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ABSTRACT. Let R be a ring graded by a group G and n > 1 an integer. We
introduce the notion of n-FCP-gr-projective R-modules and by using of special
finitely copresented graded modules, we investigate that (1) there exist some
equivalent characterizations of n-FCP-gr-projective modules and graded right
modules of n-FCP-gr-projective dimension at most k over n-gr-cocoherent
rings, (2) R is right n-gr-cocoherent if and only if for every short exact se-
quence 0 - A — B — C — 0 of graded right R-modules, where B and C are
n-FCP-gr-projective, it follows that A is n-FCP-gr-projective if and only if (gr-
FCPn, gr-]—'CPfl) is a hereditary cotorsion theory, where gr-FCP, denotes
the class of n-FCP-gr-projective right modules. Then we examine some of the

conditions equivalent to that each right R-module is n-FCP-gr-projective.

Mathematics Subject Classification (2020): 16D80, 16E05, 16E30, 16E65,
16P70
Keywords: n-gr-Cocoherent ring, special gr-copresented module, n-FCP-gr-

projective module

1. Introduction

In 1969, Jans in [11] gave a definition of finitely cogenerated modules as a dual
notion of finitely generated modules when he introduced co-Noetherian rings as
a dual notion of Noetherian rings. A right R-module M is said to be finitely
cogenerated if for every family {M, };cr of submodules of M with NM;er M; = 0, there
is a finite subset J C I such that N;eyM; = 0. In 1994, Costa in [7] introduced
the notion of n-coherent rings for a nonnegative integer n. A left R-module M
is said to be n-presented if it has a finite n-presentation, that is, there exists an
exact sequence F,, — F,,_ 1 — -+ = F; = Fy = M — 0 with each Fj finitely
generated free R-module, and a ring R is called left n-coherent if every n-presented
left R-module is (n + 1)-presented, for more details see [6,8].

As we know, cocoherent rings as a dual notion of coherent rings have been
characterized in various ways, and many nice properties were obtained for such

rings in [12,19,22]. In 1999, Weimin Xue in [24] via finitely cogenerated modules
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introduced n-copresented modules and n-cocoherent rings as a dual notion of n-
presented modules and n-coherent rings, respectively. A right R-module M is said
to be n-copresented if there is an exact sequence 0 — M — E° — E' — ... — E"
of right R-modules, where each E' is finitely cogenerated injective. A ring R is
called right n-cocoherent if every n-copresented R-module is (n + 1)-copresented.
n-cocoherent rings have been studied by several authors (see, for example [1,2,5,21]).

The homological theory of graded rings and modules is a classical topic in al-
gebra, because of its applications in algebraic geometry, see ([14,15,16]). Several
authors have investegated the graded aspect of some notions in relative homological
algerbra. For example, Asensio et al. in [4] introduced the notions of FP-gr-injective
modules, then Yang and Liu in [18] investigated homological behavior of the FP-
gr-injective modules on gr-coherent rings. Recently in 2018, Zhao, Gao and Huang
[20] gave a definition of n-presented graded modules and n-gr-coherent rings and
also, by using of n-presented graded modules, they introduced the concept of n-FP-
gr-injective and n-gr-flat modules, and then examined the homological behavior of
these modules over n-gr-coherent rings. In case n = 1, see [13,18].

The aim of this paper is to introduce and study n-copresented graded right mod-
ules, n-gr-cocoherent right rings and n-FCP-gr-projective right modules as a dual
notion of n-presented graded left modules, n-gr-coherent left rings and n-FP-gr-
injective left modules, respectively. Then, we study the relative homological theory
of these modules and also, the properties of special finitely copresented graded
modules, defined via finitely cogenerated gr-injective resolutions of n-copresented
graded modules, play a crucial role.

This paper is organized in three sections as follows:

In Section 2, some fundamental concepts and some preliminary results are stated.

In Section 3, we first introduce the notions of n-copresented graded right mod-
ules, special gr-cogenerated and special gr-copresented modules with respect to any
n-copresented graded right module, and also n-cocoherent graded right rings (or,
right n-gr-cocoherent rings). Then via n-copresented graded modules, we give a
concept of n-FCP-gr-projective right modules and investigate some characteriza-
tions of these modules. In this section, examples are given in order to show that
m-FCP-gr-projectivity does not imply n-FCP-gr-projectivity for any m > n.

In Section 4, we prove that there exist some equivalent characterizations of
graded right modules of n-FCP-gr-projective dimension at most k on right n-gr-
coherent rings. We obtain some equivalent characterizations of right n-gr-cocoherent
rings in terms of n-FCP-gr-projective right modules on the short exact sequences.

For example, R is a right n-gr-cocoherent ring if and only if for every exact sequence
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0> A — B — C — 0 of graded right R-modules, where B and C' are n-FCP-
gr-projective, it follows that A is n-FCP-gr-projective if and only if (gr-FCP,,
gr—}'C”Pﬂ; ) is hereditary cotorsion theory, where gr-FCP,, denotes the class of n-
FCP-gr-projective right modules. Moreover, if gr-F7Z,, is a class of n-FP-gr-injective
left modules, then (gr-FCP,)* C gr-FZI,. Hence, we prove that every graded right
R-module is n-FCP-gr-projective if and only if (gr-FCP,, gT—]:C’PTLL) is a perfect
hereditary cotorsion theory and N € gr—]—“C”Pﬂ; has an n-FCP-gr-projective cover
with the unique mapping property if and only if R is right n-gr-cocoherent and N
is n-FCP-gr-projective if and only if N (o) is gr-injective for any o € G.

