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Abstract
Basis properties of exponential and trigonometric systems in grand Lebesgue spaces
Lp)(−π, π) are studied. Based on a shift operator, we consider the subspace Gp)(−π, π)
of the space Lp)(−π, π), where continuous functions are dense, and the boundedness of
the singular operator in this subspace is proved. We establish the basicity of exponential
system {eint}n∈Z for Gp)(−π, π) and the basicity of trigonometric systems {sin nt}n∈N

and {cos nt}n∈N0 for Gp)(0, π).
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1. Introduction
Recently there arose great interest in the nonstandard spaces. Many classical facts about

harmonic analysis have been extended to these spaces (see, for example, [1, 11, 12, 18, 21,
24, 27, 28], etc.). Approximation properties are also of interest in suchlike spaces. These
properties have been relatively well studied in generalized Lebesgue spaces in the works
[2,4,9,13,15,17,29,31–33]. These properties are different with the cases of Morrey-type and
grand Lebesgue spaces: only recently the approximation matters began to be studied in
these spaces, and many problems are still open. Apparently, the works [1–3,5,6,23,28,36]
have been pioneers in this field.

Iwaniec and Sbordone [24] introduced so called grand Lebesgue spaces when study-
ing the integrability properties of Jacobian in an open bounded set. These spaces are
functional Banach spaces, and they have important applications in the theory of par-
tial differential equations, interpolation theory, etc. Various properties of grand Lebesgue
spaces have been studied in [14,16,19,21,30]. Properties based on harmonic analysis are of
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special interest in these spaces (see [27]). Later, the researches have appeared which stud-
ied the associated spaces of these spaces known as the small Lebesgue spaces (see [10,20]).
As applications to the applications in the theory of differential equations, it is impor-
tant to study the boundedness of integral operators (see, e.g., [11, 22, 25–27]). In [22, 27],
the equivalence of the boundedness of maximal operator in the weighted grand Lebesgue
space to the Muckenhoupt condition has been proved. Similar result for one-dimensional
singular operator has been obtained in [26,27].

Note that some direct and inverse theorems of the theory of approximations in grand
Lebesgue spaces have been proved in [23]. Basicity problems in these spaces have not yet
been considered because of their non-separability. Therefore, there is a need to consider a
subspace required in the theory of differential equations and to study basis properties of
classical systems in this subspace. Questions of solvability of Dirichlet problems for elliptic
equations were considered in [7, 8]. Korovkin-type theorems, as well as spectral problems
with a spectral parameter in boundary conditions in grand Lebesgue spaces, were studied
in [34] and [35], respectively. Note that the problem considered in [35] in Morrey-type
spaces was studied in [3].

In this work, we study the basis properties of the systems of exponents, sines and cosines
in the grand Lebesgue space Lp)(−π, π). Based on shift operator, we consider the subspace
Gp)(−π, π) of Lp)(−π, π) where continuous functions are dense. The boundedness of the
singular operator in the subspace Gp)(−π, π) is established. We prove that the classical
system of exponents {eint}n∈Z forms a basis for Gp)(−π, π) and the trigonometric systems
{sin nt}n∈N and {cos nt}n∈N0 form bases for Gp)(0, π).

2. Some concepts and auxiliary results
Let us recall standard notation. Throughout this paper: N denotes the set of natural

numbers; Z the set of integers; N0 the set of non-negative integers; By C∞
0 [π, π] we will

denote the space of infinitely differentiable finite functions on a segment [−π, π]; L(X, Y )
will be the space of linear bounded operators acting from Banach spaces X to Y , in
particular L(X, X) = L(X); A is closure of a set A in a Banach space X; δnk is the
Kronecker symbol.

Let Lp)(−π, π) be the grand Lebesgue space of measurable functions f on [−π, π] with
the norm

∥f∥Lp)(−π,π) = sup
0<ε<p−1

(
ε

2π

∫ π

−π
|f(t)|p−εdt

) 1
p−ε

.

Lp)(−π, π) is a non-separable Banach space (see [11]).
Let’s take an arbitrary function f ∈ Lp)(−π, π). Let us extend the function f by zero to

the entire axis R , i.e. f(t) = 0, t ∈ R \ [−π, π]. Consider the set G̃p)(−π, π) of functions
f ∈ Lp)(−π, π) satisfying the condition

||f(· + δ) − f(·)||Lp)(−π,π) → 0, δ → 0.

