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Abstract 

The design of RISC processors, which are the key of digital signal processing applications, are increasing in 

reconfigurable hardware. FPGAs are suitable reconfigurable hardware for RISC processor design, with 

advantages such as parallel processing and low power consumption. In this study, the design of the 32-bit RISC 
processor in a FPGA is presented. The designed RISC processor contains IEEE754 standard floating-point 

number processing unit, which is executed in one clock cycle. The verification of the processor is performed 

for the Zynq-7000 SoC Artix-7 FPGA chip in the Xilinx Vivado tool. Classification of an artificial neural 

network using the iris dataset is carried out in this designed RISC processor. In order to compare the 

performance, the same artificial neural network is executed in real time in the dual-core ARM Cortex-A9 

processor in the operating system of the Zynq-7000 SoC. The results show that the RISC processor designed in 

the FPGA executes at 20x less clock cycles and 3x higher speed compared to the ARM processor. 

 

 

Keywords: FPGA, ARM, RISC, reconfigurable hardware 

 

VHDL Kullanarak, Dijital Sinyal İşleme Uygulamaları için IEEE754 Standart Kayan 

Noktalı Komut Kümesine Sahip RISC İşlemcinin FPGA’de Tasarımı 

 

Öz 

Dijital sinyal işleme uygulamalarının kalbi niteliğinde olan RISC işlemcilerin, yeniden yapılandırılabilir 

donanımlardaki tasarımları giderek artmaktadır. FPGA’ler, paralel çalışma, düşük güç tüketimi gibi avantajlara 

sahip, RISC işlemci tasarımı için ideal yeniden yapılandırılabilir donanımlardır. Bu çalışma 32-bit RISC 

işlemcinin FPGA’de tasarımını sunmaktadır. Tasarlanan RISC işlemci, tek saat darbesinde işlem yapabilecek 

paralellikte olan IEEE754 standartında kayan noktalı sayı işlem birimini içermektedir. İşlemcinin doğrulması, 

Xilinx Vivado aracında Zynq-7000 SoC Artix-7 FPGA çipi için yapılmıştır. Iris dataseti kullanılarak bir yapay 

sinir ağının sınıflandırma işlemleri, tasarlanan bu RISC işlemci içerisinde gerçekleştirilmiştir. Performans 

kıyaslaması yapabilmek için aynı yapay sinir ağı Zynq-7000 SoC’nin işletim sistemi kısmında bulunan çift 

çekirdekli ARM Cortex-A9 işlemcisinde de gerçek zamanlı olarak çalıştırılmıştır. Elde edilen sonuçlar, FPGA 

içerisinde tasarlanan RISC işlemcinin, ARM işlemciye kıyasla 20 kat daha az saat darbesinde 3 kat daha yüksek 

hızda bu işlemi gerçekleştirdiğini göstermektedir. 
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1. Introduction 

With the development of technology, digital signal processing applications (DSP) are 

increasing significantly in space and defense industry, medicine and various commercial areas. 

The reduced instruction set computer (RISC) processor is at the heart of such DSP applications 

[1]. All processors have an instruction set architecture that perform operations according to 

instructions. Unlike other processors, the RISC processor architecture has a simple instruction 

set and each instruction is executed in one clock cycle. [2]. Through these advantages, the RISC 

processor offers a flexible and extensible architecture that provides maximum performance for 

any processing technology.  RISC architectures are used today in phones, tablets and personal 

computers, as well as supercomputers such as Fugaku, Summit, Sierra, Sunway and TaihuLight 

[3]. The RISC processor has also been used in DSP applications, video decoding and image 

acquisition [4]-[5]. Such as applied mathematics and control systems, computations are other 

usage area of the RISC processor [6]-[7]. In artificial intelligence, speech recognition and 

motion estimation are examples of the use of the RISC processor [8]-[9]. 