2. Preliminaries

Throughout this paper, all rings considered are associative with identity ele-
ment and the R-modules are unital. By Mod-R and R-Mod we will denote the
Grothendieck category of all right R-modules and left R-modules, respectively.

Let G be a multiplicative group with neutral element e. A graded ring R is a ring
with identity 1 together with a direct decomposition R = @, ., R, (as additive
subgroups) such that R,R,; C R, for all 0,7 € G. Thus, Re is a subring of R,
1 € Re and R, is an Re-bimodule for every o € G. A graded right (resp. left)
R-module is a right (resp. left) R-module M endowed with an internal direct sum
decomposition M = @,
of M such that MR, C M,, for all 0,7 € G. For any graded right R-modules M
and N, set Homg,_p(M,N) := {f : M — N | f is R-linear and f(M,) C N, for
any o € G}, which is the group of all morphisms from M to N in the category gr-R

M, , where each M, is a subgroup of the additive group

of all graded right R-modules (R-gr will denote the category of all graded left R-
modules). It is well known that gr-R is a Grothendieck category. An R-linear map
f: M — N is said to be a graded morphism of degree 7 with 7 € G if f(M,) C
M, for all 0 € G. Graded morphisms of degree o build an additive subgroup
HOMRg(M, N), of Homp (M, N). Then HOMr(M,N) = @, . HOMr(M, N), is
a graded abelian group of type G. We will denote by Exté}.rf r and EXT% the right
derived functors of Homg,—r and HOMEg, respectively. Given a graded right R-
module M, the graded character module of M is defined as M* := HOMy(M,Q/Z),
where Q is the rational numbers field and Z is the integers ring. It is easy to see
that M* = @, . Homz(M,-1,Q/Z).

Let M be a graded right R-module and N a graded left R-module. The abelian
group M @ N may be graded by putting (M @y N), with ¢ € G to be the
additive subgroup generated by elements x Q) y with x € M, and y € Ng such that
aff = 0. The object of Z-gr thus defined will be called the graded tensor product of
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M and N. If M is a graded right R-module and ¢ € G, then M(c) is the graded
right R-module obtained by putting M (o), = M., for any 7 € G. The graded
module M (o) is called the o-suspension of M. We may regard the o-suspension as
an isomorphism of categories T,, : gr-R — gr-R, given on objects as T,,(M) = M (o)
for any M € gr-R.

The forgetful functor U : gr-R — Mod-R associates to M the underlying un-
graded R-module. This functor has a right adjoint F' which associated to M €
Mod-R the graded R-module F(M) = @,.,(?M), where each “M is a copy of
M written {?z : © € M} with R-module structure defined by r*"z =°7 (rz) for
each r € R,. If f : M — N is R-linear, then F(f) : F(M) — F(N) is a graded
morphism given by F(f)(°z) =7 f(z).

The injective (resp. projective) objects of gr-R will be called injective graded
right (resp. projective graded right) modules because M is gr-injective (resp. gr-
projective) in gr-R if and only if it is a injective (resp. projective) graded right
module. Similarly, it is defined for the graded left modules in R-gr. Let n > 0 be
an integer. Then, a graded left R-module F' is called n-presented [20] if there exists
an exact sequence P, - P,y — -+ = P, - Py — F — 0 in R-gr with each P,
is finitely generated free R-module. A graded ring R is called left n-gr-coherent if
each n-presented graded left R-module is (n + 1)-presented. A graded left module
M is called n-FP-gr-injective if EXT,(F, M) = 0 for any n-presented graded left
R-module F. A graded left module M is called n-gr-flat if Torf(M, F) =0 for any
n-presented graded left R-module F, see [20].

For a graded ring R, let X be a class of graded right R-modules and M a graded
left R-module. Following [3,20], we say that a graded morphism f: X — M is an
X-precover of M if X € X and HOMg(X', X) - HOMg(X', M) — 0 is exact for
all X' € X. Moreover, if whenever a graded morphism g : X — X such that fg = f
is an automorphism of X, then f : X — M is called an X-cover of M. The class
X is called (pre)covering if each object in gr-R has an X-(pre)cover. X-envelope
and X-preenvelope are defined dually. Recall that a X-cover ¢ : M — N has the
unique mapping property if for any homomorphism f: A — N with A € X, there
exists a unique g : A — M such that ¢g = f.