It is clear that G̃p)(−π, π) is a linear manifold in Lp)(−π, π). Let G̃p)(−π, π) = Gp)(−π, π).
There is a strict continuous embedding Lp(−π, π) ⊂ Gp)(−π, π)([35], Lemma 2.2):

||f(·)||Lp)(−π,π) ≤ (p − 1)||f(·)||Lp(−π,π), ∀f ∈ Lp(−π, π). (2.1)

Moreover, the set C∞
0 [−π, π] is dense in Gp)(−π, π) (see [34,35]).

Next, we need the fact that the singular integral is bounded in grand Lebesgue spaces.

Theorem 2.1 ([26]). Let Γ be a simple rectifiable curve. In order for the singular operator
SΓ defined by the formula

SΓ(f)(t) = 1
2πi

∫
Γ

f(ξ)
ξ − t

dξ, t ∈ Γ,
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is bounded in Lp)(Γ), 1 < p < +∞, it is necessary and sufficient than the curve Γ be
Carleson, i.e. when

∃c0 > 0 : |D(t, r)| ≤ c0r,

where D(t, r) = Γ ∩ B(t, r), B(t, r) = {z ∈ C : |z − t| < r}, t ∈ Γ.

We present the notion of a double basis associated with a system of exponentials.

Definition 2.2. A system {xn}n∈Z of elements from X is called a basis in X if for ∀x ∈ X
there is a unique sequence of scalars {an}n∈Z such that

x =
∑
n∈Z

anxn,

i.e.

x = lim
n,m→∞

n∑
k=−m

akxk.

Suppose that the system {xn}n∈Z forms a basis in a Banach space X and K is the
space of sequences of coefficients in the expansion of elements in terms of the basis, i.e.
the space of sequences of scalars {an}n∈Z for which the series

∑
n∈Z anxn converges. Let

us show that K is a Banach space with the norm

∥{an}n∈Z∥K = sup
n,m∈N0

∥∥∥∥∥∥
n∑

k=−m

akxk

∥∥∥∥∥∥
X

.

The validity of the axioms of the norm is obvious. Let a(i) = {a
(i)
n }n∈Z , i ∈ N , be a

fundamental sequence in K. Then

∀ε > 0 ∃i0(ε) : ∀i, j > i0
∥∥∥a(i) − a(j)

∥∥∥
K

= sup
n,m∈N0

∥∥∥∥∥∥
n∑

k=−m

(a(i)
k − a

(j)
k )xk

∥∥∥∥∥∥
X

< ε. (2.2)

From (2.2) it follows that for ∀n, m ∈ N0

∀ε > 0 ∃i0(ε) : ∀i, j > i0

∥∥∥∥∥∥
n∑

k=−m

(a(i)
k − a

(j)
k )xk

∥∥∥∥∥∥
X

< ε. (2.3)

Then, taking into account (2.3), we obtain

∥∥∥(a(i)
n − a(j)

n )xn

∥∥∥
X

=

∥∥∥∥∥∥
n∑

k=−m

(a(i)
k − a

(j)
k )xk −

n−1∑
k=−m

(a(i)
k − a

(j)
k )xk

∥∥∥∥∥∥
X

≤

∥∥∥∥∥∥
n∑

k=−m

(a(i)
k − a

(j)
k )xk

∥∥∥∥∥∥
X

+

∥∥∥∥∥∥
n−1∑

k=−m

(a(i)
k − a

(j)
k )xk

∥∥∥∥∥∥
X

< 2ε,

as well as∥∥∥(a(i)
−m − a

(j)
−m)x−m

∥∥∥
X

=

∥∥∥∥∥∥
n∑

k=−m

(a(i)
k − a

(j)
k )xk −

n∑
k=−m+1

(a(i)
k − a

(j)
k )xk

∥∥∥∥∥∥
X

< 2ε.

Thus, for ∀k ∈ Z the sequence {a
(i)
k }i∈N is a fundamental sequence of numbers. So for

∀k ∈ Z the sequence of numbers {a
(i)
k }i∈N converges. Let ak = limi→∞ a

(i)
k . It remains to

check {ak}k∈Z ∈ K and the convergence of the sequence {a
(i)
k }k∈Z with the limit {ak}k∈Z .
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Let S+
n =

∑n
k=0 akxk and S−

m =
∑0

k=−m akxk, n, m ∈ N . Let ∀δ > 0 and ∀p ∈ N . Let
ε > 0 so that 4ε < δ. Passing to the limit in (2.3) for j → ∞, we obtain

