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Özet 
 

Bu çalışmada, yazar türevlenebilir fonksiyonlar için yeni genel bir özdeşlik verir ve bu 

özdeşliği kullanarak p -quasi konveks fonksiyonlar için bazı yeni genelleştirilmiş 

Hermite-Hadamard tipli eşitsizlikler elde eder. 
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1  Introduction 

 

Let :f I R R   be a convex function defined on the interval I  of real numbers and 

Iba ,  with ba < . The following inequality 
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  (1) 

holds. This double inequality is known in the literature as Hermite-Hadamard integral 

inequality for convex functions. Note that some of the classical inequalities for means 

can be derived from (1) for appropriate particular selections of the mapping f . Both 

inequalities hold in the reversed direction if f  is concave. 

In Dragomir & Agarwal (1998),  gave the following Lemma. By using this Lemma, 

Dragomir obtained the following Hermite-Hadamard type inequalities for convex 

functions: 

 

Lemma 1 Let :f I R R   be a differentiable mapping on I  and Iba ,  with 

ba < . If ],,[ baLf '   then the following equality holds:  
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 The notion of quasi-convex functions generalizes the notion of convex functions. More 

precisely, a function :[ , ]f a b R  is said quasi-convex on ],[ ba  if  

    ,)(),(sup)(1 yfxfyxf    

for any ],, bayx   and  .0,1  Clearly, any convex function is a quasi-convex 

function. Furthermore, there exist quasi-convex functions which are not  convex (see 

Ion 2007). 

For some results which generalize, improve and extend the inequalities(1) related to 

quasi-convex functions we refer the reader to see (Alomari et al 2010; Alomari et al 

2011; Ion 2007; İşcan 2013; 2013; 2013, İşcan et al 2014,Zehang 2013) and plenty of 

references therein. 

In (İşcan 2014), the author, gave definition Harmonically convex and concave functions 

as follow. 

 

Definition 1 Let  \ 0I R  be a real interval. A function :f I R  is said to be 

harmonically convex, if    
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for all Iyx ,  and 0,1]t . If the inequality in (3) is reversed, then f  is said to be 

harmonically concave.  

 

Zhang et al (2013) defined the harmonically quasi-convex function and supplied several 

properties of this kind of functions. 

 

Definition 2 A function     0,0,: If  is said to be harmonically quasi-convex, 

if    

                           )(),(sup
)(1
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for all Iyx ,  and 0,1]t .  

 

We would like to point out that any harmonically convex function on   0,I  is a 

harmonically quasi-convex function, but not conversely. For example, the function  
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is harmonically quasi-convex on (0,4] , but it is not harmonically convex on (0,4] . 

In [16], Zhang and Wan gave definition of p -convex function as follow: 

 

Definition 3 Let I  be a p-convex set. A function :f I R  is said to be a p-convex 

function or belongs to the class PC(I), if 

    )()(1)()(1
1/

yfxfyxf
ppp    

for all Iyx ,  and 0,1] .  

 

Remark 1  An interval I  is said to be a p-convex set if   Iyx
ppp 

1/
)(1   for all 

Iyx ,  and 0,1] , where 12= kp  or mnp /= , 12= rn , 12= tm  and 

.,, trk   

 

Remark 2   If   0,I  be a real interval and  \ 0p R , then 

  Iyx
ppp 

1/
)(1   for all Iyx ,  and 0,1] .  

 

According to Remark 2, we can give a different version of the definition of p -convex 

function as follow: 
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Definition 4 [10,11,12] Let   0,I  be a real interval and  \ 0 .p R  A function 

If :  is said to be a p-convex function, if 

    )()(1)()(1
1/

yfxfyxf
ppp    (4) 

for all Iyx ,  and 0,1] . If the inequality in (4) is reversed, then f  is said to be p -

concave.  

 

According to Definition 4, It can be easily seen that for 1=p  and 1= p , p -convexity 

reduces to ordinary convexity and harmonically convexity of functions defined on 

  0,I , respectively. 

 

Example 1 Let  : 0, , ( ) = , 0,pf R f x x p    and  : 0, , ( ) = , ,g R g x c c R    

then f  and g  are both p -convex and p -concave functions.  

 

In [4, Theorem 5], if we take   0,I ,  \ 0p R  and tth =)(  , then we have the 

following Theorem. 

 

Theorem 1 Let  : 0,f I R    be a p -convex function,  \ 0p R , and Iba ,  

with .< ba  If ],[ baLf   then we have    
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 In[11], İşcan defined the p -quasi-convex function and supplied several properties of 

this kind of functions as follow: 

 

Definition 5 Let   0,I  be a real interval and  \ 0p R . A function :f I R  is 

said to be p -quasi-convex, if    

     )(),(max)(1
1/

yfxfyttxf
ppp   (6) 

for all Iyx ,  and 0,1]t . If the inequality in (6) is reversed, then f  is said to be p -

quasi-concave.  

 

It can be easily seen that for 1=r  and 1= r , p -quasi convexity reduces to ordinary 

quasi convexity and harmonically quasi convexity of functions defined on   0,I , 

respectively. Morever every p -convex function is a p -quasi-convex function. 
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Example 2 Let    : 0, , ( ) = , \ 0 ,pf R f x x p R    and 

 : 0, , ( ) = , ,g R g x c c R    then f  and g  are p -quasi-convex functions.  