3. n-FCP-gr-projective modules

In this section, we first introduce the special gr-copresented and special gr-
cogenerated modules via n-copresented graded right modules. Then by using of

these modules, some properties of n-FCP-gr-projective modules are discussed.
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Definition 3.1. Let n > 0 be an integer. Then, a graded right R-module U is

called n-copresented if there exists an exact sequence
0—U-—F —E'—... - E"! - E"

in gr-R with each E® is finitely cogenerated injective. Set K"~ ! = Coker(E"~2 —
E"~1) and K™ = Coker(E"~! — E™). Then, we shall say the sequence

A0 K"l s E" K" 0

in gr-R is a special short exact sequence. Moreover, we call the objects K™ and
K"~1 special finitely cogenerated and special finitely copresented graded (special
gr-cogenerated and special gr-copresented for short) right R-modules, respectively.
Then, it follows that EXTx(M, K" ') = EXT}(M,U) for any graded right R-
module M. Also, a short exact sequence 0 - A — B — C — 0 in gr-R is called
special gr-copure, if for every special gr-copresented K™ !, there exists the following

exact sequence:
0 — HOMg(C, K"') — HOMRg(B, K" ') — HOMp(A4, K" ') — 0,

where A is said to be special gr-copure in B. A graded ring R is called right n-gr-

cocoherent if each n-copresented graded right R-module is (n 4 1)-copresented.
The following lemma is the graded version of [23, Theorem 3].

Lemma 3.2. Let0 - A — B — C — 0 in gr-R be a short exact sequence. Then

the following statements hold for any n > 0.

(1) If A and C are n-copresented, then so is B.

(2) If C is n-copresented and B is (n + 1)-copresented, then A is (n + 1)-
copresented.

(3) If A and B are (n+ 1)-copresented, then C is n-copresented.

Definition 3.3. Let n > 1 be an integer. A graded right R-module M is called
n-FCP-gr- projective if EXT%(M,U) = 0 for any n-copresented graded right R-
module U.

Notice that for ungraded, a right R-module M is called n-FCP-projective if
Ext’y(M,U) = 0 for any n-copresented right R-module U, and in case n = 1, M is
called FCP-projective, see [21].

Remark 3.4. (1) Every m-copresented graded right R-module is n-copresented
for any m > n.

(2) If n = 1, then every 1-FCP-gr- projective is FCP-gr- projective.
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(3) If M is n-FCP-gr- projective and U is (n + 1)-copresented graded right R-
module, then there exists an exact sequence 0 = U — E° — C' — 0 in gr-R, where
EC is finitely cogenerated injective and C' is n-copresented by Lemma 3.2. So we
deduce that the sequence 0 — EXT%(M,C) — EXT%H(M,U) — 0 is exact. But,
EXT%(M,C) = 0 since M is n-FCP-gr- projective and C' is n-copresented. Hence,
EXT?{H(M7 U) = 0 and consequently M is (n + 1)-FCP-gr- projective. Therefore,
gr-FCPy C gr-FCP2 C --- C gr-FCPy, C gr-FCPpi1 C -+ .
In general, m-FCP-gr-projective right R-modules need not be n-FCP-gr-projective
whenever m > n, see Example 3.6(1).

(4) Every gr-projective right R-module is n-FCP-gr-projective.

Definition 3.5. (1) The n-FCP-gr-projective dimension of a graded right module
M is defined by

n.FCP-gr-pdM = inf{k: EXT’;{A(M7 K"~ 1) = 0 for every special gr-copresented
Kn1}

(2) The n-FCP-gr-projective global dimension of a graded ring R is defined by
r.n.FCP-gr-dimR = sup{n.FCP-gr-pdM | M is a graded right R-module}.

A graded ring R is called a right gr-V-ring if every simple graded right R-module
is gr-injective. A graded ring R is called right gr-hereditary if every submodule of
a projective graded right R-module is projective. A graded ring R is called right
gr-cosemihereditary if every submodule of a projective graded right R-module is
FCP-gr-projective, see the graded version of [21, Definition 3.6]. It is clear that

gr-hereditary rings are gr-cosemihereditary.

Example 3.6. Let R be a gr-cosemihereditary ring but not gr-V-ring, for example
gr-hereditary ring R = k[X] where k is field. Then by graded vesion of [21, Theorem
3.9], there exists a graded R-module which is not 1-FCP-gr-projective. Also by
graded vesion of [21, Theorem 3.7, r.FCP-gr-dimR < 1. So, FCP-gr-pdM < 1 for
any graded right R-module M. Hence by Lemma 4.2, there is an exact sequence
00— P —- Py — M — 0in gr-R, where Py and P; are 1-FCP-gr-projective. If
U is a 2-copresented graded right module, then EXT}%(Pl, U) = 0, since every 2-
copresented graded right module is 1-copresented. Therefore from EXT}%(Pl, U) =
EXT%{(M ,U) we get that every graded right R-module M is 2-FCP-gr-projective.

We have the following lemma before the next proposition.

Lemma 3.7. Let R be a ring graded by a group G, M a graded right R-module
and k non-negative integer. Then EXTh(M,—), = Ex‘cgrfR(M(a_l)7 —) for any
o€q@q.
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Proof. It is clear that for k = 0, HOMz(M, —), = Homg,—r(M(c71),—), see
[10]. Let N be a graded right R-module. Then, there exists an exact sequence
0 — N — E — L — 0, where F is gr-injective. Consider the following commutative

diagram with exact rows:

0 —— EXT% (M, L) ———— EXT%H(M,N);, —— 0

5 |

0 = Exth T (M(01), L) — Bxth,_p(M(o1), N) —= 0
By induction hypothesis, « is an isomorphism and then so is 5. O

In the following proposition, we give some equivalent characterizations of n-FCP-

gr-projective modules with respect to special gr-copure short exact sequences.

