
Erzincan Üniversitesi Erzincan University

Fen Bilimleri Enstitüsü Dergisi Journal of Science and Technology

2022, 15(3), 699-714 2022, 15(3), 699-714

ISSN: 1307-9085, e-ISSN: 2149-4584

Araştırma Makalesi

DOI: 10.18185/erzifbed.1077921

Research Article

Corresponding Author: bahadir.ozkilbac@atauni.edu.tr 699
 Bahadır ÖZKILBAÇ, https://orcid.org/0000-0002-3384-1565
 Tevhit KARACALI, https://orcid.org/0000-0002-3647-6372

Design of RISC Processor with IEEE754 Standard Floating-Point Instruction Set in

FPGA using VHDL for Digital Signal Processing Applications

Bahadır ÖZKILBAÇ 1*, Tevhit KARACALI 1

1 Department of Electrical-Electronics Engineering, Faculty of Engineering, Ataturk University, Erzurum,

Turkey

Received: 23/02/2022, Revised: 23/09/2022, Accepted: 19/06/2022, Published: 30/12/2022

Abstract

The design of RISC processors, which are the key of digital signal processing applications, are increasing in

reconfigurable hardware. FPGAs are suitable reconfigurable hardware for RISC processor design, with

advantages such as parallel processing and low power consumption. In this study, the design of the 32-bit RISC
processor in a FPGA is presented. The designed RISC processor contains IEEE754 standard floating-point

number processing unit, which is executed in one clock cycle. The verification of the processor is performed

for the Zynq-7000 SoC Artix-7 FPGA chip in the Xilinx Vivado tool. Classification of an artificial neural

network using the iris dataset is carried out in this designed RISC processor. In order to compare the

performance, the same artificial neural network is executed in real time in the dual-core ARM Cortex-A9

processor in the operating system of the Zynq-7000 SoC. The results show that the RISC processor designed in

the FPGA executes at 20x less clock cycles and 3x higher speed compared to the ARM processor.

Keywords: FPGA, ARM, RISC, reconfigurable hardware

VHDL Kullanarak, Dijital Sinyal İşleme Uygulamaları için IEEE754 Standart Kayan

Noktalı Komut Kümesine Sahip RISC İşlemcinin FPGA’de Tasarımı

Öz

Dijital sinyal işleme uygulamalarının kalbi niteliğinde olan RISC işlemcilerin, yeniden yapılandırılabilir

donanımlardaki tasarımları giderek artmaktadır. FPGA’ler, paralel çalışma, düşük güç tüketimi gibi avantajlara

sahip, RISC işlemci tasarımı için ideal yeniden yapılandırılabilir donanımlardır. Bu çalışma 32-bit RISC

işlemcinin FPGA’de tasarımını sunmaktadır. Tasarlanan RISC işlemci, tek saat darbesinde işlem yapabilecek

paralellikte olan IEEE754 standartında kayan noktalı sayı işlem birimini içermektedir. İşlemcinin doğrulması,

Xilinx Vivado aracında Zynq-7000 SoC Artix-7 FPGA çipi için yapılmıştır. Iris dataseti kullanılarak bir yapay

sinir ağının sınıflandırma işlemleri, tasarlanan bu RISC işlemci içerisinde gerçekleştirilmiştir. Performans

kıyaslaması yapabilmek için aynı yapay sinir ağı Zynq-7000 SoC’nin işletim sistemi kısmında bulunan çift

çekirdekli ARM Cortex-A9 işlemcisinde de gerçek zamanlı olarak çalıştırılmıştır. Elde edilen sonuçlar, FPGA

içerisinde tasarlanan RISC işlemcinin, ARM işlemciye kıyasla 20 kat daha az saat darbesinde 3 kat daha yüksek

hızda bu işlemi gerçekleştirdiğini göstermektedir.

Anahtar Kelimeler: FPGA, ARM, RISC, yeniden yapılandırılabilir donanım

https://orcid.org/0000-0002-3384-1565
https://orcid.org/0000-0002-3647-6372

Design of RISC Processor with IEEE754 Standard Floating-Point Instruction Set in FPGA using VHDL

for Digital Signal Processing Applications

700

1. Introduction

With the development of technology, digital signal processing applications (DSP) are

increasing significantly in space and defense industry, medicine and various commercial areas.