∀i > i0(ε),

∥∥∥∥∥∥
n∑

k=−m

(a(i)
k − ak)xk

∥∥∥∥∥∥
X

≤ ε ∀n, m ∈ N0. (2.4)

Since the series
∑

k∈Z a
(i)
k xk, i > i0(ε) converges, we obtain that for ∀n ∈ N0

∃n0 = n0(i), ∀n > n0,

∥∥∥∥∥
n∑

k=0
a

(i)
k xk −

n+p∑
k=0

a
(i)
k xk

∥∥∥∥∥
X

<
δ

2
. (2.5)

So, using (2.4) and (2.5), for ∀n > n0 we get

∥∥∥S+
n − S+

n+p

∥∥∥
X

=
∥∥∥∥∥

n∑
k=0

(ak − a
(i)
k )xk +

n+p∑
k=0

(a(i)
k − ak)xk +

n∑
k=0

a
(i)
k xk −

n+p∑
k=0

a
(i)
k xk

∥∥∥∥∥
X

≤
∥∥∥∥∥

n∑
k=0

(a(i)
k − ak)xk +

n+p∑
k=0

(a(i)
k − ak)xk

∥∥∥∥∥
X

+
∥∥∥∥∥

n∑
k=0

a
(i)
k xk −

n+p∑
k=0

a
(i)
k xk

∥∥∥∥∥
X

≤
∥∥∥∥∥

n∑
k=0

(a(i)
k − ak)xk

∥∥∥∥∥
X

+
∥∥∥∥∥

n+p∑
k=0

(a(i)
k − ak)xk

∥∥∥∥∥
X

+ δ

2
< ε + ε + δ

2
< δ.

Therefore, the sequence S+
n is fundamental. Then exists limn→∞ S+

n . The existence of
the limit limm→∞ S−

m can be proven similarly. So the series
∑

n∈Z anxn converges, and so
{ak}k∈Z ∈ K. Next, from (2.4) we obtain

∀i > i0(ε)
∥∥∥a(i) − a

∥∥∥
K

= sup
n,m∈N0

∥∥∥∥∥∥
n∑

k=−m

(a(i)
k − ak)xk

∥∥∥∥∥∥
X

≤ ε,

i.e. the sequence {a
(i)
k }k∈Z converges to {ak}k∈Z in space K.

Let the operator F : K → X be defined by the formula Fa =
∑

n∈Z anxn. It is clear
that ∥F∥ ≤ 1 and F : K → X forms an isomorphism.

We will need the following criterion for the basis property of a double system.

Theorem 2.3. Let X be a Banach space. The system of elements {xn}n∈Z from X forms
a basis in X if and only if the following conditions hold:

(1) system {xn}n∈Z is complete in X;
(2) system {xn}n∈Z is minimal X;
(3) ∃M > 0 ∀x ∈ X :

∥∥∑n
k=−m fk(x)xk

∥∥
X

≤ M∥x∥X , ∀n, m ∈ N0,

where {fn}n∈Z is the biorthogonal system to {xn}n∈Z .

Proof. Necessary. Condition 1) is obvious. Let’s take an arbitrary x ∈ X. Let x =∑
n∈Z anxn. For ∀k ∈ Z we define a linear functional fk by the formula fk(x) = ak. It’s
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clear that fk(xn) = δkn, ∀k, n ∈ Z. For ∀n, m ∈ N0 we have

|fn(x)| = 1
∥xn∥

∥anxn∥ = 1
∥xn∥X

∥∥∥∥∥∥
n∑

k=−m

akxk −
n−1∑

k=−m

akxk

∥∥∥∥∥∥
X

≤ 1
∥xn∥X

∥∥∥∥∥∥
n∑

k=−m

akxk

∥∥∥∥∥∥
X

+ 1
∥xn∥X

∥∥∥∥∥∥
n−1∑

k=−m

akxk

∥∥∥∥∥∥
X

≤ 2∥a∥K

∥xn∥X
≤

2∥F −1∥L(X,K)
∥xn∥X

∥x∥X ,

|f−m(x)| = 1
∥x−m∥

∥a−mx−m∥X = 1
∥x−m∥X

∥∥∥∥∥∥
n∑

k=−m

akxk −
n∑

k=−m+1
akxk

∥∥∥∥∥∥
X

≤ 2∥a∥K

∥x−m∥X
≤

2∥F −1∥L(X,K)
∥x−m∥X

∥x∥X ,

i.e. fk is bounded in X. So {fn}n∈Z and {xn}n∈Z are biorthogonal systems. Therefore,
the system {xn}n∈Z is minimal in X.
Finally, for ∀x ∈ X and ∀n, m ∈ N0 we get∥∥∥∥∥∥

n∑
k=−m

fk(x)xk

∥∥∥∥∥∥
X

≤ sup
n,m∈N0

∥∥∥∥∥∥
n∑

k=−m

fk(x)xk

∥∥∥∥∥∥
X

=
∥∥∥F −1x

∥∥∥ ≤
∥∥∥F −1

∥∥∥
L(X,K)

∥x∥X .