Proposition 3.8. Let R be a ring graded by a group G and n > 1 an integer. Then

the following statements are equivalent for a graded right R-module M.

) M is n-FCP-gr-projective;

(2) M is gr-projective with respect to all special short exact sequences in gr-R;

(3) The exact sequence 0 > A — B — M — 0 in gr-R is special gr-copure;

(4) M(o~Y) is n-FCP-gr-projective for any o € G;

(5) There exists a special gr-copure short exact sequence 0 = K — P — M — 0

in gr-R, where P is gr-projective;

(6) There exists a special gr-copure short exact sequence0 - K — P — M — 0
in gr-R, where P is n-FCP-gr-projective;

(7) M(o=1) is gr-projective with respect to all special short exact sequences in

gr-R for any o € G.

Proof. (1) = (2) Let 0 - K"! — E® — K" — 0 be a special short ex-
act sequence with respect to any n-copresented graded right R-module U. Then,
EXTh(M, K" ') = EXT%H(M,U) = 0.

(2) = (3), (3) = (1), (5) = (6) and (6) = (1) are clear.

(4) = (1) It is clear, since by Lemma 3.7, EXT% (M, U), = Extg, z(M(c™1),U)
for any n-copresented graded right R-module U and any o € G.

(1) = (5) Let M be a graded right R-module. Then, there is exact se-
quence 0 - K — P — M — 0 in gr-R with P is gr-projective. By (1),
EXTgL(M, K" ') = EXT%(M,U) = 0 for any special gr-copresented K™~! and
any n-copresented graded right module U. So, (5) follows.

(2) <= (7) It is trivial, since Homg,—g(M (o7 1),—) 2 HOMg(M, —),.
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(2) = (4) Assume that U is an n-copresented graded right R-module and
0— K" ! - Em - K™ — 0 is a special short exact sequence in gr-R, where E” is
finitely cogenerated injective. Then, we have the following exact sequence for any
T€EGQG:

0 — HOMg(M, K" '), — HOMg(M, E™), — HOMg(M, K™), — 0.
Consider the following commutative diagram:
0 ——— HOMg(M, K" 1), , — > HOMR(M,E")ry ———> HOMR(M,K");; — 0

! : :

0 ——> Homg, _g(M(r0)" !, K" ™) — > Homg,_p(M(ro) !, E™) ——> Homg,_g(M(ro)" ', K™)
: : :

0 ——> HOMp(M(o~1), K" 1), HOMp(M(s~1), B"), HOMp (M (o~ 1), K™),

with the upper row exact for every 7 € G. So, we deduce that

0 — HOMg(M (o), K" 1), - HOMg(M(c™ '), E™), — HOMg(M(c™"),K™), — 0

is exact, which gives rise to the exactness of

0 — HOMg(M(c71), K" 1) — HOMg(M (s~ 1), E™) — HOMg(M(c™ 1), K™) — 0.

Hence, 0 = EXTgL(M (o~ 1), K1) 2 EXTR(M(c~ "), U) and consequently, M (o)
is n-FCP-gr-projective. O

Transfer result of n-FCP-gr-projective modules with respect to the functor F is

given in the following result.

Proposition 3.9. Let R be a ring graded by a group G. If M is an n-FCP-
projective right R-module, then F(M) is n-FCP-gr-projective.

Proof. Let 0 Knt Er 2o g 0 be a special short exact

sequence in gr-R and f : F(M) — K™ a graded morphism. Since F is a right

adjoint functor of the forgetful functor, we have the commutative diagram:

M

L\

0 Kn—1 Em K" 0
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Now, again by the adjoint situation between the forgetful functor and F' we have a

graded morphism F(M) — E™ such that the following diagram is commutative:

F(M)

LN

0 Kn1 Er — 7 L gn 0

which shows that F'(M) is gr-projective with respect to all the special short exact
sequences in gr-R. Let f : F(M)(0~!) — K" be a graded morphism for any o € G.

Since, the exact sequence

0 — > K" (o) — > E"(0) L Kn(6) — 0
exists and K"~ !(o) is special gr-copresented, there exists a graded morphism A :
F(M) — E™(0) such that T,(g)h = T,(f), and so ¢T,-1(h) = f for T,-1(h) :
F(M)(c=') — E". Therefore for any o € G, F(M)(c~!) is gr-projective with
respect to all the special short exact sequences and consequently by Proposition
3.8, F(M) is n-FCP-gr-projective. O

Also, as for the classical projective notion, the class gr-FCP,, is closed under

direct limits.

Proposition 3.10. Let R be a graded ring by a group G, K" 1 a special gr-
copresented and {M;}icr a direct system of graded right R-modules with I directed.
Then:

(1) HOMR(LILDM“ Kn_l) = 11£I} }I()h/[pb(]\fi7 Kn_l).

(2) EXTR(UmM;, K™ 1) = lim EXTp(M;, K" 1).

