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Abstract

In this paper, we study an existential question for strictly decreasing convergent sequences. Applying Du's
existence theorem, our question will be answered a�rmatively.
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1. Question and Answer

In this paper, we study the following interesting question:

Question: Does there exist a strictly decreasing sequence {an}n∈N of positive real numbers such that
lim
n→∞

an = 0 and

exp
(
2022 (an+1)

3
)
sin (sin (sin (sin (sin (sin (sin (sin (sin (sin an+1))))))))) < an for all n ∈ N?

In fact, this existential question is not easy to answer. In this article, we will apply the following known
existence theorem, proved by Du [2], to slove this question. We give the proof of Du's existence theorem
here for the sake of completeness and the readers convenience.
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Theorem 1. (see [2, Lemma 3.1]) Let β ∈ R and τ : R→ R be a function satisfying lim
x→β+

τ(x) = β. Then

there exists a strictly decreasing {λn}n∈N of positive real numbers such that τ(β + λn+1) < β + λn for all
n ∈ N and λn ↓ 0 as n→∞.

Proof. If τ(x) = β is a constant function, then we can choose a positive real number a and �nish the proof by
taking λn = a

n for all n ∈ N. Suppose that τ is not a constant function. For any ε > 0, since lim
x→β+

τ(x) = β,

there exists δ = δ(ε) > 0 such that

β < x < β + δ implies τ(x) < β + ε.

Given λ1 > 0. Then there is δ1 > 0 such that

β < x < β + δ1 implies τ(x) < β + λ1.

Let λ2 = min
{
δ1
2 ,

λ1
2

}
. Then β < β + λ2 < β + δ1 and λ2 < λ1. So we have from the last inequality that

τ(β + λ2) < β + λ1.

For λ2, it must exist δ2 > 0 such that

β < x < β + δ2 implies τ(x) < β + λ2.

Put λ3 = min
{
δ2
2 ,

λ2
2

}
. Thus β < β + λ3 < β + δ2 and λ3 < λ2. The last inequality deduces

τ(β + λ3) < β + λ2.

Continuing this process, for λk, k ∈ N with k ≥ 2, it must exist δk > 0 such that

β < x < β + δk implies τ(x) < β + λk.

Take

λk+1 = min

{
δk
2
,
λk
2

}
.

Then we get λk+1 < λk and τ(β+λk+1) < β+λk. So, we can construct a strictly decreasing sequences {λn}
of positive real numbers such that

τ(β + λn+1) < β + λn for all n ∈ N.

By the de�nition of λn, we have 0 < λn+1 ≤ λ1
2n for n ∈ N, which yields λn ↓ 0 as n → ∞. The proof is

completed.

Take β = 0 in Theorem 1, we can obtain the following result immediately.

Corollary 2. (see [1, Corollary 2]) Let τ : R → R be a function satisfying lim
x→0+

τ(x) = 0. Then there

exists a strictly decreasing sequence {λn}n∈N of positive real numbers such that τ(λn+1) < λn for all n ∈ N
and λn ↓ 0 as n→∞.

By Corollary 2 (or Theorem 1), our question will be answered a�rmatively.

Solution: The answer is Yes. Indeed, de�ne f : R→ R by

f(x) = exp
(
2022x3

)
sin (sin (sin (sin (sin (sin (sin (sin (sin (sinx))))))))) .
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It is easy to see that lim
x→0+

f(x) = 0. Hence, by applying Corollary 2, there exists a strictly decreasing

sequence {an}n∈N of positive real numbers such that lim
n→∞

an = 0 and

exp
(
2022 (an+1)

3
)
sin (sin (sin (sin (sin (sin (sin (sin (sin (sin an+1))))))))) = f(an+1)

< an

for all n ∈ N.
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