Sufficient. Take arbitrary ε > 0 and x ∈ X. Due to the completeness {xn}n∈Z in X
there exists y =

∑n
k=−m fk(y)xk, n, m ∈ N0, such that ∥x − y∥X < ε. For ∀n1, m1 ∈ N0

such that n1 > n and m1 > m it is clear that y =
∑n1

k=−m1
fk(y)xk. Hence∥∥∥∥∥∥x −

n1∑
k=−m1

fk(x)xk

∥∥∥∥∥∥
X

=

∥∥∥∥∥∥x − y + y −
n1∑

k=−m1

fk(x)xk

∥∥∥∥∥∥
X

≤ ∥x − y∥X +

∥∥∥∥∥∥
n1∑

k=−m1

fk(x − y)xk

∥∥∥∥∥∥
X

≤ ∥x − y∥X + M∥x − y∥X < ε(1 + M).
Thus x =

∑
n∈Z fn(x)xn.

□

3. On the basis property of the system of exponents and trigonometric
systems in grand-Lebesgue spaces

Let us study the basic properties of the system of exponentials {eint}n∈Z in the subspace
Gp)(−π, π) of the space Lp)(−π, π), 1 < p < +∞. We first calculate the norms of the
functions belonging to this system. We have

∥eint∥Gp)(−π,π) = sup
0<ε<p−1

(
ε

2π

∫ π

−π

∣∣∣eint
∣∣∣p−ε

dt

) 1
p−ε

= sup
0<ε<p−1

ε
1

p−ε = p − 1.

The following theorem studies the minimality of the system of exponentials {eint}n∈Z

in the space Lp)(−π, π).

Theorem 3.1. The system {eint}n∈Z is minimal in Lp)(−π, π), 1 < p < +∞.

Proof. Consider a system of functionals according to the formula

νn(f) = 1
2π

∫ π

−π
f(t)e−intdt, f ∈ Lp)(−π, π), n ∈ Z.
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Let us show the boundedness of the functional νn(·). For any ε ∈ (0, p − 1) we have

|νn(f)| = 1
2π

∣∣∣∣∫ π

−π
f(t)e−intdt

∣∣∣∣ ≤ 1
2π

∫ π

−π
|f(t)|dt

≤ 1
2π

(∫ π

−π
|f(t)|p−εdt

) 1
p−ε

(2π)
1

(p−ε)′

=
(

ε

2π

∫ π

−π
|f(t)|p−εdt

) 1
p−ε

ε
− 1

p−ε ≤ ε
− 1

p−ε ∥f∥Lp)(−π,π) ,

i.e. functional νn(·) is bounded. On the other hand, for ∀n, m ∈ Z we have

νn(eint) = 1
2π

∫ π

−π
e−i(n−m)tdt = δnm,

i.e. the systems {eint}n∈Z and νn(·) are biorthogonal. Thus, the system {eint}n∈Z is
minimal in Lp)(−π, π). □

The following theorem shows the completeness of the system of exponents {eint}n∈Z in
the space Gp)(−π, π).

Theorem 3.2. The exponential system {eint}n∈Z is complete in space Gp)(−π, π), 1 <
p < +∞.
Proof. Let’s take an arbitrary η > 0 and an arbitrary function f ∈ Gp)(−π, π). Then,
due to the density C∞

0 [−π, π] in Gp)(−π, π) (see [34], Lemma 3.1) there exists a function
gη ∈ C∞

0 [−π, π] such that
∥f − gη∥Gp)(−π,π) < η.

It is known that the sequence of partial sums of the Fourier series of the function gη

converges uniformly to gη. Hence
∃m0 ∀m > m0 sup

t∈[−π,π]
|gη(t) − Pm(t)| < η,

where
Pm(t) =

m∑
n=−m

νn(gη)eint, m ∈ N0.