Proof. (1) For any o € G, we have

HOMpg(lim M;, K" ™) = @) HOMg (lim M;, K1), = €P) Homg,_g(lim M;(o ™), K" 1).
- o€G - e -

By [17, Proposition 5.26],

P Homy, g (lim M;(o~ "), K"~) = lim @ Homg, _p(M;(0~1), K"7).

oceqG T oe@

So,

lim @) Homg,_g(M;(o™"), K"~ ') 2 lim @) HOMp(M;, K"~ ), = lim HOMp(M;, K" 1).
T cea el “’

—
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(2) Let 0 - K"~! — E™ — K™ — 0 be a special short exact sequence in gr-R.

Then by (1), the following commutative diagram exists:

: - |

Therefore, EXT(lim M;, K"~1) 2 lim EXTj(M;, K" 1). O

Corollary 3.11. Let R be a graded ring. Then, the class gr-FCP,, is closed under

direct limits.

Proof. Let U be an n-copresented graded right module and let {M;};c; be a family
of n-FCP-gr-projective right modules . Then by Proposition 3.10,
EXT%(lim M;, U) =2 EXTk(lim M;, K" ') 2 im EXTg(M;, K"~ 1) 2 lim EXT%(M;, U),

where K™ ! is special gr-copresented. O

4. n-gr-cocoherent rings

In this section, some characterizations of n-FCP-gr-projective right modules on
right n-gr-cocoherent rings are given.

We state the following lemmas that are derived from [21, Theorem 2.12].

Lemma 4.1. Let R be a right n-gr-cocoherent ring and M a graded right R-module.
Then the following statements are equivalent:

(1) n.FCP-gr-pdM < k;

(2) EXTEF (M, K"=') = 0 for any special gr-copresented K"~ 1.

Proof. (2) = (1) is trivial by Definition 3.5.

(1) = (2) Use induction on k. Clear if n.FCP-gr-pdM = k. Let n.FCP-
gr-pdM < k—1. If0 - K" ! = E®» - K" — 0 is a special short exact
sequence in gr-R with respect to any n-copresented graded right R-module U,
then from the n-gr-cocoherence of R we deduce that K™ is special gr-copresented.
Also, we have EXT% (M, K™) = EXTR™ (M, K*~1). So by induction hypothesis,
EXTY (M, K™) = 0 and consequently EXT% (M, K"~1) = 0 which completes the
proof. O

Lemma 4.2. Let R be a right n-gr-cocoherent ring, M a graded right R-module

and k a non-negative integer. Then the following statements are equivalent:

(1) n.FCP-gr-pdM < k;
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(2) EXT%H(M, K"~ = 0 for any special gr-copresented K™~ and all positive
integers l;
(3) EXT%H(M, K"=1) =0 for any special gr-copresented K"~ *;

(4) There exists an exact sequence

Jre-1

0—>P]€E>Pk,1 —

Jo

--P1£>P0—>M—>O

in gr-R with Py, Py, -+ - , Py are n-FCP-gr-projective;
(5) n.FCP-gr-pdM (c~') < k for any o € G.

Proof. (1) = (2) If n.FCP-gr-pdM < k, then n.FCP-gr-pdM < k+1—1. So by
Lemma 4.1, EXTR (M, K7~1) = 0.

(4) = (1) Since R is right n-gr-cocoherent, by Lemma 4.1, EXT%(Pi, K1) =
0 for any special gr-copresented K™~!, all positive integers j and any 0 < i < k.
So by (4), we have:

EXTE (M, K" 1) =2 EXTh (ker(fo), K" ') 2 - 2 EXTgR(Py, K" 71).
Hence by Lemma 4.1, n.FCP-gr-pdM < k.

(2) = (3) It is obvious.
(3) = (4) For every graded right R-module M, there exists an exact sequence

0— P, —PFP1—-Po—F—M—70

in gr-R with Py, Py, - -+, P,_1 are gr-projective. Therefore for any positive integers
l, we have EXT lR(R-, Kn"~1) = 0 for all special gr-copresented modules K"~! and
any 0 <i<k—1. Let K; = ker(P; — P;_1). Then,
EXTHE (M, K"Y) = EXTh (Ko, K" ') = EXTE L (K, K™Y = EXTh (P, K*71).
By (3), EXTE (M, K"!) = 0, and so EXTg(Pg, K"~!) = 0, which means that
Py, is n-FCP-gr-projective.

(1) <= (5) Use induction on k. If k = 0, then by Proposition 3.8, M is n-FCP-
gr-projective if and only if M (o~!) is n-FCP-gr-projective for any o € G. Assume
that k£ > 0. There is an exact sequence 0 — L i) P — M — 0 in gr-R, where P is

gr-projective. For any o € G, it follows that the exact sequence

T, -1(f)
—_—

0—— L(c7 1) Plo™!) —= M(c7}) ——0,

where P(c~!) is gr-projective exists. So by Lemma 3.7, for every special gr-

copresented K™~ ! and any 7 € G, we have:

EXTE T (M(o7h), K", 2 EXTR(L(o™ "), K" 1), 2 Extl,_p(L(ro) ™' K1) =
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EXTH(L, K" Y),, = EXTE™ (M, K" 1),,. By induction hypothesis, n.FCP-
gr-pdL(c~ 1) < k — 1 if and only if n.FCP-gr-pdL < k — 1. So, we deduce that
n.FCP-gr-pdM (¢—1) < k if and only if n.FCP-gr-pdM < k. |

Corollary 4.3. Let R be a right n-gr-cocoherent ring of type G. Then the following

statements are equivalent:

(1) If  : N — M is an n-FCP-gr-projective preenvelope, then N has an epic
n-FCP-gr-projective preenvelope;

(2) The cokernel of any n-FCP-gr-projective preenvelope of a graded right R-
module is n-FCP-gr-projective;
Moreover, if every submodule of an n-FCP-gr-projective graded right R-
module has an n-FCP-gr-projective preenvelope, the above are equivalent
to:

(3) r.n.FCP-gr-dimR < 1.