Reconfigurable computing bridges the gap between software and hardware design using 

hardware like field programmable gate arrays (FPGAs) [10]. The role of reconfigurable 

processors in embedded system design has been increasing in recent years. Owing to 

reconfigurable hardware such as FPGA, processor architectures can be changed by 

programming [11]. Various RISC processor have been designed in the literature using FPGA. 

FPGA-based 64-bit RISC processor with self-test verificated using VHDL was designed in the 

Xilinx ISE tool [12]. [13] describes a 16-bit RISC processor designed using VHDL, in which 

behavioral model is preferred to create components. The design is a four-stage pipelined 

processor. According to [14] presented the design of a pipeline microprocessor without 

interlocked pipeline stages (MIPS) RISC processor using VHDL.  32-bit RISC processor-based 

MIPS was designed using VHDL [15]. Unlike the previous paper given above, it presents five-

stage, pipeline processor. A from top to down approach is preferred in the design. 16-bit RISC 

processor design is presented using the VHDL language [16]. The design is simulated and 

synthesized using Xilinx ISE 13.1. Pipelining is used to speed up to the processor. In pipelining, 

the instruction cycle is seperated so that multiple processes can be executed in parallel. Designs 

of subunits of processor are also among the studies in the literature. In the first of these studies, 

the fetch and decode units of the RISC processor was designed [17]. The design is successfully 

simulated in the Quartus II tool of Intel. In [18], it is aimed to design the fetch unit and ALU, 

which are subunits of the RISC processor. The Fetch unit is designed to read instructions stored 

in memory. The ALU that performs all the computations such as arithmetic and logical 

operations is at the execution stage of the pipeline. The Xilinx ISE 8.1 tool is used to simulate 

the design with the VHDL. 

When designing real-time digital systems using the RISC processor, there is usually a need to 

operate with fractional or large numbers. To satisfy this need, various number representations 

are used according to the performance and accuracy of the design. The floating-point number 

representation is standardized by IEEE754 and used to represent real numbers in the binary 

number system. The design of floating point processing units is quite important for system 
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performance. In this study, RISC processor with IEEE754 standard floating-point unit (FPU) is 

designed in FPGA. Due to FPU, unlike other RISC processor designs in the literature, the 

designed processor can process with fractional numbers. Thus, it becomes suitable for real-time 

signal processing applications. In addition, taking advantage of the parallel processing of the 

FPGA, the FPU is designed to operate in one clock cycle. Thus, the processor reduces the 

execution time of any application. This design is verificated in the Xilinx Zynq-7000 FPGA 

chip. Then, classification of iris flower is done by using artificial neural network in the designed 

processor. Finally, in order to compare the performance, the classification is executed in real 

time on the ARM processor in the Zynq-7000 chip in the same artificial neural network. The 

remainder of this article is organized as follows. In section 2, information about floating-point 

number arithmetic is given and the architecture of the designed RISC processor is presented. In 

section 3, simulation and synthesis studies of artificial neural network classifying iris flower 

species in RISC processor are given to verify the behavioral function of the RISC processor. 

2. Material and Methods 

This section presents the floating-point number representation, the floating-point arithmetic and 

the RISC processor designed in the FPGA, respectively. 

2.1. IEEE754 Standart Floating-Point Number Representation 

Floating-point number representation, which was made a standard by the IEEE in 1985, consists 

of three formats: single precision, double precision and extended precision [19]. A number 

represented as an IEEE754 floating point consists of sign, exponent and fraction bits. According 

to the format used, the bit lengths of the exponent and fraction changes. In Table 1, information 

about bit lengths for single precision, double precision and extended precision number formats 

is given. 

