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Abstract: The aim of the present study is to obtain approximate solutions of fractional order linear two-point boundary value
problem which are generalizations of classical boundary value problems by using sinc-Galerkin method. The fractional derivatives are
defined in the Caputo sense using frequently in fractional calculus. The method is tested on some problems with homogeneous and
nonhomogeneous boundary conditions and comparisons are made with the exact solutions and numerical solutions obtained by Haar
Wavelet method. Numerical and graphical results show that the sinc-Galerkin method is a very effective and powerful tool in solving
such problems.
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1. Introduction

Fractional calculus, which might be considered as an extension of classical calculus, are as old as the classical calculus
and fractional differential equations have been frequently used to describe many scientific phenomena in earthquake
engineering, biomedical engineering, image processing, signal processing and physics.

Many numerical methods are developed because of the obtaining exact solution of ordinary differential equations of
fractional order is more difficult than the obtaining one of ordinary differential equations of integer order. These methods
include Haar wavelet method [1], Adomian decomposition method [2], spline collocation method [3], least sequares
finite-element method [4], variational iteration method [5], generalized differential transform method [6], extrapolation
method [7], Chebyshev wavelet method [8] and Legendre wavelet method [9].

In this paper, we use sinc-Galerkin method to obtain approximate solutions of fractional linear two-point boundary value
problem

C
a D

α
x y+ y = f (x), a < x < b, 1 < α < 2

with boundary conditions

y(a) = y(b) = 0

where C
a Dx is Caputo fractional derivative operator.

The paper is organized as follows. Section 2 presents basic theorems for fractional calculus and sinc-Galerkin method. In
Section 3, we use the sinc-Galerkin method to obtain an approximate solution of a general fractional two-point boundary
value problem. In Section 4, we present two examples in order to illustrate the effective and accuracy of the present
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2 Sertan Alkan: Approximate solutions of boundary value.....

method. The obtained results are compared with the Haar wavelet method in the table and graphical forms.

2. Preliminaries

2.1 Fractional Calculus
In this section, firstly we present the definitions of the Riemann-Liouville and the Caputo of fractional derivative. Later,
we give the definition of the integration by parts of fractional order by using these definitions.

Definition 2.1[10] Let f : [a,b] → Rbe a function, αa positive real number, nthe integer satisfying n− 1 ≤ α < n, and
Γ the Euler gamma function. Then,

1.The left and right Riemann-Liouville fractional integrals of order α of a function f (x)are given as

aIα
x f (x) =

1
Γ (α)

∫ x

a
(x− t)α−1 f (t)dt,

and

xIα
b f (x) =

1
Γ (α)

∫ b

x
(t − x)α−1 f (t)dt,

respectively,

2.The left and right Riemann-Liouville fractional derivatives of order αof f (x)are given as

aDα
x f (x) =

1
Γ (n−α)

dn

dxn

∫ x

a
(x− t)n−α−1 f (t)dt, (2.1)

and

xDα
b f (x) =

(−1)n

Γ (n−α)

dn

dxn

∫ b

x
(t − x)n−α−1 f (t)dt, (2.2)

respectively.

3.The left and right Caputo fractional derivatives of order αof f (x)are given as
C
a D

α
x f (x) =

1
Γ (n−α)

∫ x

a
(x− t)n−α−1 f (n) (t)dt, (2.3)

and
C
x D

α
b f (x) =

1
Γ (n−α)

∫ b

x
(−1)n (t − x)n−α−1 f (n) (t)dt, (2.4)

respectively.

In private, if f (a) = f
′
(a) = = f (n−1) (a) = 0,then

C
a D

α
x f (x) = aDα

x f (x) (2.5)

and if f (b) = f
′
(b) = = f (n−1) (b) = 0,then

C
x D

α
b f (x) = xDα

b f (x) .

c⃝ 2014 BISKA Bilisim Technology



NTMSCI 2, No. 1, 1-11 (2014) / www.ntmsci.com 3

Now we can write the definition of integration by parts of fractional order by using the relations given in (2.1)-(2.4).

Definition 2.2 [10] If 0 < α < 1 and f is a function such that f (a) = f (b) = 0, we can write∫ b

a
g(x)Ca D

α
x f (x)dx =

∫ b

a
f (x)xDα

b g(x)dx

and ∫ b

a
g(x)Cx D

α
b f (x)dx =

∫ b

a
f (x)aDα

x g(x)dx.