Proof. (1) = (2) Let ¢ : N - M be an n-FCP-gr-projective preenvelope. Then
f :Im(¢) — M is an n-FCP-gr-projective preenvelope. By (1), there is an epic n-
FCP-gr-projective preenvelope g : Im(¢) — C. Consider the following commutative

diagram, where D is a pushout of two maps f and g:

0 —— Im(9) L Coker(¢) —— 0

C

C D Coker(¢) —— 0

By [17, Exercise 5.10], « is injective and 8 is surjective. On the other hand, D =
a(C) + B(M). Since B is surjective, D = a(C) + D and so, a(C) C D. Also,
by using of preenvelopes f and g, there is a graded morphism h : D — C such
that ha = 1¢. Hence, D = C @ Coker(¢). Similarly D = M. Therefore from
n-FCP-gr-projectivity M, we deduce that Coker(¢) is n-FCP-gr-projective.

(2) = (1) Let ¢ : N — M be an n-FCP-gr-projective preenvelope. It is enough
to show that Im(¢) is n-FCP-gr-projective. Consider the exact sequence 0 —
Im(¢) — M — Coker(¢) — 0. By hypothesis, Coker(¢) is n-FCP-gr-projective,

and so for every special gr-copresented K™, we have:
0=EXTkL(M, K" ') — EXTx(Im(¢), K"~ ') — EXT%(Coker(¢), K" 1).
Hence by Lemm 4.2 and (2), EXT%(Coker(¢), K"~') = 0. Hence,

0 = EXTkL(Im(¢), K" 1) = EXT%(Im(¢), U)
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for any m-copresented graded right module U, and then it follows that Im(¢) is
n-FCP-gr-projective.

(2) = (3) Let M be a graded right R-module. Then, there exists an exact
sequence 0 - K — P — M — 0 in gr-R, where P is gr-projective. If K is
n-FCP-gr-projective, then r.n.FCP-gr-dim(R) < 1. So, we show that K is n-FCP-
gr-projective. If ¢ : K — N is an n-FCP-gr-projective preenvelope, then ¢ is
injective. So similar to proof of (2) = (1), we get that K is n-FCP-gr-projective.

(3) = (1) Let ¢ : N — M be an n-FCP-gr-projective preenvelope. Then by
Lemma 4.2, the exact sequence 0 — Im(¢) — M — Coker(¢) — 0 implies that
Im(¢) is n-FCP-gr-projective, and so N — Im(¢) is an epic n-FCP-gr-projective
preenvelope of N. O

In the following, we present one of the main results in this paper.

Theorem 4.4. Let R be a graded ring. Then the following statements are equiva-
lent:
(1) R is right n-gr-cocoherent;
(2) For every exact sequence 0 - A — B — C — 0 in gr-R, A is n-FCP-gr-
projective if B and C are n-FCP-gr-projective.

Proof. (1) = (2) Let U be an n-copresented graded right R-module. Then by
Lemm 4.2(2), we have: 0 = EXT}(B,U) — EXT%(A,U) — EXT3(C,U) = 0,
since B and C are n-FCP-gr-projective. So EXT%(A,U) = 0, and hence A is
n-FCP-gr-projective.

(2) = (1) Let U be an n-copresented graded right R-module and 0 — K"~ 1 —
E" — K™ — 0 a special short exact sequence in gr-R with respect to U. We
show that U is (n + 1)-copresented. For this, enough to say that K™ is special
gr-copresented. Let M be a 1-FCP-projective right R-module and 0 - K — P —
M — 0 an exact sequence in Mod-R with P is projective. Then 0 — F(K) —
F(P) —» F(M) — 0 is exact in gr-R, where by Proposition 3.9, F(P) and F(M)
are 1-FCP-gr-projective. Hence, Remark 3.4 imply that F(P) and F(M) are n-
FCP-gr-projective. So by hypothesis, it follows that F'(K) is n-FCP-gr-projective.
Since E™ is gr-injective, we have:

0 = BExty, p(F(M),E") — Bxty, p(F(M),K") — Ext},_p(F(M),K""') — 0.
So, Exty, p(F(M),K™) = Ext}, p(F(M), K"~1). Also, we have:

0 =Exty,_p(F(P), K" ') = Exty,_p(F(K),K"") = Ext},_z(F(M),K"") = 0.
Consequently ExtérfR(F(K)J(”_l) = ExtzrfR(F(M),K"_l) and so by Lemma
3.7, n-FCP-gr-projectivity F(K) imply that Extér_R(F(K)(a’l),K"’l) = 0 for
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any o € G. Thus,

