Advances in the Theory of Nonlinear Analysis and its Applications 6 (2022) No. 3, 336–339. https://doi.org/10.31197/atnaa.1078671 Available online at www.atnaa.org Research Article

On An Existential Question for Strictly Decreasing Convergent Sequences

Jen-Yuan Chen^a, Wei-Shih Du^{a,1}

^aDepartment of Mathematics, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan.

Abstract

In this paper, we study an existential question for strictly decreasing convergent sequences. Applying Du's existence theorem, our question will be answered affirmatively.

Keywords: Strictly decreasing sequence, convergent sequence, existential question, Du's existence theorem. 2010 MSC: 26E40, 54C30.

1. Question and Answer

In this paper, we study the following interesting question:

Question: Does there exist a strictly decreasing sequence $\{a_n\}_{n\in\mathbb{N}}$ of positive real numbers such that $\lim_{n\to\infty} a_n = 0$ and

In fact, this existential question is not easy to answer. In this article, we will apply the following known existence theorem, proved by Du [2], to slove this question. We give the proof of Du's existence theorem here for the sake of completeness and the readers convenience.

Email addresses: jchen@nknu.edu.tw (Jen-Yuan Chen), wsdu@mail.nknu.edu.tw (Wei-Shih Du) ¹ corresponding author

Theorem 1. (see [2, Lemma 3.1]) Let $\beta \in \mathbb{R}$ and $\tau : \mathbb{R} \to \mathbb{R}$ be a function satisfying $\lim_{x \to \beta^+} \tau(x) = \beta$. Then there exists a strictly decreasing $\{\lambda_n\}_{n \in \mathbb{N}}$ of positive real numbers such that $\tau(\beta + \lambda_{n+1}) < \beta + \lambda_n$ for all $n \in \mathbb{N}$ and $\lambda_n \downarrow 0$ as $n \to \infty$.

Proof. If $\tau(x) = \beta$ is a constant function, then we can choose a positive real number a and finish the proof by taking $\lambda_n = \frac{a}{n}$ for all $n \in \mathbb{N}$. Suppose that τ is not a constant function. For any $\epsilon > 0$, since $\lim_{x \to \beta^+} \tau(x) = \beta$, there exists $\delta = \delta(\epsilon) > 0$ such that

$$\beta < x < \beta + \delta$$
 implies $\tau(x) < \beta + \epsilon$.

Given $\lambda_1 > 0$. Then there is $\delta_1 > 0$ such that

$$\beta < x < \beta + \delta_1$$
 implies $\tau(x) < \beta + \lambda_1$

Let $\lambda_2 = \min\left\{\frac{\delta_1}{2}, \frac{\lambda_1}{2}\right\}$. Then $\beta < \beta + \lambda_2 < \beta + \delta_1$ and $\lambda_2 < \lambda_1$. So we have from the last inequality that

$$\tau(\beta + \lambda_2) < \beta + \lambda_1.$$

For λ_2 , it must exist $\delta_2 > 0$ such that

$$\beta < x < \beta + \delta_2$$
 implies $\tau(x) < \beta + \lambda_2$.

Put $\lambda_3 = \min\left\{\frac{\delta_2}{2}, \frac{\lambda_2}{2}\right\}$. Thus $\beta < \beta + \lambda_3 < \beta + \delta_2$ and $\lambda_3 < \lambda_2$. The last inequality deduces

$$\tau(\beta + \lambda_3) < \beta + \lambda_2.$$

Continuing this process, for $\lambda_k, k \in \mathbb{N}$ with $k \geq 2$, it must exist $\delta_k > 0$ such that

$$\beta < x < \beta + \delta_k$$
 implies $\tau(x) < \beta + \lambda_k$

Take

$$\lambda_{k+1} = \min\left\{\frac{\delta_k}{2}, \frac{\lambda_k}{2}\right\}.$$

Then we get $\lambda_{k+1} < \lambda_k$ and $\tau(\beta + \lambda_{k+1}) < \beta + \lambda_k$. So, we can construct a strictly decreasing sequences $\{\lambda_n\}$ of positive real numbers such that

$$\tau(\beta + \lambda_{n+1}) < \beta + \lambda_n \quad \text{for all } n \in \mathbb{N}.$$

By the definition of λ_n , we have $0 < \lambda_{n+1} \leq \frac{\lambda_1}{2^n}$ for $n \in \mathbb{N}$, which yields $\lambda_n \downarrow 0$ as $n \to \infty$. The proof is completed.

Take $\beta = 0$ in Theorem 1, we can obtain the following result immediately.

Corollary 2. (see [1, Corollary 2]) Let $\tau : \mathbb{R} \to \mathbb{R}$ be a function satisfying $\lim_{x\to 0^+} \tau(x) = 0$. Then there exists a strictly decreasing sequence $\{\lambda_n\}_{n\in\mathbb{N}}$ of positive real numbers such that $\tau(\lambda_{n+1}) < \lambda_n$ for all $n \in \mathbb{N}$ and $\lambda_n \downarrow 0$ as $n \to \infty$.

By Corollary 2 (or Theorem 1), our question will be answered affirmatively.

Solution: The answer is **Yes**. Indeed, define $f : \mathbb{R} \to \mathbb{R}$ by

It is easy to see that $\lim_{x\to 0^+} f(x) = 0$. Hence, by applying Corollary 2, there exists a strictly decreasing sequence $\{a_n\}_{n\in\mathbb{N}}$ of positive real numbers such that $\lim_{n\to\infty} a_n = 0$ and

for all $n \in \mathbb{N}$.

Acknowledgements

The second author is partially supported by Grant No. MOST 110-2115-M-017-001 of the Ministry of Science and Technology of the Republic of China.

References

- W.-S. Du, Existence and uniqueness of zeros for vector-valued functions with K-adjustability convexity and their applications, Mathematics 2019, 7(9), 809.
- [2] W.-S. Du, Minimization of functionals with adjustability quasiconvexity and its applications to eigenvector problem and fixed point theory, Journal of Nonlinear and Convex Analysis 22(7) (2021) 1389-1398.