Table 1. Floating-point number formats 

Format Sign    Bits Exponent Bits Fraction Bits 

Single 1 8 23 

Double 1 11 52 

Extended 1 15 112 

 

2.2. Floating Point Arithmetic 

Multiplication, division, addition, and subtraction are among floating-point number arithmetic 

operations. All operation are executed in specially designed units. Floating-point addition and 

subtraction is performed in only one unit given in Figure 1. This unit has the highest latency, 

the longest design time and the most complex among floating-point operations. 
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Figure 1. Adder/subtractor micro-architecture 

Firstly, in the floating point addition/subtraction unit, first the exponents of the two numbers 

are subtracted to determine the large and small number. The '1' bit is placed to the left of the 

fraction bits for pre-normalization. The fraction of the smaller number is shifted to the right 

according to subtraction of exponents. The fraction from the shift operation and the fraction of 

the larger number are sent to the sub/add module. While the process is running in the sub/add 

module, the estimation of the position of the most significant '1' bit required for normalization 

is done by the leading one predictor module (LOP). Normalization is performed by shifting the 

numbers to the left by the estimated amount from LOP if the signs are different, or by shifting 

one bit to the left or right depending on the situation. The fraction obtained by normalization is 

rounded. To determine the exponent of the result, the exponent of the large number is set and 

the result is obtained. 

Multiplication, another floating-point operation, is among the most used operations along with 

addition in digital signal processing applications. Floating-point multiplication is executed 

within the unit given in Figure 2. 
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Figure 2. Multiplier micro architecture 

Pre-normalization is performed by placing '1' to the left of the most significant bit of the fraction 

of two numbers in the floating point multiplication unit. After the pre-normalization, the 

fractions of the numbers are multiplied. As the multiplication continues, the exponents of the 

numbers are added to get the exponent of the result. The most significant bit of the 

multiplication result of the fractions is checked. If the corresponding bit is '1', the exponent 

resulting from the sum is increased by 1. The obtained fraction is rounded so that the result is 

found. 

The floating-point division operation is similar to the multiplication. It is in the form of 

subtracting two numbers and dividing fractions. The micro-architecture of the floating point 

divider unit is given in Figure 3. 

In the floating-point division operation, pre-normalization is performed by placing '1' to the left 

of the most significant bit of the fractions of two numbers. The fractions got by pre-

normalization are divided. At this time, the exponents of the numbers are subtracted in parallel. 

The fraction from the division operation is rounded to form the fraction of the result, thus the 

result is obtained. 
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Figure 3. Floating-point divider micro architecture 

2.3. 32-bit RISC Processor Design 

In this section of the study, information is given about the designed RISC processor, FPU unit, 

CPU, registers, program counter, main memory and I / O ports. 

Before any computer hardware can be designed, the instruction should be defined. Some 

computer hardware has very few instructions to reduce the physical size of the circuit required 

by the CPU. Such a design allows the CPU to execute instructions at a high frequency. This 

architectural approach used when designing computer hardware is called RISC [2]. 

In a RISC processor, one clock cycle is required to execute any instruction. It is easy to convert 

a RISC processor into a pipelined design, because all instructions are processed in the same 

time and the opcode and the operand take the same position in the number sequence. The RISC 

processor to be designed in this study consists of AN FPU operating in IEEE754 single 

precision floating-point number representation, a program memory, a data memory, a control 

unit and registers. The micro-architecture of the designed RISC processor is given in Figure 4. 
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Figure 4. RISC processor micro architecture.  

2.3.1. Control Unit 

All operations performed within the RISC processor are managed by the control unit. Therefore, 

the design of the control unit is quite important so that the instruction to work properly in the 

right order. In this study, the control unit is designed as a finite state machine (FSM) that 

executes the Fetch, decode and execute stages. Two status signals, current state and next state, 

in the control unit are shown in Figure 5. 

 

Figure 5. Control unit FSM 
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The current state is in a synchronous and sensitive to the clock and reset signal. Current state 

changes its state according to next state. Next state is a combinational structure that runs 

according to the current state and inputs. In addition, the output logic circuit, which is 

responsible for producing the relevant output in any situation, which changes depending on the 

current state, is also located in the control unit.  The output logic circuit is only sensitive to the 

current state. Thus, the signals produced by the control unit can be sent to the memory or data 

bus asynchronously, without waiting for the next clock cycle. As can be seen in Figure 6, the 

current state and the next state in the control unit are three stages: Fetch, Decode and Execute. 

