝜔(𝐿) =

𝐻𝜔(𝑀). Then 𝐿 is socle-regular. 

Proof. Let 𝐾 be a fully invariant submodule of 𝐿. Then 𝐾 is also fully invariant in 𝑀. Since 𝑀 is socle-regular 

𝑆𝑜𝑐(𝐾) = 𝑆𝑜𝑐(𝐻𝛼(𝑀)) = 𝑆𝑜𝑐(𝐻𝛼(𝐿)) for all ordinals 𝛼 ≥ 𝜔. Therefore 𝑆𝑜𝑐(𝐾) = 𝑆𝑜𝑐(𝐻𝛼(𝑀)) = 𝑆𝑜𝑐(𝐻𝛼(𝐿)) if 

𝛼 ≥ 𝜔 and if 𝛼 is finite, then 𝑆𝑜𝑐(𝐾) = 𝑆𝑜𝑐(𝐻𝑘(𝑀)) ⊇ 𝑆𝑜𝑐(𝐻𝑘(𝐿)) and by Proposition 2.1 (𝑖), 𝑖𝑛𝑓(𝑆𝑜𝑐(𝐾))
𝐿
 is 

finite. Again by Proposition 2.1 (𝑖𝑖), 𝑆𝑜𝑐(𝐾) = 𝑆𝑜𝑐(𝐻𝑗(𝐿)) for some 𝑗 and 𝐿 is socle-regular. 

Remark 2.4. For any large submodule 𝐿 of 𝑀, 𝐻𝜔(𝐿) = 𝐻𝜔(𝑀), therefore large sub-modules are socle-regular. 

For a 𝑄𝑇𝐴𝐺-module 𝑀, the property of being socle-regular is shared with 𝐻𝜔(𝑀) under certain conditions. 

Theorem 2.4. Let 𝑀 be a 𝑄𝑇𝐴𝐺-module such that 𝑀 𝐻𝜔(𝑀)⁄  is a direct sum of uniserial modules. Then 𝑀 is socle-

regular if and only if 𝐻𝜔(𝑀) is socle-regular. 

Proof. Let 𝑁 be a fully invariant submodule of 𝑀. If 𝑆𝑜𝑐(𝑁) ⊈ 𝑆𝑜𝑐(𝐻𝜔(𝑀)), then 𝑖𝑛𝑓(𝑆𝑜𝑐(𝑁)) is finite and by 

Proposition 2.1, 𝑆𝑜𝑐(𝑁) = 𝑆𝑜𝑐(𝐻𝑘(𝑀)), for some 𝑘 ∈ ℤ+and if 𝑆𝑜𝑐(𝑁) ⊆ 𝑆𝑜𝑐(𝐻𝜔(𝑀)), 𝑆𝑜𝑐(𝑁) is fully invariant in 

𝐻𝜔(𝑀). Since 𝐻𝜔(𝑀) is socle-regular, 𝑆𝑜𝑐(𝑁) = 𝑆𝑜𝑐 (𝐻𝛼(𝐻𝜔(𝑀))) for some ordinal 𝛼 and 𝑆𝑜𝑐(𝑁) =

𝑆𝑜𝑐(𝐻𝜔+𝛼(𝑀)) and 𝑀 is socle-regular. Necessity is trivial. 

Theorem 2.5. Let 𝑀 = 𝑁 ⨁ 𝐾 be a socle-regular module such that every homomorphism from 𝑁 to 𝐾 is small, then 𝑁 

is socle-regular. 

Proof. Let 𝐿 be a fully invariant submodule of 𝑁. If 𝑖𝑛𝑓(𝑆𝑜𝑐(𝐿)) is finite then by Proposition 2.1, 𝑆𝑜𝑐(𝐿) =

𝑆𝑜𝑐(𝐻𝑘(𝑁)) for some  𝑘 ∈ ℤ+, otherwise 𝑆𝑜𝑐(𝐿) ⊆ 𝑆𝑜𝑐(𝐻𝜔(𝑁)). Since any endomorphism 𝑓 of 𝑀 may be expressed 

as the matrix (
𝑓1 𝑓2

𝑔1 𝑔2
) where 𝑓2 ∈ Hom (𝑁, 𝐾) i.e. 𝑓2 is small. Now 𝑓(𝑆𝑜𝑐(𝐿 ⨁ 0)) ⊆ 𝑓1(𝑆𝑜𝑐(𝐿)) ⨁ 𝑓2(𝑆𝑜𝑐(𝐿)) and 

𝑆𝑜𝑐(𝐿) ⊆ 𝐻𝜔(𝑁) imply that 𝑓2(𝑆𝑜𝑐(𝐿)) = 0 as 𝑓2 is small. Therefore 𝑆𝑜𝑐(𝐿) ⨁ 0 is fully invariant in 𝑀 and 

𝑆𝑜𝑐(𝐿) ⨁ 0 = 𝑆𝑜𝑐(𝐻𝜆(𝑀)) for some ordinal 𝜆. Thus 𝑆𝑜𝑐(𝐿) = 𝑆𝑜𝑐(𝐻𝜆(𝑁)) and 𝑁 is socle-regular. 

We end this paper with the following open problem: 
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Problem. Are all the 𝑄𝑇𝐴𝐺-modules of length 𝜔 + 1 regular? 
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