Then

∥gη − Pm∥Gp)(−π,π) = sup
0<ε<p−1

(
ε

2π

∫ π

−π
|gη(t) − Pm(t)|p−ε dt

) 1
p−ε

< η sup
0<ε<p−1

ε
1

p−ε = η(p − 1).

Therefore,
∥f − Pm∥Gp)(−π,π) ≤ ∥f − gη∥Gp)(−π,π) + ∥gη − Pm∥Gp)(−π,π)

< η + η(p − 1) = pη.

It follows that the system {eint}n∈Z is complete in space Gp)(−π, π) .
□

Let γ = {τ : |τ | = 1} be a unit circle. Consider the identification operator T : Lp)(γ) →
Lp)(−π, π) defined by the formula Tf(t) = f(eit), t ∈ [−π, π]. Denote by Gp)(γ) the
image of Gp)(−π, π) under the mapping T −1.

The theorem below asserts the invariance of Gp)(γ) with respect to the singular operator
Sγ .
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Lemma 3.3. The singular operator Sγ acts boundedly in Gp)(γ), 1 < p < +∞.

Proof. By Theorem 2.1, the operator Sγ is bounded in Lp)(γ). Let M = ∥Sγ∥L(Lp)(−π,π)).
Let us show that for ∀f ∈ Gp)(γ) Sγf ∈ Gp)(γ). Take arbitrary ε > 0 and f ∈ Gp)(γ).
Due to the density Lp(γ) in Gp)(γ) there exists g ∈ Lp(γ) such that

∥f − g∥Gp)(−π,π) ≤ ε

M
.

Then

∥Sγf − Sγg∥Lp)(−π,π) ≤ ∥Sγ∥L(Lp)(−π,π)) ∥f − g∥Gp)(−π,π) < ε.

Since Sγg ∈ Lp(γ), it follows from the last relation that Sγf belongs to the closure Lp(γ)
in Lp)(γ), i.e. Sγf ∈ Gp(γ).

□

We now prove the following main theorem about the basis property of the system of
exponentials {eint}n∈Z in the space Gp)(−π, π).

Theorem 3.4. The exponential system {eint}n∈Z forms a basis in the space Gp)(−π, π),
1 < p < +∞.

Proof. For an arbitrary η > 0 and an arbitrary function f ∈ Gp)(−π, π). By virtue
of Theorems 3.1 and 3.2, the exponential system {eint}n∈Z is complete and minimal in
Gp)(−π, π). To prove the theorem according to the basis property criterion (Theorem 2.3)
of the system, it suffices to show that the projectors are uniformly bounded in Gp)(−π, π)

Sn,m(f)(x) =
n∑

n=−m

νn(f)einx, n, m ∈ N0.

It is easy to show that this is equivalent to the uniform boundedness of the system of
projectors

Pm(f)(x) =
m∑

n=−m

νn(f)einx, f ∈ Gp)(−π, π), m ∈ N0.

.
Transform Pm(f) as follows:

Pm(f)(x) =
m∑

n=−m

( 1
2π

∫ π

−π
f(t)e−intdt

)
einx

= 1
2π

∫ π

−π
f(t)

n∑
n=−m

ein(x−t)dt = 1
2π

∫ π

−π
f(t)Km(x − t)dt,

where

Km(t) = e−imt − ei(m+1)t

1 − eit
.

We have

Km(x − t) = e−im(x−t) − ei(m+1)(x−t)

1 − ei(x−t) = ei(m+1)t

eit − eix
e−imx − eimt

eit − eix
ei(m+1)x.
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So

Pm(f)(x) = 1
2π

∫ π

−π
f(t)Km(x − t)dt

= 1
2π

∫ π

−π

f(t)ei(m+1)t

eit − eix
dte−imx − 1

2π

∫ π

−π

f(t)e−imt

eit − eix
dtei(m+1)x

= 1
2πi

∫
γ

T −1(fem)(τ)
τ − eix

dτe−imx − 1
2πi

∫
γ

T −1(fe−(m+1))(τ)
τ − eix

dτei(m+1)x

= e−imxSγT −1(fem)(eix) − ei(m+1)xSγT −1(fe−(m+1))(eix)

= e−imxTSγT −1(fem)(x) − ei(m+1)xTSγT −1(fe−(m+1))(x),

where em(t) = eimt, m ∈ Z. Then, due to the boundedness of the singular operator Sγ in
Gp)(−π, π) we obtain

∥Pm(f)∥Gp)(−π,π) =
∥∥∥e−imxTSγT −1(fem)(x) − ei(m+1)xTSγT −1(fe−(m+1))(x)

∥∥∥
Gp)(−π,π)

≤
∥∥∥SγT −1(fem)

∥∥∥
Gp)(γ)

+
∥∥∥SγT −1(fe−(m+1))

∥∥∥
Gp)(γ)

≤ M ∥fem∥Gp)(−π,π) + M
∥∥∥fe−(m+1)

∥∥∥
Gp)(−π,π)

= 2M ∥f∥Gp)(−π,π) .