Teorem 2.1 [3] Let be α > 0 and n ∈ N such that n−1 < α ≤ n and f (x) ∈Cn[a,b], then
C
a D

α
x f (x) = aIn−α

x f (n) (x) .

Teorem 2.2 [3] Let be α > 0. If f is continious, then

aDα
x aIα

x f (x) = f (x) .

2.2 Sinc basis functions properties and quadrature interpolations
In this section, we recall notations and definitions of the sinc function and derive useful formulas that are important for
this paper.

The Sinc basis functions

Definition 2.3 [14] The function defined all z ∈C by

sinc(z) =


sin(πz)

πz , z ̸= 0,

1, z = 0.
(2.6)

is called the sinc function.
Definition 2.4 [14] Let f be a function defined on R and let h > 0. Define the series

C ( f ,h)(x) =
∞

∑
k=−∞

f (kh)sinc
(

x− kh
h

)
(2.7)

where from (2.6)

S (k,h)(x) = sinc
(

x− kh
h

)
=


sin(π x−kh

h )
π x−kh

h
x ̸= kh

1 x = kh.

Whenever the series in (2.7) converges it is called the Whittaker cardinal function of f . They are based on the infinite
strip Ds in the complex plane

Ds ≡
{

w = u+ iv : |v| < d ≤ π
2

}
.

In general, approximations can be constructed for infinite, semi-infinite and finite intervals. Define the function

w = ϕ (z) = ln
(

z
1− z

)
(2.8)

which is a conformal mapping from DE , the eye-shaped domain in the z-plane, onto the infinite strip DS, where

DE = z =
{

x+ iy :
∣∣∣∣arg

(
z

1− z

)∣∣∣∣ < d ≤ π
2

}
.
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Figure 1. The domains DE and DS .

This is shown in Figure 1. For the sinc-Galerkin method, the basis functions are derived from the composite translated
sinc functions

Sk (z) = S (k,h)(z)oϕ (z) = sinc
(

ϕ (z)− kh
h

)
for z ∈ DE .The function z = ϕ−1 (w) = ew

1+ew is an inverse mapping of w = ϕ (z) .We may define the range of ϕ−1 on the
real line as

Γ = {ϕ−1 (u) ∈ DE : −∞ < u < ∞}

the evenly spaced nodes {kh}∞
k=−∞ on the real line. The image which corresponds to these nodes is denoted by

xk = ϕ−1 (kh) =
ekh

1+ ekh .

Sinc function interpolation and quadratures

Definition 2.5 [11] Let DE be a simply connected domain in the complex plane C, and let ∂DE denote the boundary of
DE . Let a, b be points on ∂DE and ϕbe a conformal map DE onto DS such that ϕ (a) = −∞and ϕ(b) = ∞. If the inverse
map of ϕ is denoted by φ , define

Γ = {ϕ−1 (u) ∈ DE : −∞ < u < ∞}

and zk = φ (kh) , k =±1,±2,

Definition 2.6 [11] Let B(DE)be the class of functions F that are analytic in DE and satisfy∫
ψ(L+u)

|F (z)|dz → 0, as u =∓∞,

where

L =
{

iy : |y| < d ≤ π
2

}
,

and those on the boundary of DE satisfy

T (F) =
∫

∂DE

|F (z)dz| < ∞.

Theorem 2.5 [11] Let Γ be (0,1), F ∈ B(DE), then for h > 0sufficiently small,∫
Γ

F (z)dz−h
∞

∑
j=−∞

F(z j)

ϕ ′
(z j)

=
i
2

∫
∂D

F (z)k (ϕ ,h)(z)
sin(πϕ(z)/h)

dz ≡ IF (2.9)

where
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|k (ϕ ,h)| z∈∂D =

∣∣∣∣e[ iπϕ(z)
h sgn(Imϕ(z))

]∣∣∣∣
z∈∂D

= e
−πd

h .

For the sinc-Galerkin method, the infinite quadrature rule must be truncated to a finite sum. The following theorem
indicates the conditions under which an exponential convergence results.