The reduced instruction set computer (RISC) processor is at the heart of such DSP applications

[1]. All processors have an instruction set architecture that perform operations according to

instructions. Unlike other processors, the RISC processor architecture has a simple instruction

set and each instruction is executed in one clock cycle. [2]. Through these advantages, the RISC

processor offers a flexible and extensible architecture that provides maximum performance for

any processing technology. RISC architectures are used today in phones, tablets and personal

computers, as well as supercomputers such as Fugaku, Summit, Sierra, Sunway and TaihuLight

[3]. The RISC processor has also been used in DSP applications, video decoding and image

acquisition [4]-[5]. Such as applied mathematics and control systems, computations are other

usage area of the RISC processor [6]-[7]. In artificial intelligence, speech recognition and

motion estimation are examples of the use of the RISC processor [8]-[9].

Reconfigurable computing bridges the gap between software and hardware design using

hardware like field programmable gate arrays (FPGAs) [10]. The role of reconfigurable

processors in embedded system design has been increasing in recent years. Owing to

reconfigurable hardware such as FPGA, processor architectures can be changed by

programming [11]. Various RISC processor have been designed in the literature using FPGA.

FPGA-based 64-bit RISC processor with self-test verificated using VHDL was designed in the

Xilinx ISE tool [12]. [13] describes a 16-bit RISC processor designed using VHDL, in which

behavioral model is preferred to create components. The design is a four-stage pipelined

processor. According to [14] presented the design of a pipeline microprocessor without

interlocked pipeline stages (MIPS) RISC processor using VHDL. 32-bit RISC processor-based

MIPS was designed using VHDL [15]. Unlike the previous paper given above, it presents five-

stage, pipeline processor. A from top to down approach is preferred in the design. 16-bit RISC

processor design is presented using the VHDL language [16]. The design is simulated and

synthesized using Xilinx ISE 13.1. Pipelining is used to speed up to the processor. In pipelining,

the instruction cycle is seperated so that multiple processes can be executed in parallel. Designs

of subunits of processor are also among the studies in the literature. In the first of these studies,

the fetch and decode units of the RISC processor was designed [17]. The design is successfully

simulated in the Quartus II tool of Intel. In [18], it is aimed to design the fetch unit and ALU,

which are subunits of the RISC processor. The Fetch unit is designed to read instructions stored

in memory. The ALU that performs all the computations such as arithmetic and logical

operations is at the execution stage of the pipeline. The Xilinx ISE 8.1 tool is used to simulate

the design with the VHDL.

When designing real-time digital systems using the RISC processor, there is usually a need to

operate with fractional or large numbers. To satisfy this need, various number representations

are used according to the performance and accuracy of the design. The floating-point number

representation is standardized by IEEE754 and used to represent real numbers in the binary

number system. The design of floating point processing units is quite important for system

Design of RISC Processor with IEEE754 Standard Floating-Point Instruction Set in FPGA using VHDL

for Digital Signal Processing Applications

701

performance. In this study, RISC processor with IEEE754 standard floating-point unit (FPU) is

designed in FPGA. Due to FPU, unlike other RISC processor designs in the literature, the

designed processor can process with fractional numbers. Thus, it becomes suitable for real-time

signal processing applications. In addition, taking advantage of the parallel processing of the

FPGA, the FPU is designed to operate in one clock cycle. Thus, the processor reduces the

execution time of any application. This design is verificated in the Xilinx Zynq-7000 FPGA

chip. Then, classification of iris flower is done by using artificial neural network in the designed

processor. Finally, in order to compare the performance, the classification is executed in real

time on the ARM processor in the Zynq-7000 chip in the same artificial neural network. The

remainder of this article is organized as follows. In section 2, information about floating-point

number arithmetic is given and the architecture of the designed RISC processor is presented. In

section 3, simulation and synthesis studies of artificial neural network classifying iris flower

species in RISC processor are given to verify the behavioral function of the RISC processor.

2. Material and Methods

This section presents the floating-point number representation, the floating-point arithmetic and

the RISC processor designed in the FPGA, respectively.

2.1. IEEE754 Standart Floating-Point Number Representation

Floating-point number representation, which was made a standard by the IEEE in 1985, consists

of three formats: single precision, double precision and extended precision [19]. A number

represented as an IEEE754 floating point consists of sign, exponent and fraction bits. According

to the format used, the bit lengths of the exponent and fraction changes. In Table 1, information

about bit lengths for single precision, double precision and extended precision number formats

is given.