 

Proposition 1 Let   0,I  be a real interval,  \ 0p R  and :f I R  is a function, 

then ; 

 1. If 1p  and f is quasi-convex and nondecreasing function then f is p -quasi-convex. 

 2.  If 1p  and f is p -quasi-convex and nondecreasing function then f is quasi-convex. 

 3. If 1p  and f is p -quasi-concave and nondecreasing function then f is quasi-

concave. 

 4. If 1p  and f is quasi-concave and nondecreasing function then f is p -quasi-

concave. 

 5.  If 1p  and f is quasi-convex and nonincreasing function then f is p -quasi-convex. 

 6. If 1p  and f is p -quasi-convex and nonincreasing function then f is quasi-convex. 

 7. If 1p  and f is p -quasi-concave and nonincreasing function then f is quasi-

concave. 

 8. If 1p  and f is quasi-concave and nonincreasing function then f is p -quasi-

concave.  

 

Proposition 2 If    : , 0,f a b R    and if we consider the function 

: , ,p pg a b R     defined by  ptftg 1/=)( , 0p , then f  is p -quasi-convex on  ba,  

if and only if g  is quasi-convex on  ., pp ba   

 

For some results related to p -convex functions and its generalizations, we refer the 

reader to see (Fang 2014; İşcan 2016; 2016; 2016,Noor 2015; Zhang et al 2015). 

The main purpose of this paper is to establish some new general results connected with 

the right-hand side of the inequalities (5) for p -quasi-convex functions. 

 

2  Main Results 

 

In order to prove our main results we need the following lemma: 

 



 

 

 
İ. İşcan 

88 

 

Lemma 2 Let  : 0,f I R    be a differentiable mapping on I , Iba ,  with 

ba < . If  [ , ], \ 0'f L a b p R   and   0,> ,0,,    then the following 

equality holds: 

 
 

 1

,1 1/1

0

( )( ) ( ) ( )
= ( ( , ))

(1 )

b p p
'

p tpp p p p p
a

tf a f b p f x b a
dx f M a b dt

b a x p tb t a

   

    

  


      
   

where   .)(1=),(
1/

,

ppp

tp attbbaM    

Proof: integration by parts we have 
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Setting ppp attbx )(1=  , and  dtabdxpx ppp  =1  gives 
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which completes the proof.  

 

 

Remark 3 If we take 1=== p  in Lemma 2, then we obtain the inequality (2) in 

Lemma 1.  

 

Theorem 2 Let  : 0,f I R    be a differentiable function on I , Iba ,  with 

ba < ,  \ 0p R  and ].,[ baLf '   f 'f  is p -convex on ],,[ ba  then 
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Proof: From Lemma 2 and using the Hölder integral inequality and p -quasi-convexity 

of 'f  on ],[ ba , we have 
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In Theorem 2, if we put 1p  , then we obtain the following corollary for quasi-convex 

functions: 

 

Corollary 1 Under the conditions of Theorem 2, if we take 1p  , then we have 
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In Theorem 2, if we put 1p   , then we obtain the following corollary for 

harmonically quasi-convex functions: 

 

Corollary 2 Under the conditions of Theorem 2, if we take 1p   , then we have 
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Theorem 3 Let  : 0,I Rf     be a differentiable function on I , Iba ,  with 

ba < ,  \ 0p R  and ].,[ baLf '   f 
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Proof: From Lemma 2 and using the Hölder integral inequality and p -quasi-convexity 

of 
q

'f  on ],[ ba , we have 

 
1

( ) ( ) ( )
b

p p p

a

f a f b p f x
dx

b a x

 

  




    

 
 

1

,1 1/

0

( )
( ( , ))

(1 )

p p
'

p tp
p p

tb a
f M a b dt

p tb t a

  

  

 


    
  

 

1/
1/

1 1
,

/

0 0

( ( , ))
( )

2 (1 )

q
qr 'p p

r p t

q q p
p p

f M a bb a
t dt dt

p tb t a
  



       
       

   

 
 

1/

1/
1 1

/

0 0

max ( ) , ( )
( )

2 (1 )

q
q q

' 'r
p p

r

q q p
p p

f a f b
b a

t dt dt
p tb t a

  


 
   

     
       

   

   .)(,)(max.
2

1/
1/1/

,

q
q

'
q

'qr
pp

bfafDK
p

ab







   

It is easily check that 

 
1

,

0

( ) = ( ),
r

t dt K r      

 

 

1

/

0

1
= ( , ; ; ).

(1 )
q q p

p p
dt D a b p q

tb t a


   
  

 

 

In Theorem 3, if we put 1p  , then we obtain the following corollary for quasi-convex 

functions: 

 

Corollary 3 Under the conditions of Theorem 2, if we take 1p  , then we have 
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In Theorem 3, if we put 1p   , then we obtain the following corollary for 

harmonically quasi-convex functions: 

 

Corollary 4 Under the conditions of Theorem 2, if we take 1p   , then we have 
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