 

Figure 6. Fetch, Decode and Execute stages 

In Fetch, the instruction in the program memory is read and written to the instruction register 

(IR). Fetch consists of three sub-branches. In S_FETCH_0, firstly BUS1_Sel signal is set to 

"00" value and PC register value is sent to BUS1. Then, the BUS2_Sel signal is set to "01" and 

the data in BUS1 is sent to BUS2. Finally, by making the MAR_Load signal '1', the address 

going to the memory is updated. Thus, the data at the corresponding address in the memory can 

be accessed.  

The program counter is made ready by setting PC_Inc signal as '1' in S_FETCH_1 and 

increasing the value of PC register by 1. In S_FETCH_2, the BUS2_Sel signal is set to "10" 

and the value read at the relevant address in the memory is transferred to BUS2. Then, the 

IR_Load signal is set to '1' and the instruction in BUS2 is loaded into the IR register. In Decode, 

the identity of the instruction is detected. Finally, the instruction detected in the execute state is 

performed inside the processor. For this, the instructions given in Table 2 are used. 

The instructions are executed sequentially in the program memory and the desired operation is 

performed by the processor. These instructions actually create a software. By correctly writing 

and sequencing the instructions, the software to be executed by the processor is built. Executing 

the software and converting it to machine code is carried out by the processor. 
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Table 2. Instruction Set of the Designed RISC Processor 

Type Instruction 

Loads and Stores LDA_IMM, LDA_DIR LDB_IMM, LDB_DIR STA_DIR, 

STB_DIR 

Floating-Point Arithmetic FP_ADD_AB FP_SUB_AB FP_DIV_AB FP_MULT_AB 

Logical AND_AB, OR_AB, XOR_AB, NOT A, INCA, INCB       DECA, 

DECB        SR_A, SL_A          SR_B, SL_B 

Branches BRA, BMI, BPL, BEQ, BNE, BVS, BVC, BCS, BCC 

 

The instructions for the software to be executed by the processor are written to the program 

memory in order. The sequential reading of these instructions in the program memory is 

realized by the PC register. In Figure 7, the PC register in the processor is given. 

 

Figure 7. PC register structure 

The PC register actually runs like a counter. The value of the PC register is zero in the first 

stage for any software to be implemented. Then the value of the PC register is incremented by 

1 in each time a read is made from the memory. With the branches instructions listed in Table 

2, the PC register jumps to the address value in the operand with or without negative, zero, 

overflow and carry flag conditions. This ensures that the instructions are executed correctly. 

2.3.2. Program Memory 

The program memory where the instructions are stored is located in the memory given in Figure 

8 in the processor. 
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Figure 8. Processor memory 

Memory consists of program memory, data memory and input and output ports. The program 

memory has a capacity of 512 bytes, and the data memory has a capacity of 384 bytes. Any 

instruction or data from the memory is read and written with the MAR register. The counter 

value in the PC register is sent to BUS2 in order to read or write. Then, the MAR_Load signal 

is set '1' and the address value in BUS2 is sent to the MAR output and thus to the memory. 

2.3.3. Floating-Point Unit (FPU) 

In the FPU, logical operations and shift operations are carried out as well as floating-point 

arithmetic operations. Figure 9 shows the FPU. 