Table 1. Floating-point number formats

Format Sign Bits Exponent Bits Fraction Bits

Single 1 8 23

Double 1 11 52

Extended 1 15 112

2.2. Floating Point Arithmetic

Multiplication, division, addition, and subtraction are among floating-point number arithmetic

operations. All operation are executed in specially designed units. Floating-point addition and

subtraction is performed in only one unit given in Figure 1. This unit has the highest latency,

the longest design time and the most complex among floating-point operations.

Design of RISC Processor with IEEE754 Standard Floating-Point Instruction Set in FPGA using VHDL

for Digital Signal Processing Applications

702

Figure 1. Adder/subtractor micro-architecture

Firstly, in the floating point addition/subtraction unit, first the exponents of the two numbers

are subtracted to determine the large and small number. The '1' bit is placed to the left of the

fraction bits for pre-normalization. The fraction of the smaller number is shifted to the right

according to subtraction of exponents. The fraction from the shift operation and the fraction of

the larger number are sent to the sub/add module. While the process is running in the sub/add

module, the estimation of the position of the most significant '1' bit required for normalization

is done by the leading one predictor module (LOP). Normalization is performed by shifting the

numbers to the left by the estimated amount from LOP if the signs are different, or by shifting

one bit to the left or right depending on the situation. The fraction obtained by normalization is

rounded. To determine the exponent of the result, the exponent of the large number is set and

the result is obtained.

Multiplication, another floating-point operation, is among the most used operations along with

addition in digital signal processing applications. Floating-point multiplication is executed

within the unit given in Figure 2.

Design of RISC Processor with IEEE754 Standard Floating-Point Instruction Set in FPGA using VHDL

for Digital Signal Processing Applications

703

Figure 2. Multiplier micro architecture

Pre-normalization is performed by placing '1' to the left of the most significant bit of the fraction

of two numbers in the floating point multiplication unit. After the pre-normalization, the

fractions of the numbers are multiplied. As the multiplication continues, the exponents of the

numbers are added to get the exponent of the result. The most significant bit of the

multiplication result of the fractions is checked. If the corresponding bit is '1', the exponent

resulting from the sum is increased by 1. The obtained fraction is rounded so that the result is

found.

The floating-point division operation is similar to the multiplication. It is in the form of

subtracting two numbers and dividing fractions. The micro-architecture of the floating point

divider unit is given in Figure 3.

In the floating-point division operation, pre-normalization is performed by placing '1' to the left

of the most significant bit of the fractions of two numbers. The fractions got by pre-

normalization are divided. At this time, the exponents of the numbers are subtracted in parallel.

The fraction from the division operation is rounded to form the fraction of the result, thus the

result is obtained.

Design of RISC Processor with IEEE754 Standard Floating-Point Instruction Set in FPGA using VHDL

for Digital Signal Processing Applications

704

Figure 3. Floating-point divider micro architecture

2.3. 32-bit RISC Processor Design

In this section of the study, information is given about the designed RISC processor, FPU unit,

CPU, registers, program counter, main memory and I / O ports.

Before any computer hardware can be designed, the instruction should be defined. Some

computer hardware has very few instructions to reduce the physical size of the circuit required

by the CPU. Such a design allows the CPU to execute instructions at a high frequency. This

architectural approach used when designing computer hardware is called RISC [2].

In a RISC processor, one clock cycle is required to execute any instruction. It is easy to convert

a RISC processor into a pipelined design, because all instructions are processed in the same

time and the opcode and the operand take the same position in the number sequence. The RISC

processor to be designed in this study consists of AN FPU operating in IEEE754 single

precision floating-point number representation, a program memory, a data memory, a control

unit and registers. The micro-architecture of the designed RISC processor is given in Figure 4.

Design of RISC Processor with IEEE754 Standard Floating-Point Instruction Set in FPGA using VHDL

for Digital Signal Processing Applications

705

Figure 4. RISC processor micro architecture.

2.3.1. Control Unit

All operations performed within the RISC processor are managed by the control unit. Therefore,

the design of the control unit is quite important so that the instruction to work properly in the

right order. In this study, the control unit is designed as a finite state machine (FSM) that

executes the Fetch, decode and execute stages. Two status signals, current state and next state,

in the control unit are shown in Figure 5.