0= EXtér—R(F(K)?Kn_l) = EXtér—R(F(M)’Kn_l) = EXtér—R(F(MLKn)'

Now, consider the following commutative diagram:

0 ——— Homg, _r(F(M),K"™) —— Homg, Rr(F(P), K") —— Homg, r(F(K),K") —— 0

0 ———> Hompg(M,K") ———— > Hompg(P,K") ——— > Hompg(K, K")
with the upper row exact. Therefore, Extér_R(F(MLK") >~ Extp(M,K™) = 0

for any 1-FCP-projective R-module M, and it follows that K™ is 1-copresented.
Hence, U is (n + 1)-copresented. O

Corollary 4.5. Let R be a right n-gr-cocoherent ring. Then, graded right R-module
M is n-FCP-gr-projective if and only if every copure epimorphic image and copure

submodule of M is n-FCP-gr-projective.

Proof. (=) Let N be a copure submodule of n-FCP-gr- projective right R-module

M. Then, the exact sequence 0 - N — M — % — 0 is special gr-copure. So
by Proposition 3.8, % is n-FCP-gr-projective and hence by Theorem 4.4, N is
n-FCP-gr-projective.

<—) It is clear. O
(=)

Before the next results, we first introduce the following symbols and definitions
given in [9,20].

For every class ) of graded right R-modules, denote the classes

Yt ={Xegr-R :Exty p(Y,X)=0 forall Y € Y}
and
LYy ={X €gr-R :Extgy_r(X,Y)=0 forall Y € Y}.

Given two classes of graded right R-modules F and C, then we say that (F,C)
is a cotorsion theory in gr-R if F' =Cand F =1C. A cotorsion theory (F,C)
is called hereditary if whenever 0 — F " 5 F — F" = 0 is exact in gr-R with
F,F" € F then F' is also in F.

A duality pair over a graded ring R is a pair (F,C), where F is a class of graded
right (resp. left) R-modules and C is a class of graded left (resp. right) R-modules,
subject to the following conditions: (1) For any graded module F, one has F' € F
if and only if F* € C. (2) C is closed under direct summands and finite direct sums.

A duality pair (F,C) is called (co)product-closed if the class of F is closed
under graded direct (co)products, and a duality pair (F,C) is called perfect if it is

coproduct-closed, F is closed under extensions and R belongs to F.
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Theorem 4.6. The pair (gr-FCP,, gT—]-'CP,%) is hereditary cotorsion theory if

and only if R is a right n-gr-cocoherent ring.

Proof. (=) Let M be an n-FCP-gr-projective right R-module. Then, there is an
exact sequence 0 - K — P — M — 0 in gr-R, where P is gr-projective. Thus
by Remark 3.4, P is n-FCP-gr-projective, too. Since (gr-FCP,, gr-FCPL) is a
hereditary cotorsion theory, we deduce that K is n-FCP-gr-projective, and then by
Theorem 4.4, it follows that R is right n-gr-cocoherent.

(=) Note that we have to show that *(gr-FCPy) = gr-FCP,,. Let K"~ ' be a
special gr-copresented with respect to any n-copresented graded right R-module U
and M € *(gr-FCPy). Then, K"~ ! € gr-FCP;: and M (o) €+ (gr-FCP;y) for
all ¢ € G by analogy with the proof of Proposition 3.9. Therefore by Lemma 3.7,
EXTpR(M, K" 1), = Exty, p(M(c~'),K"~') = 0 and consequently by Lemma
4.2, M is n-FCP-gr-projective, and hence M € gr-FCP,. Let 0 — F' 5 F =
F" = 0 be a exact sequence of modules in gr-R, where F' and F " are n-FCP-
gr-projective. Then by Theorem 4.4, F'is n-FCP-gr-projective, since R is n-gr-
cocoherent. So, it follows that (gr-FCP,, gr-FCP;) is a hereditary cotorsion
theory. (I

We denote (gr-FCP,)* = {M* | M € gr-FCP,}. The following lemma shows

the connection between n-FCP-gr-projective and n-FP-gr-injective modules.

Lemma 4.7. Let R be a graded ring of type G.

(1) If U is an n-presented graded left R-module, then U* is an n-copresented
graded right R-module.
(2) (gr-FCP,)* C gr-FI,.

Proof. (1) Let U be an n-presented graded left R-module. Then, there exists an

exact sequence

F,—F,_4— - —F—U—70

in R-gr with each F; is finitely generated free. So by graded version of [17, Lemma

3.53], there is an exact sequence

0 —U"—F — - — F'_ | —F}

with R-modules in gr-R. It suffices to show that every F;" is finitely cogenerated
injective. It is clear that any F}* is finitely cogenerated. So, we prove that every
F} is injective, too. Consider the short exact sequence 0 - A - B — C — 0in
gr-R. Then, there exists the following commutative diagram with the upper row
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exact for any o € G:

0 ————> HOMg(C, F}) HOMg(B, F;") HOMR(A, F;")

o~ o~ o

0 ——> D, cq Homg,_r(C(0™h), F}) —— @, cq Homg,_r(B(o™ 1), F) ——> @ Homg,_g(A(c™ 1), F})

0 ————> @, cq Homp_ g (F;,C"(0)) ————> P, cq Homp_ g (Fi, B*(0)) ——> @,cq Hompr_4 (Fi, A™(0))

I~ o~ o~

0 ———> HOMg(F;,C*) HOME (F;, B*) ———————— > HOMPp(F;, A*) — 0

So, EXTL(C, F}) = 0 and hence any F;* is injective.