Theorem 2.6 [11] If there exist positive constants α, βand Csuch that∣∣∣∣ F (x)

ϕ ′
(x)

∣∣∣∣ ≤C


e−α |ϕ(x)|, x ∈ ψ ((−∞,∞))

e−β |ϕ(x)|, x ∈ ψ ((0,∞))
(2.10)

then the error bound for the quadrature rule (2.9) is∣∣∣∣∣
∫

Γ
F (x)dx−h

N

∑
j=−M

F (x j)

ϕ ′
(x j)

∣∣∣∣∣ ≤C

(
e−αMh

α
+

e−βNh

β

)
+ |IF | . (2.11)

The infinite sum in (2.9) is truncated with the use of (2.10) to arrive at the inequality (2.11). Making the selections

h =

√
πd
αM

N ≡
[[

αM
β

+1
]]

where [[·]] is an integer part of the statement and M is the integer value which specifies the grid size, then∫
Γ

F (x)dx = h
N

∑
j=−M

F (x j)

ϕ ′
(x j)

+O
(

e−(παdM)
1
2

)
.

We used these theorems to approximate the integrals that arise in the formulation of the discrete systems corresponding
to a second-order boundary value problem.

3 The sinc-Galerkin Method
Consider linear two-point boundary value problem

C
a D

α
x y+ y = f (x), a < x < b, 1 < α < 2 (3.1)

with boundary conditions

y(a) = y(b) = 0 (3.2)

where C
a Dx is Caputo fractional derivative operator. According to Theorem 2.1, equation (3.1) is written by

aI2−α
x y

′′
+ y = f (x) , a < x < b, 0 < 2−α < 1 (3.3)

If we apply aD2−α
x to both sides of equation (3.3) and use Theorem 2.2, we have

y
′′
+ aDβ

x y = g(x) , a < x < b, 0 < β < 1 (3.4)

where g(x) = aD2−α
x f (x)and β = 2−α . Also, by using boundary conditions and equality (2.5), equation (3.4) can be

written as

y
′′
+C

a D
β
x y = g(x) , a < x < b, 0 < β < 1 (3.5)

An approximate solution for y(x)is represented by the formula

yn (x) =
M

∑
j=−M

c jS j (x) , n = 2M+1, (3.6)

where S j(x) is the function S ( j,h)oϕ(x)for some fixed step size h.The unknown coefficients c j in (3.6) are determined
by orthogonalizing the residual with respect to the basis functions, i.e.
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6 Sertan Alkan: Approximate solutions of boundary value.....

< y
′′
,Sk >+< C

a D
β
x y,Sk >=< g(x) ,Sk > . (3.7)

The inner product used for the sinc-Galerkin method is defined by

< f ,η >=
∫ b

a
f (x)η (x)w(x)dx.

where w(x)is weight function and it is convenient to take

w(x) =
1

ϕ ′
(x)

for the case of second-order problems.

Lemma 3.1 [15] Let ϕbe the conformal one-to-one mapping of the simply connected domain DE onto DS, given by
(2.8). Then

δ (0)
jk = [S ( j,h)oϕ (x)]| x=xk

=

{
1, j = k
0, j ̸= k

δ (1)
jk = h

d
dϕ

[S ( j,h)oϕ (x)]
∣∣∣∣

x=xk

=

{
0, j = k
(−1)k− j

k− j , j ̸= k

δ (2)
jk = h2 d2

dϕ 2 [S ( j,h)oϕ (x)]
∣∣∣∣

x=xk

=

−π2

3 , j = k
−2(−1)k− j

(k− j)2 , j ̸= k

The method of approximating the integrals in (3.6) begins by integrating by parts to transfer all derivatives from yto Sk.
The following theorems which can easily prove by using Lemma 3.1 and Definition 2.2 are used to solve Equation (3.1).

Theorem 3.2 [12] The following relations hold

< y
′′
,Sk >∼= h

M

∑
j=−M

2

∑
i=0

y(x j)

ϕ ′
(x j)hi

δ (i)
k j g2,i, (3.8)

and

< g,Sk >∼= h
g(xk)w(xk)

ϕ ′
(xk)

, (3.9)

where

g2,2 = w
(

ϕ
′
)2

, g2,1 = wϕ
′′
+2w

′
ϕ

′
, g2,0 = w

′′
,

Theorem 3.3 For 0 < β < 1, the following relations hold:

< C
0 D

β
x y(x) ,Sk >∼= − h

Γ (1−β )

M

∑
j=−M

y(x j)

ϕ ′
(x j)

d
dx

[
hL

L

∑
r=−L

(xr − x)−β K (xr)

ξ
′
(xr)

] ∣∣∣∣∣
x=x j

(3.10)

where K (x) = Sk (x)w(x), ξ (t) = ln
( t−x

1−t

)
and hL = π/

√
L

Proof: See [16].