Figure 5. Control unit FSM

Design of RISC Processor with IEEE754 Standard Floating-Point Instruction Set in FPGA using VHDL

for Digital Signal Processing Applications

706

The current state is in a synchronous and sensitive to the clock and reset signal. Current state

changes its state according to next state. Next state is a combinational structure that runs

according to the current state and inputs. In addition, the output logic circuit, which is

responsible for producing the relevant output in any situation, which changes depending on the

current state, is also located in the control unit. The output logic circuit is only sensitive to the

current state. Thus, the signals produced by the control unit can be sent to the memory or data

bus asynchronously, without waiting for the next clock cycle. As can be seen in Figure 6, the

current state and the next state in the control unit are three stages: Fetch, Decode and Execute.

Figure 6. Fetch, Decode and Execute stages

In Fetch, the instruction in the program memory is read and written to the instruction register

(IR). Fetch consists of three sub-branches. In S_FETCH_0, firstly BUS1_Sel signal is set to

"00" value and PC register value is sent to BUS1. Then, the BUS2_Sel signal is set to "01" and

the data in BUS1 is sent to BUS2. Finally, by making the MAR_Load signal '1', the address

going to the memory is updated. Thus, the data at the corresponding address in the memory can

be accessed.

The program counter is made ready by setting PC_Inc signal as '1' in S_FETCH_1 and

increasing the value of PC register by 1. In S_FETCH_2, the BUS2_Sel signal is set to "10"

and the value read at the relevant address in the memory is transferred to BUS2. Then, the

IR_Load signal is set to '1' and the instruction in BUS2 is loaded into the IR register. In Decode,

the identity of the instruction is detected. Finally, the instruction detected in the execute state is

performed inside the processor. For this, the instructions given in Table 2 are used.

The instructions are executed sequentially in the program memory and the desired operation is

performed by the processor. These instructions actually create a software. By correctly writing

and sequencing the instructions, the software to be executed by the processor is built. Executing

the software and converting it to machine code is carried out by the processor.

Design of RISC Processor with IEEE754 Standard Floating-Point Instruction Set in FPGA using VHDL

for Digital Signal Processing Applications

707

Table 2. Instruction Set of the Designed RISC Processor

Type Instruction

Loads and Stores LDA_IMM, LDA_DIR LDB_IMM, LDB_DIR STA_DIR,

STB_DIR

Floating-Point Arithmetic FP_ADD_AB FP_SUB_AB FP_DIV_AB FP_MULT_AB

Logical AND_AB, OR_AB, XOR_AB, NOT A, INCA, INCB DECA,

DECB SR_A, SL_A SR_B, SL_B

Branches BRA, BMI, BPL, BEQ, BNE, BVS, BVC, BCS, BCC

The instructions for the software to be executed by the processor are written to the program

memory in order. The sequential reading of these instructions in the program memory is

realized by the PC register. In Figure 7, the PC register in the processor is given.

Figure 7. PC register structure

The PC register actually runs like a counter. The value of the PC register is zero in the first

stage for any software to be implemented. Then the value of the PC register is incremented by

1 in each time a read is made from the memory. With the branches instructions listed in Table

2, the PC register jumps to the address value in the operand with or without negative, zero,

overflow and carry flag conditions. This ensures that the instructions are executed correctly.

2.3.2. Program Memory

The program memory where the instructions are stored is located in the memory given in Figure

8 in the processor.

Design of RISC Processor with IEEE754 Standard Floating-Point Instruction Set in FPGA using VHDL

for Digital Signal Processing Applications

708

Figure 8. Processor memory

Memory consists of program memory, data memory and input and output ports. The program

memory has a capacity of 512 bytes, and the data memory has a capacity of 384 bytes. Any

instruction or data from the memory is read and written with the MAR register. The counter

value in the PC register is sent to BUS2 in order to read or write. Then, the MAR_Load signal

is set '1' and the address value in BUS2 is sent to the MAR output and thus to the memory.

2.3.3. Floating-Point Unit (FPU)

In the FPU, logical operations and shift operations are carried out as well as floating-point

arithmetic operations. Figure 9 shows the FPU.