 

Figure 9. Floating-point unit  

Which operation will be executed in the FPU is selected by FPU_Sel. The operations 

corresponding to FPU-Sel bits are listed in Table 3. 
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Table 3. FPU operations 

FPU_Sel Operation 

00000 A = A + B in floating-point 

00001 A = A - B in floating-point 

00010 A = A * B in floating-point 

00011 A = A / B in floating-point 

00100 A = A and B 

00101 A = A or B 

00110 A = A xor B 

00111 A = not A 

01000 B = not B 

01001 A = A + 1 in floating-point 

01010 B = B + 1 in floating-point 

01011 A = A – 1 in floating-point 

01100 B = B – 1 in floating-point 

01101 Shifts A one bit to the right 

01110 Shifts A one bit to the left 

01111 Shifts B one bit to the right 

10000 Shifts B one bit to the left 

 

The 4-bit NZVC number got from the FPU output is used to store negative, zero, overflow, 

carry exceptions. These exceptions are loaded into the CCR register and sent to the control unit. 

The corresponding NZVC values for the exceptions are listed in Table 4. 

Table 4. NZVC exceptions 

ALU_Sel Operation 

Negative Results 1000 

Zero Result 0100 

Overflow Result 0010 

Carry Result 0001 

 

3. Design Verification and Simulation Results 

The processor is designed using the very high-speed integrated circuit hardware description 

language (VHDL). Behavioral verification of the designed processor is done on Xilinx Zynq-

7000 using Vivado Design Suite. In order to perform the behavioral verification, the machine 
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code for the artificial neural network (ANN) given in Figure 10 is programmed and placed in 

the program memory. 

ANN structure is quite simple. Inputs and weights are dot multiplication within the processor, 

and each product is summed. The result is calculated by adding bias to the summed value. The 

result obtained is passed through a decision mechanism. Also, the activation function used is a 

linear function. 

 

Figure 10. An artificial neural network architecture for Iris classification 

100 data taken from the iris dataset, 67 are used for training the network and 33 are used for 

testing. Some test data used as input are given in Table 5 [20]. 

Table 5. Test data for iris flower 

Sepal Length 

(x1) 

Sepal Width 

(x2) 

Petal Length 

(x3) 

Petal Width 

(x4) 
Species 

6 2.7 5.1 1.6 Versicolor 

4.8 3 1.4 0.3 Setosa 

5.5 2.3 4 1.3 Versicolor 

5.9 3.2 4.8 1.8 Versicolor 

5.1 3.8 1.9 0.4 Setosa 

5.1 3.4 1.5 0.2 Setosa 

4.6 3.6 1 1.1 Setosa 

 

These features are sent as input to the network and the species of iris flower is obtained at the 

output. ANN is simulated in Vivado Design Suite to verify the designed RISC processor. The 

simulation results for the features in the first four rows given in Table 5 are as in Figure 11. 

 

 



Design of RISC Processor with IEEE754 Standard Floating-Point Instruction Set in FPGA using VHDL 

for Digital Signal Processing Applications 

711 

 

 

 

 

Figure 11. Simulation results for iris classification 

In order to compare performance, the software of the same artificial neural network is carried 

out in real time in the dual-core ARM Cortex A9 processor in the same chip, the Zynq-7000, 

and the results given in Table 6. Results are obtained by Xilinx Vivado tool. 
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Table 6. Frequency, clock cycle and execution time for FPGA and ARM 

 Frequency 

(MHz) 
Clock Cycle Execution 

Time (µs) 

RISC Processor Designed in FPGA 16 456 14.11 

Software in ARM Processor 100 9140 45.7 

 

4. Conclusion 

FPGAs are widely used in processor design due to their advantages such as parallel processing, 

low power consumption and reconfiguration. This study focuses on the design of a RISC 

processor in a FPGA. Unlike other RISC designs, the RISC processor in this study includes an 

FPU. Through the FPU, various complex digital signal processing applications such as ANN, 

image processing, object recognition and video decoders can be implemented simply by 

software on this processor. Classification of Iris flower species is executed using ANN in the 

designed processor. In this way, both hardware design and software programming of the RISC 

processor in FPGA are included and its verification is also provided. The classification is 

implemented using the same ANN on the ARM processor to compare the performance. The 

results show that the processor designed in FPGA operates faster and with fewer clock cycles. 
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