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ABSTRACT 
 

In  this  paper  we solved  parabolic partial differential equation using restrictive 
Taylor’s approximations. We use the restrictive Taylor approximation to approximate the 
exponential matrix exp(xA). The advantage is that has the exact value at certain point.We 
shall develop a new approach for an explicit method to solve the parabolic partial differential 
equation. The results of numerical testing show that the numerical method based on the 
restrictive Taylor approximation discussed in the present paper produce good results.  
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ÖZET  
 

Bu makalede Parabolik kısmi türevli diferansiyel  denklem kısıtlanmış Taylor 
yaklaşımı kullanılarak çözüldü. Kısıtlanmış Taylor yaklaşımı çözümde üstel matris 
fonksiyonuna yaklaşmak için kullanıldı. Belirli noktalarda fonksiyonun tam değerini vermesi 
yöntemin bir avantajını oluşturmaktadır. Bu şekilde parabolik kısmi türevli diferansiyel 
denklemin açık çözümü için yeni bir yaklaşım geliştirildi. Nümerik sonuçlar ile yöntemin 
diğer yöntemlere göre iyi sonuçlar verdiği gösterildi. 

  
Anahtar Kelimeler: Kısıtlanmış Taylor yaklaşımı, Sonlu farklar yaklaşımı, Parabolik kısmi 
diferansiyel denklemler 
 
1.INTRODUCTION 
 

It is well known that parabolic partial diffeential equation in one dimensions, feature 
in the mathematical modelling of  many phenomena. They arise for example, in the study of 
heat transfer and control theory.These kind of problems have been investigated by many 
researchers. This paper presents an investigation of the use of  restrictive Taylor 
approximation in solving parabolic partial differential equation. 
 

The Taylor series relates the value of a differentiable function at any point to its first 
and higher order derivatives at a reference point , and consequently the first (or higher) order 
derivatives at the reference point can be obtained in terms of the sampled values of the 
funcions. In certain cases , it may be  difficult to find analytical solutions of complicated 
differential and partial differential equations describing the physical systems. In such cases, 
numerical solutions can be obtained by replacing derivatives in the equation by 
approximations based on the Taylor series. The most commonly used approximations of 
derivatives are the forward difference, backward difference and the central difference 
approximations. All these approximations are widely used to solve differential and partial 
differential equations.(1,2)  
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The purpose of this paper is to present a very efficient finite difference  method  based 
on restrictive Taylor approximation for solving the diffusion equation 
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with the initial condition 
 
                                                         u(x,0)=g(x),   0″x″L                                                     1.2 
and the boundary conditions 
 
                                                          u(0,t)=u(L,t)=0,   0″t″T                                                1.3 
 
An approximation of the function f(x) is by using Taylor’s  expansion, which approximate 
f(x) by a polinomial of degree n and truncation error is of order (n+1). 
 
                                                       f(x)= Pn,f(x)(x) + Rn+1(x)                                                  1.4 

 
This  can be written as 
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and  ξ   between a and x.(3) 
 
2.THE FINITE DIFFERENCE SCHEMES 
 

The domain [0,L]x[0,T] is divided into an MxN mesh with the spatial step size h=L/M 
in x direction and the time step size k=T/N, respectively. Grid points (xi,tj) are defined by 
xi=ih,   i=0,1,2,...,M,  tj=jk,  j=0,1,2,...,N, in which M and N are integers. Using the initial 
condition   
 
                                                    u(x,0)=f(x),   0<x<L,                                                            2.1 
 
Eq.(1.1) is solved approximately, commencing with initial values u(ih,0)=f(xi), i=0,1,2,...,M, 
and boundary values u(0,jk)=g0(tj+1), u(L,jk)=g1(tj+1), for j=0,1,2,...,N. 
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3.RESTRICTIVE TAYLOR’S APPROXIMATION 
 

Consider a function f(x) defined in a neighborhood of the point a, and it has 
derivatives up to order (n+1) in the neighborhood. Hassan et al.(2) used  these derivatives to 
construct the  function 
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RTn,f(x)(x)  is called restrictive Taylor’s approximation for the function f(x) at the point a. The 
parameter ε   is to be determent, such that  RTn,f(x)(x0)=f(x0). It means that this approximation 
is exact at two points a and x0. Let us put 
 

                                           f(x)= Pn,f(x)(x) + ℜn+1(x)                                                                3.2 
 

where    ℜn+1(x)  is the remainder term  of restrictive Taylor’s  series. 
The error for approximation  is given by 
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where  ],[ xa∈ξ    and    ε   is a restrictive parameter.(6) 
 

3.1 Restrictive Taylor’s Approximation of The Exponential Matrix 
 

The exponential matrix exp(xA) can be formally defined by the convergent power 
series 
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where A is an (N-1)x(N-1) matrix. The term ε   in Eq. (3.1) can be reduced to the square 
restrictive matrix  Λ  in the case of restrictive Taylor’s approximation for matrix function, 
where  
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For example, for the exponential matrix exp(xA)  it can be given by 
 

                                           RT2,exp(xA)= 2
2

2
ArrAI Λ++                                                       3.5 

4.RESTRICTIVE TAYLOR’S APPROXIMATION FOR DIFFUSION EQUATION 
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Let’s consider diffusion equation (1.1) with the initial and   boundary conditions(1.2-

1.3). The open rectangular domain is covered by a rectangular grid with spacing h  and  k in 
the x, t direction respectively, and the grid point (x,t) denoted by (ih,jk)=ui,j, where i=0(1)N, j 
is a non-negative integer. The exact solution of a grid representation of Eq.(1.1) is given 
by(6): 
 
                                               ui,j+1=exp(kD2

x)ui,j                                                                    4.1            
 
and approximation of the partial derivative  D2

x at the grid point (ih,jk) will take the form(5): 
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the result of making this aproximation is to replace Eq.(4.1) by the following equation 
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we use the Eq.(3.3) to approximate the exponential matrix in Eq.(4.3), then 
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or in the scalar form which is given as below where j is a non negative integer.   