Figure 9. Floating-point unit

Which operation will be executed in the FPU is selected by FPU_Sel. The operations

corresponding to FPU-Sel bits are listed in Table 3.

Design of RISC Processor with IEEE754 Standard Floating-Point Instruction Set in FPGA using VHDL

for Digital Signal Processing Applications

709

Table 3. FPU operations

FPU_Sel Operation

00000 A = A + B in floating-point

00001 A = A - B in floating-point

00010 A = A * B in floating-point

00011 A = A / B in floating-point

00100 A = A and B

00101 A = A or B

00110 A = A xor B

00111 A = not A

01000 B = not B

01001 A = A + 1 in floating-point

01010 B = B + 1 in floating-point

01011 A = A – 1 in floating-point

01100 B = B – 1 in floating-point

01101 Shifts A one bit to the right

01110 Shifts A one bit to the left

01111 Shifts B one bit to the right

10000 Shifts B one bit to the left

The 4-bit NZVC number got from the FPU output is used to store negative, zero, overflow,

carry exceptions. These exceptions are loaded into the CCR register and sent to the control unit.

The corresponding NZVC values for the exceptions are listed in Table 4.

Table 4. NZVC exceptions

ALU_Sel Operation

Negative Results 1000

Zero Result 0100

Overflow Result 0010

Carry Result 0001

3. Design Verification and Simulation Results

The processor is designed using the very high-speed integrated circuit hardware description

language (VHDL). Behavioral verification of the designed processor is done on Xilinx Zynq-

7000 using Vivado Design Suite. In order to perform the behavioral verification, the machine

Design of RISC Processor with IEEE754 Standard Floating-Point Instruction Set in FPGA using VHDL

for Digital Signal Processing Applications

710

code for the artificial neural network (ANN) given in Figure 10 is programmed and placed in

the program memory.

ANN structure is quite simple. Inputs and weights are dot multiplication within the processor,

and each product is summed. The result is calculated by adding bias to the summed value. The

result obtained is passed through a decision mechanism. Also, the activation function used is a

linear function.

Figure 10. An artificial neural network architecture for Iris classification

100 data taken from the iris dataset, 67 are used for training the network and 33 are used for

testing. Some test data used as input are given in Table 5 [20].

Table 5. Test data for iris flower

Sepal Length

(x1)

Sepal Width

(x2)

Petal Length

(x3)

Petal Width

(x4)
Species

6 2.7 5.1 1.6 Versicolor

4.8 3 1.4 0.3 Setosa

5.5 2.3 4 1.3 Versicolor

5.9 3.2 4.8 1.8 Versicolor

5.1 3.8 1.9 0.4 Setosa

5.1 3.4 1.5 0.2 Setosa

4.6 3.6 1 1.1 Setosa

These features are sent as input to the network and the species of iris flower is obtained at the

output. ANN is simulated in Vivado Design Suite to verify the designed RISC processor. The

simulation results for the features in the first four rows given in Table 5 are as in Figure 11.

Design of RISC Processor with IEEE754 Standard Floating-Point Instruction Set in FPGA using VHDL

for Digital Signal Processing Applications

711

Figure 11. Simulation results for iris classification

In order to compare performance, the software of the same artificial neural network is carried

out in real time in the dual-core ARM Cortex A9 processor in the same chip, the Zynq-7000,

and the results given in Table 6. Results are obtained by Xilinx Vivado tool.

Design of RISC Processor with IEEE754 Standard Floating-Point Instruction Set in FPGA using VHDL

for Digital Signal Processing Applications

712

Table 6. Frequency, clock cycle and execution time for FPGA and ARM

 Frequency

(MHz)
Clock Cycle Execution

Time (µs)

RISC Processor Designed in FPGA 16 456 14.11

Software in ARM Processor 100 9140 45.7

4. Conclusion

FPGAs are widely used in processor design due to their advantages such as parallel processing,

low power consumption and reconfiguration. This study focuses on the design of a RISC

processor in a FPGA. Unlike other RISC designs, the RISC processor in this study includes an

FPU. Through the FPU, various complex digital signal processing applications such as ANN,

image processing, object recognition and video decoders can be implemented simply by

software on this processor. Classification of Iris flower species is executed using ANN in the

designed processor. In this way, both hardware design and software programming of the RISC

processor in FPGA are included and its verification is also provided. The classification is

implemented using the same ANN on the ARM processor to compare the performance. The

results show that the processor designed in FPGA operates faster and with fewer clock cycles.

