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ABSTRACT 

As it is known from Real Analysis, inequalities are used to give the definition of 

many mathematical concepts formally and to analyze them analytically. Similarly, the 

geometric characterizations of the range of analytic and univalent functions in the open 

unit disc U = {z ∈ ℂ : |z| < 1} can be easily analyzed with inequalities and easily 

classified these functions. 
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Pozitif ve Negatif Katsayılı Univalent Fonksiyonlar için Bazı Önemli 

Eşitsizlikler 
 

Öz 

Reel analizden bilindiği gibi, eşitsizlikler birçok matematiksel kavramın tanımını formal olarak vermek 

ve onları analitik olarak analiz etmek için kullanılır. Benzer olarak birim açık disk U = {z ∈ ℂ : |z| < 

1} da analitik ve univalent olan geometrik fonksiyonların görüntü kümeleri eşitsizliklerle kolayca analiz 

edilebilir ve kolayca bu fonksiyonlar sınıflandırılabilir.  

 

Anahtar Kelimeler: Analitik fonksiyon, Konveks fonksiyon, Starlike(yıldızıl) fonksiyon, 
Univalent(Yalınkat) Fonksiyon. 
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I. INTRODUCTION 
 

Let 𝑆 denoted the class of functions of the form  

𝑤 = 𝑓(𝑧) = 𝑧 + ∑ 𝑎𝑛

∞

𝑛=2

𝑧𝑛 = 𝑧 + 𝑎2𝑧2 + ⋯ (1) 

which are both analytic and univalent in the open unit disc U = {z ∈ C : |z| < 1}. Functions of the form 

(1) under their have conditions, also satisfy the equations 𝑓(0) = 0 and 𝑓′(0) = 1 which are known as 

normalization conditions. It is a known fact that the concept of univalent, which counterpart in the Real 

analysis is one-to-one, has contributed to the development of Geometric function theory, as a much 

stronger property referring to both analytic and univalent function in Complex analysis. More 

importantly, this property is used as a basic mathematical tool in the classification of analytic functions 

that take the open unit disc U as the domain in the Riemann mapping theorem without loss of generality. 

Therefore it can be said Riemann’s theorem constitutes the scientific foundations of the Geometric 

function theory. In this sense the inequalities given in this study are valid for univalent functions whose 

domain is the open unit disc U.  

 

 

If the range of a function 𝑓 of class 𝑆 exhibits respect to the origin, then the inequality 

 

𝑅𝑒 (
𝑧𝑓′(𝑧)

𝑓(𝑧)
) > 0 (2) 

 

is satisfied and vice versa. Accordingly, this class of functions is denoted by 𝑆∗ and can be analytically 

given as  

 

𝑆∗ = {𝑓(𝑧) ∈ 𝑆: 𝑅𝑒 (
𝑧𝑓′(𝑧)

𝑓(𝑧)
) > 0, 𝑧 ∈ 𝑈}. (3) 

 

The more specific subclass of starlike functions is the class of starlike functions of order 𝛼, denoted by 

𝑆∗(𝛼) with 0 ≤ 𝛼 < 1. This subclass can be given as  

 

𝑆∗(𝛼) = {𝑓(𝑧) ∈ 𝑆: 𝑅𝑒 (
𝑧𝑓′(𝑧)

𝑓(𝑧)
) > 𝛼,   𝛼 ∈ [0,1), 𝑧 ∈ 𝑈   }.           (4) 

 

Another geometric characterization that a function 𝑓(𝑧) belonging to the class 𝑆 can exhibit is 

usual convexity. A function 𝑓 ∈ 𝑆 with this geometric characterization of the range provides 

the inequlity  

 

𝑅𝑒 (1 +
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
) > 0 (5) 

 

and vice versa. The class of 𝑓(𝑧) functions that belonging to the class𝑆, and additionally provide 

this last inequality, is denoted by 𝐶 and can be analytically given by 

 

𝐶 = {𝑓(𝑧) ∈ 𝑆: 𝑅𝑒 (1 +
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
) > 0, 𝑧 ∈ 𝑈}. (6) 

 

Also, the more specific subclass of convex functions is the class of convex functions of order 

𝛼, denoted 𝐶(𝛼) with 0 ≤ 𝛼 < 1. This class can be given as  
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𝐶(𝛼) = {𝑓(𝑧) ∈ 𝑆: 𝑅𝑒 (1 +
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
) > 𝛼,   𝛼 ∈ [0,1), 𝑧 ∈ 𝑈   }.     (7) 

 

Based on the information given so far and the fact that a convex domain is also a starlike region 

with respect to every point at the same time, thus 𝐶(𝛼) ⊂ 𝑆∗(𝛼) ⊂ 𝑆 can be written using the 

subset relation. The classes 𝑆∗(𝛼) and 𝐶(𝛼) satisfies Alexander duality relation [2]; 