Replacing each term of (3.7) with the approximation defined in (3.8) – (3.10), replacing y(x j)by c j and dividing by hwe
obtain the following theorem.
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Theorem 3.4 If the assumed approximate solution of the boundary-value problem (3.5) is (3.6), then the discrete
sinc–Galerkin system for the determination of the unknown coefficients

{
c j
}M

j=−M is given by

M

∑
j=−M

 2

∑
i=0

1
hi δ (i)

k j
g2,i(x j)

ϕ ′
(x j)

c j −
1

Γ (1−β )
c j

ϕ ′
(x j)

d
dx

[
hL

L

∑
r=−L

(xr − x)−β K (xr)

ξ
′
(xr)

]∣∣∣∣∣
x=x j

=
g(xk)w(xk)

ϕ ′
(xk)

, −M ≤ k≤M.

where K (x) = Sk (x)w(x), ξ (t) = ln
( t−x

1−t

)
.

4 Examples
In this section, two problems that have homogeneous and nonhomogeneous boundary conditions will be tested by using
the present method. In all the examples, we take d = π/2, α = β = 1/2, N = M.

Example 4.1 [17] Consider linear fractional boundary value problem
C
0 D

1.2
x y(x)+

3
57

y(x) = f (x) ,

subject to the nonhomogeneous boundary conditions

y(0) = 0, y(1) =
1

Γ (3.2)

where f (x) = x + 3x2.2

Γ (3.2) . The exact solution of this problem is y(x) = x2.2

Γ (3.2) . First we convert the nonhomogeneous
boundary conditions to homogeneous conditions by considering the transformation (x) = y(x) − x

Γ (3.2) . This change of
variable yields the following boundary value problem

C
0 D

1.2
x u(x)+

3
57

u(x) = g(x) , (4.1)

with homogeneous boundary conditions

u(0) = 0, u(1) = 0

where

g(x) = x+
3
57

x2.2

Γ (3.2)
− 3

57
x

Γ (3.2)

According to Teorem 2.1, equation (4.1) can be written as

0I0.8
x u

′′
(x)+

3
57

u(x) = g(x)

Acting with 0D0.8
x on both sides of this equation and using Theorem 2.2, we obtain

u
′′
(x)+

3
57 0D0.8

x u(x) = r(x) (4.2)

where r (x) = 0D0.8
x g(x) = 0.217825

(
4.89143 t0.2 +0.194517 t1.4

)
Finally, by using boundary conditions and (2.5), equation (4.2) can be written

u
′′
(x)+

3
57

C
0 D

0.8
x u(x) = r(x)

subject to the homogeneous boundary conditions

u(0) = 0, u(1) = 0

The numerical solutions which are obtained by using the sinc-Galerkin method (SGM) for this problem are presented in
Table 1. In addition to, in Table 2, the solutions are compared with the numerical solutions computed by using Haar
Wavelet method (HWM). Also the graphs of exact and approximate solutions for different values of Land Mare
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presented in Figure 2.

Table 1 Numerical results for L = 5, M = 5

x Exact Sol. Num. Sol. Error

0 0 0 0
0.1 0.002603 0.003024 0.000421008
0.2 0.011960 0.011040 0.000920051
0.3 0.029183 0.028462 0.000721595
0.4 0.054954 0.055164 0.000210129
0.5 0.089785 0.090523 0.000738097
0.6 0.134093 0.134454 0.000361033
0.7 0.188230 0.187585 0.000645323
0.8 0.252506 0.251336 0.001169680
0.9 0.327195 0.327288 0.000092972
1 0 0 0

Table 2 Numerical results for L = 40, M = 100

x Exact Sol. Num. Sol. Error(SGM) Error(HWM)