Ethics in Publishing

There are no ethical issues regarding the publication of this study.

Author Contributions

B.Ö: programming, design of the study, T.K: presented idea of the study. All authors discussed

the results and contributed to the final manuscript.

References

[1] Palekar, S., & Narkhede, N. (2016) 32-Bit RISC processor with floating point unit for DSP

applications, Paper presented at the 2016 IEEE International Conference on Recent Trends in

Electronics, Information & Communication Technology (RTEICT).

[2] LaMeres, B. J. (2019) Introduction to logic circuits & logic design with VHDL. Springer.

[3] Amit, S. (2006) Mac OS X internals: a systems approach, Addison-Wesley Professional.

[4] Yamada, K., Kojima, M., Shimizu, T., Sato, F., & Mizuno, T. (2002) A new RISC processor

architecture for MPEG-2 decoding, IEEE Transactions on Consumer Electronics, 48(1) 143-

150.

Design of RISC Processor with IEEE754 Standard Floating-Point Instruction Set in FPGA using VHDL

for Digital Signal Processing Applications

713

[5] Kumar, P. S., Shashidhar, B., & Bhargav, J. S. (2010) Image acquisition from CMOS Active

Pixel Sensor using RISC processor. Paper presented at the 2010 International Conference on

Signal and Image Processing.

[6] Garbey, M. (2005) Acceleration of the Schwarz method for elliptic problems. SIAM Journal

on Scientific Computing, 26(6) 1871-1893.

[7] Bhakti, T. L., Susanto, A., Santosa, P. I., & Widayati, D. T. (2012) Design of Bovine

SemenTemperature ControllerUsing PID. Int. J. of Comp. Eng. Res, 2(7) 52-58.

[8] Chang, C.-T., Chang, C.-T., Yang, H.-L., & Chang, H.-T. (1996) Real-time implementation

of speech recognition using RISC processor core. Paper presented at the Proceedings Ninth

Annual IEEE International ASIC Conference and Exhibit.

[9] Bilal, M., & Masud, S. (2007) Efficient color space conversion using custom instruction in

a risc processor. Paper presented at the 2007 IEEE International Symposium on Circuits and

Systems.

[10] Hauck, S., & DeHon, A. (2010) Reconfigurable computing: the theory and practice of

FPGA-based computation: Elsevier.

[11] Ball, J. (2007) Designing soft-core processors for FPGAs. In Processor Design (pp. 229-

256): Springer.

[12] Mohammad, I., Ramananjaneyulu, K., & Veeraswamy, K. (2012) FPGA implementation

of a 64-bit RISC processor using VHDL. International Journal of Engineering Research and

Applications (IJERA), 2(3) 2544-2549.

[13] Thakor, K. P., & Pal, A. (2017) Design of a 16-bit RISC Processor Using VHDL. Int. J.

Eng. Res. Technol (IJERT), 6.

[14] Valli, B., Kumar, A. U., & Bhaskar, B. V. (2012) FPGA Implementation and Functional

Verification of a Pipelined MIPS Processor 1.

[15] Mane, P. S., Gupta, I., & Vasantha, M. (2006) Implementation of RISC Processor on

FPGA, Paper presented at the 2006 IEEE International Conference on Industrial Technology.

[16] Kadam, S. U., & Mali, S. (2016) Design of risc processor using VHDL, 2016 International

Journal of Research Granthaalaya, 4(6).

[17] Luker, J. D., & Prasad, V. B. (2001) RISC system design in an FPGA. Paper presented at

the Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems.

MWSCAS 2001 (Cat. No. 01CH37257).

[18] Ghaturle, M. S., & Kadam, R. (2017) Review Paper on 32-Bit RISC Processor with

Floating Point Arithmetic. Int. Research Journal of Engineering and Technology (IRJET), 4.

Design of RISC Processor with IEEE754 Standard Floating-Point Instruction Set in FPGA using VHDL

for Digital Signal Processing Applications

714

[19] Electrical, I. o., Committee, E. E. C. S. S., & Stevenson, D. (1985) IEEE standard for

binary floating-point arithmetic: IEEE.

[20] Fisher, R. A. and Marshall M. (1988) “UCI repository of machine learning databases”.

University of California.