 
𝑧𝑓′(𝑧) ∈ 𝑆∗(𝛼) ⇔ 𝑓(𝑧) ∈ 𝐶(𝛼), 0 ≤ 𝛼 < 1. (8) 

 

The basic argument provided by this theorem, also known as the Alexander duality theorem 

that 𝑓(𝑧) is univalent and convex if and only if 𝑧𝑓′(𝑧) can be univalent and convex. In this 

case, it can be said immediately that 𝑓 is convex, according to the argument of Alexander’s 

theorem, since the function 𝑓 satisfies the normalization conditions and a convex region is also 

a starlike region with respect to each point. This brilliant theorem, which is not difficult to 

prove, is used as very useful mathematical tool in obtaining many result set forth in univalent 

function theory. On the other hand, it is clear that the functions belonging to these classes 

produce a set of adequacy conditions when mapping the open unit disc to simple regions which 

have as cute as it is interesting geometric characterizations. The theory of geometric function 

basically aims to classify analytic functions that are defined in the open unit disc U and have 

certain conditions such as being univalent, convex and starlike by relating them 

to the geometric characterization that all members of the most of specific class have, 

but not vice versa. Moreover, the common geometric characterization belonging to a class 

imposes very clear limitations on the Taylor coefficient of the functions belonging to the class. 

The best known among this is Bieberbach conjecture states that for every function 𝑓(𝑧) = 𝑧 +
𝑎2𝑧2 + 𝑎3𝑧3 + ⋯ of class 𝑆, |𝑎𝑛| ≤ 𝑛, 𝑛 ≥ 2. Equality in inequality is concidered an extremal 

property for these functions [1]. Tere is only one funcion that satisfies this property and is 

therefore known as the extremal function in Univalent function theory. This is the 𝑘(𝑧) =
𝑧(1 − 𝑧)−2, |𝑧| < 1 function known as the Koebe function.  

 

It should also be noted that all Taylor coefficients of 𝑓(𝑧) ∈ 𝑆 functions are positive, including 

the coefficient. Further, another subclass can be created by imposing a more specific condition 

on 𝑓(𝑧) function. For example, let’s take the function 

 

𝑤 = 𝑓(𝑧) = 𝑧 − ∑ |𝑎𝑛

∞

𝑛=2

|𝑧𝑛 = 𝑧 − 𝑎2𝑧2 − ⋯ (9) 

 

where all nonzero Taylor coefficients are negative starting from the second Taylor coefficient. 

Let the class of functions belonging to class 𝑆, which have the form (9) and are both analytic 

and univalent, be denoted by 𝜆 [6], [7]. According to the information given, class 𝜆 is a subclass 

of class𝑆. In this case, the classes of 𝛼 order starlike and 𝛼 order convex functions denoted 

𝜆∗(𝛼) and 𝒦(𝛼) with 𝛼 ∈ [0,1), respectively [4], [5]. A function of the form (9) belongs to 

class 𝜆 if and only if the inequality ∑ 𝑛𝑎𝑛
∞
𝑛=2 ≤ 1 is satisfied [8]. Similarly, the condition 

∑ 𝑛|𝑎𝑛|∞
𝑛=2 ≤ 1 is sufficient for all functions 𝑓(𝑧) of the form (1) to be in 𝑆. Further, such 

functions are also starlike, since in this case|
𝑧𝑓′(𝑧)

𝑓(𝑧)
| < 1(𝑧 ∈ 𝑈) is proved. The coefficient 

restriction and thus geometric characterization make class  𝜆 more guidable then class𝑆. 

Therefore, the solution of problems in class 𝑆 is completely based on the solution of related 

problems in class𝜆.  
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II. MAIN RESULTS 
 

Theorem 2.1. Let the function 𝑓(𝑧) have the form (1). In this case, the condition  

 

∑(𝑛 − 2−𝑟)

∞

𝑛=2

|𝑎𝑛| < 1 − 2−𝑟 , 𝑟 ∈ ℕ0

= {0} ∪ ℕ 

(10) 

 

is a sufficient conditions for 𝑓(𝑧) ∈ 𝑆∗(2−𝑟). 

 

Proof. Based on the hypothesis of the theorem, to prove its conclusion, it is sufficient to show 

that 𝑧𝑓′(𝑧)/𝑓(𝑧) is in a circle with center 𝑤 = 1 and radius1 − 2−𝑟. Then, 

 

|
𝑧𝑓′(𝑧)

𝑓(𝑧)
− 1| = |

𝑧𝑓′(𝑧) − 𝑓(𝑧)

𝑓(𝑧)
| = |

∑ (𝑛 − 1)𝑎𝑛𝑧𝑛∞
𝑛=2

𝑧 + ∑ 𝑎𝑛𝑧𝑛∞
𝑛=2

| 

 

≤
∑ (𝑛 − 1)|𝑎𝑛||𝑧|𝑛−1∞

𝑛=2

1 − ∑ |𝑎𝑛||𝑧|𝑛−1∞
𝑛=2

 

 

≤
∑ (𝑛 − 1)|𝑎𝑛|∞

𝑛=2

1 − ∑ |𝑎𝑛|∞
𝑛=2

. 