(2) By [20, Definition 3.1], let 0 —» K,,1 — P,—1 — K, — 0 be a special
short exact sequence in R-gr with respect to any n-presented graded left R-module
U. Then by (1), K}
projective right R-module, then similar to the proof (1), 0 = EXTH(M, K} ;) =
EXTg(K,_1, M*). On the other hand, EXT%(U, M*) =2 EXTR(K,_1, M*) by [20,
Definition 3.1]. Therefore, M* is an n-FP-gr-injective left R-module, and then we
conclude that (gr-FCP,)* C gr-FI,. O

_ is special gr-copresented in gr-R. So if M is n-FCP-gr-

In the following theorem, by using the previous results, we present some equiva-

lent characterizations to that each graded right R-module is n-FCP-gr-projective.

Theorem 4.8. Let R be a graded ring of type G. Then, the following statements

are equivalent:

(1) Every graded right module is n-FCP-gr-projective;
(2)

(3) Ewery special gr-copresented right module is gr-injective;

(4) (9r-FCPy, gr-]—‘C”Pi} is perfect hereditary cotorsion theory and N has an
n-FCP-gr-projective cover with the unique mapping property for any N €
gr—]:CPf; ;

(5) N is gr-injective for any N € gr-FCP.;

(6) N(o) is gr-injective for any N € gr—]—‘CP,lL and any o € G;

(7) Every graded right module has an n-FCP-gr-projective cover with the unique
mapping property;

(8) R is right n-gr-cocoherent and N is n-FCP-gr-projective for any N € gr-
FCP;.

gr-id(U) < n —1 for any n-copresented graded right R-module U;

Proof. (1) = (2), (2) = (3) and (3) = (1) are clear by Proposition 3.8.
(1) = (5) and (5) = (3) are obvious.
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(5) <= (6) it follows from HOMg(—, N), = Homg,_gr(—, N(0)).

(1) = (7) First, we show that the class gr-FCP,, is covering. If M € gr-
FCP,,, then by Lemma 4.7, M* € gr-FP,,. Contrary, if M* € gr-FP,, then [20,
Proposition 3.8] implies that M is n-gr-flat, and hence by (1), M € gr-FCP,. On
the other hand, the class gr-FP,, is closed under direct summands and direct sums
by [20, Propositions 3.7 and 3.16]. So, we obtain that (gr-FCP,, gr-FZI,) is a
duality pair. Also By (1), it follows that the class gr-FCP,, is closed under gr-pure
submodules, gr-pure quotients and gr-pure extensions. Therefore by Corollary 3.11
and [20, Theorem 4.2], the class gr-FCP,, is covering and hence by hypothesis, (7)
follows.

(7) = (1) Let N be a graded right R-module. Then there is a commutative

diagram with exact rows:

M
N
ag
a W
0 K M N 0
0

where,7) and ¢ are n-FCP-gr-projective cover with the unique mapping property.
Since a¢p = 0 = 1), we have a¢p = 0 by (7). Therefore, K = im(¢) C ker(a) =0
and so K = 0. Thus N 2 M and hence every graded right module N is n-FCP-gr-
projective.

(1) = (8) Let M be an n-FCP-gr-projective right R-module. Then, there is
an exact sequence 0 - K — P — M — 0 in gr-R, where P and K are n-FCP-
gr-projective by (1). So by Theorem 4.4, it follows that R is right n-gr-cocoherent.
Also by hypothesis, N is n-FCP-gr-projective for any N € gr—]—"CPi.

(8) = (3) Cosider the special short exact sequence A" : 0 — K"~ 1 — En—1
K™ — 0 in gr-R with respect to any n-copresented graded right module U, where
K" 1 is gr-copresented and K" is n-gr-cogenerated. But K, is gr-copresented,
too, since R is n-gr-cocoherent. Thus K" € gr—]—'CP,f and consequently 0 =
EXT%(K™, U) = EXTH(K™, K"~ 1), since K,, is n-FCP-gr-projective by (8). There-
fore A" is split and we deduce that K™ is gr-injective.

(4) = (8) By Theorem 4.6, R is right n-gr-cocoherent. Let N € gr-FCPL. If
¢ : M — N is an n-FCP-gr-projective cover with the unique mapping property,
then kerg € gr-FCP;:. Thus, similar to the proof of (7) = (1), we get that N is
n-FCP-gr-projective.
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(8) = (4) By Theorem 4.6, (gr-FCP,,, gr-FCP;-) is hereditary cotorsion the-
ory. Also R € gr-FCP,, and by Corollary 3.11 and (8) = (3) = (1), gr-FCP,
is closed under direct sum and extensions. Therefore, we deduce that (gr-FCP,,
gr—]-‘CPf;) is a perfect hereditary cotorsion theory. If IV is n-FCP-gr-projective for
any N € gr—]—"CPi, then it is clear that N has an n-FCP-gr-projective cover with
the unique mapping property. (I
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