0 0 0 0 0
0.1 0.002603 0.002609 6.29*10ˆ-6 1.53*10ˆ-6
0.2 0.011960 0.011969 8.95*10ˆ-6 1.52 *10ˆ-7
0.3 0.029183 0.029192 8.66*10ˆ-6 8.07*10ˆ-7
0.4 0.054954 0.054961 6.43*10ˆ-6 6.31*10ˆ-7
0.5 0.089785 0.089789 3.23*10ˆ-6 5.19*10ˆ-7
0.6 0.134093 0.134093 2.46*10ˆ-7 1.82*10ˆ-6
0.7 0.188230 0.188227 2.83*10ˆ-6 2.43*10ˆ-6
0.8 0.252506 0.252502 4.40*10ˆ-6 3.11*10ˆ-6
0.9 0.327195 0.327191 4.35*10ˆ-6 3.96*10ˆ-6
1 0 0 0 0

 

 

 
0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

Approximate

Exact

 

 

 
0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

Approximate

Exact

Figure 2. Graphs of exact and approximate solutions for different values of L and M: left figure for L = 5 and M = 5 and
right figure for L = 40 and M = 100.

Example 4.2 [13] Consider linear fractional boundary value problem
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C
0 D

1.5
x y(x)+ y(x) = f (x) (4.3)

subject to the homogeneous boundary conditions

y(0) = 0, y(1) = 0

where f (x) = x5 −x4 + 128
7
√

π x3.5 − 64
5
√

π x2.5. The exact solution of this problem is y(x) = x4 (x−1). According to Theorem
2.1, equation (4.3) can be written

0I0.5
x y

′′
(x)+ y(x) = f (x)

Acting with 0D0.5
x on both sides of this equation and using Theorem 2.2, we obtain

y
′′
(x)+ 0D0.5

x y(x) = g(x) (4.4)

where g(x) = 0D0.5
x f (x) = 256

63
√

π x4.5 − 128
35
√

π x3.5 +20x3 −12x2.

Finally, by using boundary conditions and (2.5), equation (4.4) can be written

y
′′
(x)+ C

0 D
0.5
x y(x) = g(x)

subject to the homogeneous boundary conditions

y(0) = 0, y(1) = 0

The numerical solutions which are obtained by using the sinc-Galerkin method (SGM) for this problem are presented in
Table 3 and Table 4. In addition to, in Figure 3, the graphs of exact and approximate solutions for different values of
Land M are presented.

Table 3 Numerical results for L = 5, M = 5x

x Exact Sol. Num. Sol. Error

0 0 0 0
0.1 -0.00009 -0.0007482 0.00065824
0.2 -0.00128 0.00231681 0.00359681
0.3 -0.00567 -0.0005421 0.00512784
0.4 -0.01536 -0.0112397 0.00412032
0.5 -0.03125 -0.0281647 0.00308535
0.6 -0.05184 -0.0488395 0.00300051
0.7 -0.07203 -0.0694385 0.00259152
0.8 -0.08192 -0.0823823 0.00046231
0.9 -0.06561 -0.0689973 0.00338727
1 0 0 0
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Table 4 Numerical results for L=40, M=100

x Exact Sol. Num. Sol. Error

0 0 0 0
0.1 -0.00009 -0.0000898 1.49*10ˆ-7
0.2 -0.00128 -0.0012797 2.92*10ˆ-7
0.3 -0.00567 -0.0056695 4.14*10ˆ-7
0.4 -0.01536 -0.0153595 5.01*10ˆ-7
0.5 -0.03125 -0.0312495 5.38*10ˆ-7
0.6 -0.05184 -0.0518395 4.94*10ˆ-7
0.7 -0.07203 -0.0720296 4.02*10ˆ-7
0.8 -0.08192 -0.0819198 2.30*10ˆ-7
0.9 -0.06561 -0.0656100 1.49*10ˆ-11
1 0 0 0

 

 

 

0.2 0.4 0.6 0.8 1.0

�0.08

�0.06

�0.04

�0.02

Approximate

Exact

 

 

 

0.2 0.4 0.6 0.8 1.0

�0.08

�0.06

�0.04

�0.02

Approximate

Exact

Figure 3. Graphs of exact and approximate solutions for different values of L and M: left figure for L = 5 and M = 5 and
right figure for L = 40 and M = 100.

5 Conclusion
In this study, we use sinc-Galerkin method to obtain approximate solutions of two-point boundary value problems for
linear fractional differential equations with constant coefficients. In order to illustrate the effective and accuracy of the
present method, it is applied to some special examples in the literature and the obtained results are compared with exact
solutions and also with the solutions obtained by the Haar wavelet method. As a result, it is shown that sinc-Galerkin
method is very effective and reliable for obtaining approximate solutions of fractional boundary value problems.
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