 

The resulting last inequality is bounded above by 1 − 2−𝑟 if  

 

∑(𝑛 − 2−𝑟)

∞

𝑛=2

|𝑎𝑛| ≤ (1 − 2−𝑟) (1 − ∑|𝑎𝑛|

∞

𝑛=2

). 

 
which is equivalent to  

 

∑(𝑛 − 2−𝑟)

∞

𝑛=2

|𝑎𝑛| < 1 − 2−𝑟 . (11) 

 

But (11) is accurate by hypothesis. Hence|
𝑧𝑓′(𝑧)

𝑓(𝑧)
− 1| ≤ 1 − 2−𝑟, and the theorem is proved. 

 

A more general case of Theorem 2.1 can be found in [3]. In the light of the information given first 

chapter, the following corollary it can be easily deduced from Theorem 2.1.  

 

Corollary 2.1. Let the function 𝑓(𝑧) have the form (1). In this case, the condition  
 

∑ 𝑛(𝑛 − 2−𝑟)

∞

𝑛=2

|𝑎𝑛| < 1 − 2−𝑟 , 𝑟 ∈ ℕ (12) 

 

then 𝑓(𝑧) ∈ 𝐶(2−𝑟). 
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Proof. According to the Alexander’s duality theorem (8), which points to the relations between 

𝐶(2−𝑟) and 𝑆∗(2−𝑟), that is 𝑓(𝑧) ∈ 𝐶(2−𝑟) ⇔ 𝑧𝑓′(𝑧) ∈ 𝑆∗(2−𝑟). On the other hand, since 

𝑧𝑓′(𝑧) = 𝑧 + ∑ 𝑛𝑎𝑛
∞
𝑛=2 𝑧𝑛, may be replace 𝑎𝑛 with 𝑛𝑎𝑛 in Theorem 2.1. At this stage, the 

desired result is obtained with a direct calculation. 

Theorem 2.2. Let the function 𝑓(𝑧) have the form (9). Then, 𝑓(𝑧) ∈ 𝜆∗(2−𝑟) if and only if 

 

∑(𝑛 − 2−𝑟)

∞

𝑛=2

|𝑎𝑛| < 1 − 2−𝑟 , 𝑟 ∈ ℕ. (13) 

 

Proof. From Theorem 2.1, it is sufficient to prove only the if part. Since,  
 

𝑅𝑒 (
𝑧𝑓′(𝑧)

𝑓(𝑧)
) = 𝑅𝑒 (

𝑧 − ∑ 𝑛|𝑎𝑛|𝑧𝑛∞
𝑛=2

𝑧 − ∑ |𝑎𝑛|𝑧𝑛∞
𝑛=2

) > 2−𝑟 , 𝑟 ∈ ℕ, 𝑧 ∈ ℕ.                        (14) 

 

Here, when the 𝑧 values choose on the real axis. If 𝑧 → 1 is taken after necessary simplifications in (14), 
we have 

 

1 − ∑ 𝑛

∞

𝑛=2

|𝑎𝑛| ≥ 2−𝑟 (1 − ∑|𝑎𝑛|

∞

𝑛=2

). 

 

 

Thus ∑  (𝑛 − 2−𝑟 )|𝑎𝑛| ≤ 1 − 2−𝑟∞
𝑛=2  , and the proof is completed. 

 

 

Corollary 2.2. Let the function 𝑓(𝑧) have the form (9). Then, 𝑓(𝑧) ∈ 𝐶(2−𝑟) if and only if  
 

∑ 𝑛(𝑛 − 2−𝑟)

∞

𝑛=2

|𝑎𝑛| < 1 − 2−𝑟 , 𝑟 ∈ ℕ. (15) 

 

Its proof is a natural consequence of Theorem 2.1.  
 

Corollary 2.3. Letting 𝑟 → ∞ in Theorem 2.2., then, 𝜆∗(2−𝑟) = 𝜆∗(0) = 𝜆∗.  
 

The proof is obtained directly from the proof of Theorem 2.1. 

 

 

III.CONCLUSION 
 

The main purpose of this study is to bring a different perspective to the inequalities used in the 

classification of analytical and univalent complex functions in the open unit disc U according to the 

geometric characterizations of the image regions. In this sense, general information and related resources 

are given in the first chapter. In the second part, our main results and their proofs are given. 
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