□

Now consider the question of the basis property of trigonometric systems {sin nt}n∈N

and {cos nt}n∈N in space Lp)(0, π). The following theorem is true.

Theorem 3.5. Systems of sines {sin nt}n∈N and cosines {cos nt}n∈N form bases in space
Gp)(0, π), 1 < p < +∞.

Proof. Lets first consider the system of sines {sin nt}n∈N . Let us show the minimality of
the system {sin nt}n∈N in the space Lp)(0, π), 1 < p < +∞. We define a system of linear
functionals

gn(f) = 2
π

∫ π

0
f(t) sin ntdt, f ∈ Lp)(0, π), n ∈ N.

For ∀f ∈ Lp)(0, π) we have

|gn(f)| = 2
π

∣∣∣∣∫ π

0
f(t) sin ntdt

∣∣∣∣ ≤ 2
π

∫ π

0
|f(t)| dt

= 2
π

(∫ π

0
|f(t)|p−εdt

) 1
p−ε

π
1

(p−ε)′ = 2
(

ε

π

∫ π

0
|f(t)|p−εdt

) 1
p−ε

ε
− 1

p−ε

≤ 2ε
1

p−ε ∥f∥p) ,

where ε ∈ (0, p − 1). Thus, gn is a linear continuous functional in Lp)(0, π). On the other
hand, it is easy to show that

gn(sin mt) = δmn,

i.e. the systems {sin nt}n∈N and {gn}n∈N are biorthogonal, and, consequently, the system
{sin nt}n∈N is minimal in the space Lp)(0, π).

Consider an arbitrary f ∈ Gp)(0, π). Extend the function f as an odd one to [−π, π]
and denote this extension by F (t). We have

F (t) =
{

f(t), t ∈ [0, π]
−f(−t), t ∈ [−π, 0)
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It is clear that F ∈ Gp)(−π, π) and

||F ||Lp)(−π,π) = sup
0<ε<p−1

(
ε

2π

∫ π

−π
|F (t)|p−εdt

) 1
p−ε

= sup
0<ε<p−1

(
ε

π

∫ π

0
|f(t)|p−εdt

) 1
p−ε

= ||f ||Lp)(0,π).

By Theorem 3.4, the system {eint}n∈Z forms a basis for Gp)(−π, π). Then we have an
expansion

F (t) =
+∞∑

n=−∞
cneint,

where

cn = 1
2π

∫ π

−π
F (t)e−intdt, n ∈ Z.

For the coefficients cn we have

cn = 1
2π

∫ π

−π
F (t)e−intdt = 1

2π

∫ π

0
f(t)e−intdt − 1

2π

∫ π

0
f(t)eintdt

= − 1
2π

∫ π

0
f(t)(eint − e−int)dt = 1

πi

∫ π

0
f(t) sin ntdt = 1

2i
gn(f), n ∈ N.

On the other hand, it is clear that c−n = −cn . Therefore, for ∀m ∈ N we obtain

m∑
n=−m

cneint =
m∑

n=1
cneint −

m∑
n=1

cne−int

=
m∑

n=1
cn(eint − e−int) = 2i

m∑
n=1

cn sin nt =
m∑

n=1
gn(f) sin nt.

It is easy to show that F (t)−
∑m

n=−m cneint is an odd extension of f(t)−
∑m

n=1 gn(f) sin nt
to [−π, π] . Therefore, for ∀m ∈ N we obtain∥∥∥∥∥f −

m∑
n=1

gn(f) sin nt

∥∥∥∥∥
Gp)(0,π)

=
∥∥∥∥∥F −

m∑
n=−m

cneint

∥∥∥∥∥
Gp)(−π,π)

.

Hence, passing to the limit as m → ∞ , we obtain

f(t) =
+∞∑
n=1

gn(f) sin nt,

i.e. the system {sin nt}n∈N forms a basis for the space Gp)(0, π), 1 < p < +∞.
□

Similarly, we can prove the basicity of the system of cosines {cos nt}n∈N0 for the space
Gp)(0, π), 1 < p < +∞.
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