     I+rA+ =Λ 2
2

2
Ar  
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 This explicit method is used in the following. Equation (1.1 ) is solved numerically  using: 
 
        ui,j=(r2/2•i)ui-2,j+(r-2r2•i)ui-1,j+(1-2r+3r2•i)ui,j+(r-2r2•i)ui+1,j+(r2/2•i)ui+2,j, i=3(1)N-3      4.6 
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applied for i=3,4,...,N-3 for each j=1,2,...,M. Then for each  j=0,1,...,M values at points u1,j+1, 
u2,j+1  are calculated using the  following formula; 
 
                                   u1,j+1= (1-2r+5r2/2•1)u1,j+(r-2r2•1)u2,j + (r2/2•1)u3,j                               4.7 
                            u2,j+1=(r-2r2•2)u1,j+(1-2r+3r2•2)u2,j+(r-2r2•2)u3,j+(r2/2•2)u2,j                        4.8 
 
 while values at points  uN-2,j+1, uN-1,j+1   are calculated using: 
  
                uN-2,j+1=(r2/2•N-2)uN-4,j+(r-2r2•N-4)uN-3,j+(1-2r+3r2•N-2)uN-2,j+(r-2r2•N-2)uN-1,j           4.9 
                           uN-1,j+1=(r2/2•N-1)uN-3,j+(r-2r2•N-1)uN-2,j+(1-2r+5r2/2•N-1)uN-1,j                     4.10 

Application of the  Gerschgorin’s circle theorem (2)  to the matrix    I+rA+ 2
2

2
Ar

Λ   in the 

case of the restrictive Taylor approximation shows that the stability condition is 0≤ r ≤ 2/3ε . 
 

In  order  to  verify  theoretical  predictions, numerical  tests  were  carried  out  on  a 
one  dimensional  time-dependent  diffusion  equation: 
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u
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u

∂
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=
∂
∂ ,   0″x″≠,   t≥0                                                      4.11 

                                              u(x,0)=sin x,   0″x″≠                                                            4.12 
                                              u(0,t)=u(≠,t)=0,  t≥0.                                                            4.13 
 
 
 
 
 
5.THE CRANK-NICOLSON SCHEME. 
 

If we replace the spatial derivative with their values at the n and n+1 times levels and 
then substitute centered difference forms for all derivatives, we get the Cranc-Nicolson  
formula: 
 
                              -rui-1,j+1+(2+2r)ui,j+1-rui+1,j+1 = -rui-1,j+(2-2r)ui,j+rui+1,j                                 5.1 
where r=k/h2. 
 

This procedure is unconditionaly von Neumann stable for all r>0.(2) The modified 
equivalent partial differential equation for the Cranc-Nicolson formula  shows that  equation 
(5.1) has a truncation error which is always O(h2). So this scheme is second order accurate for 
all r>0.(5) 
 
 The accuracy of RT and CN method are compared in Table 1 for various values of the 
time t. Table 1 give the absolute error when h=≠/10, k=0.01, ε =0.1681599901. The time of 
calculation 100 steps of Restrictive Taylor method is 1.05 second while that of Cranc-
Nicolson method is 2.65 second. 
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Table1  Results  for  u  with  T=1.0 , h=≠/10, r=1/≠2 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

x RT(2). Method Cr-Nic  
Method RT(2).- Error  Cr-Nic -Error Analitical 

Solutions 
≠/10 0.1136809992 0.1146158157 0.00000000 0.0009348165 0.1136809992 

2≠/10 0.2162341101 0.2180122368 0.1 10-15 0.0017781267 0.2162341101 

3≠/10 0.2976207197 0.3000681012 0.0000000000 0.0024473814 0.2976207197 

4≠/10 0.3498741397 0.3527512092 0.1 10-15 0.0028770695 0.3498741397 

5≠/10 0.3678794411 0.3709045710 0.0000000000 0.0030251298 0.3678794411 

6≠/10 0.3498741397 0.3527512092 0.0000000000 0.0028770695 0.3498741397 

7≠/10 0.2976207197 0.3000681012 0.0000000000 0.0024473814 0.2976207197 

8≠/10 0.2162413110 0.2180122368 0.72008713 10-5 0.0017781267 0.2162341101 

9≠/10 0.1137373377 0.1146158157 0.0000563385 0.0000934816 0.1136809992 

5.CONCLUSIONS 
In this article a numerical method was applied to the one dimensional  parabolic partial 

differential equation. The proposed numerical scheme solved this model quite satisfactorily. 
Using the restrictive Taylor approximation for one dimensional parabolic partial differential 
equation describe our model well. The explicit finite difference scheme are very simple to 
implement and economical to use. They are very efficient and they need less CPU time than 
the implicit finite difference methods.  

A comparison with the implicit  scheme  for  the  test  problem  clearly  demonstrates 
that  this  technique are  computationally  superior. The numerical  test  obtained by  using 
these methods give acceptable results.  
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