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Abstract
Inspired by Pratulananda Das’ recent efforts, we develop and investigate a new class of
ideal-open covers that are formed after the interplay of the existing ideal-open covers
with the star-operator. Interdependencies between specific sorts of open coverings have
been detected and in order to grasp the differences between the new and older classes of
ideal open covers, several constructive examples are illustrated. Our finding also establish
some strong prerequisite for certain of P. Das’ findings. In addition, the nature of I-dense
subsets of the classes of ideal-open-covers are investigated in this paper.
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1. Introduction
To begin, let’s review the definition of a star operator: St(A,U) represents the set∪

{U ∈ U : A ∩ U ̸= ∅} if U is a collection of subsets of a set X and A ⊆ X. For a point
x ∈ X, St(x,U) =

∪
{U ∈ U : x ∈ U} [10]. In this aspect, it’s worth noting that Kočinac

in [16] broadened the concept of classical selection principles to star-selection principles by
incorporating the theory of St-operator. In recent papers, various topological features and
other selection principles connected to this operator can be identified [14–17,23]. Selection
principles connected to open covers have a long and fruitful history and readers can gain
about current accomplishments in this field by consulting the works of [1–7, 18, 24–26],
where many additional references can be discovered.

We recall that the asymptotic density is defined as

d(K) = lim
n→∞

|K(n)|
n

as long as the limit exists; where K ⊆ N (set of all Natural Numbers), K(n) = {k ∈
K : k ≤ n} and |K(n)| is the order of the set K(n). H. Fast [12] generalized the concept
of convergence of real sequences towards the statistical convergence by using the idea of
asymptotic density. In a metric space (X, ρ), the sequence {xn}n∈N of points converges
to l, if for any ϵ > 0, the set {k ∈ N : ρ(xk, l) ≥ ϵ} has asymptotic density zero. The
investigations on this convergence and its topological properties can be found in [8,13,22].
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P. Kystyrko and T. Šalat introduced another beautiful generalization of statistical con-
vergence in [19] by putting the members of a proper ideal I of the set of natural numbers
N in place of the sets of asymptotic density zero in the definition of statistical convergence.
This convergence is called ideal convergence. To study some properties of sequences in
topological spaces ideal convergence has been used in [9, 20,21].

We take inspiration from [9] and apply the St-operator in order to get a variation
of I-γ-open covers in topological spaces. During our investigation, it is found that a
strong condition can be incorporated in Lemma 2.1 of [9] and the result is presented here.
More over we discuss interrelation between various versions of γ-covers which have nearer
structures and some of their topological properties are also investigated in this paper.
Throughout the paper no specific separation axiom is considered otherwise stated and the
symbol ‘I’ will represent a proper Ideal of N (the set of all natural numbers).

2. Preliminaries
Some existing definitions and results are mentioned in this section for ready references.
If X is a non-empty set, then a family I of subsets of X is said to be an ideal in X if

(i) ∅ ∈ I, (ii) A, B ∈ I implies A ∪ B ∈ I and (iii) A ∈ I, B ⊆ A implies B ∈ I. I is called
non-trivial if I ̸= ∅ and X ̸∈ I. A proper ideal I is called admissible ideal or free ideal if
{x} ∈ I for each x ∈ X [11].

A non-empty family F of subsets of X is called a filter on X if (i) ∅ ̸∈ F, (ii) A, B ∈ F

implies A ∩ B ∈ F and (iii) A ∈ F, A ⊆ B implies B ∈ F. If I is a proper non-trivial
ideal then the family of sets F(I) = {M ⊆ X : M = X \ A, A ∈ I} is a filter in X which
is called dual filter of I [11].

A family U of subsets in a space X is called a cover if ∪U = X. If every element of U
is open then U is called an open cover [11].

An open cover U of X is a γ-cover if it is infinite, and each x ∈ X belongs to all but
finitely many elements of U [11].

Let I be a proper ideal on N. A countable cover U = {Un : n ∈ N} of X is said to be
an I-γ-cover if for each x ∈ X, the set {n ∈ N : x ̸∈ Un} belongs to I. [9]

Let U = {Un : n ∈ N} be a cover of a topological space (X, τ). A subset V of the cover
U will be called I-dense in U if the set M = {m1 < m2 < m3 < . . . } of indices of elements
of V belongs to F(I) [9].

An I-dense subset of an I-γ cover of a topological space (X, τ) is also an I-γ cover of
that topological space. (Lemma 2.2 of [9]).

Let (Un : n ∈ N), Un = {Un,m : m ∈ N} be a countable sequence of I-γ covers of X.
Then (Vn : n ∈ N), defined by

Vn = {U1,m ∩ U2,m ∩ · · · ∩ Un,m : m ∈ N} \ {∅}

is also a sequence of I-γ covers of X. (Lemma 2.3 of [9]).

3. Some results on I-γ covers
According to Lemma 2.1 of [9], an open cover U = {Un : n ∈ N} of a topological space

X is an I-γ-cover if and only if for each finite set F ⊆ X the set {n ∈ N : F ̸⊆ Un} ∈ I.
We claim that the subset F of X need not to be finite in the above result.

Theorem 3.1. In a topological space X, if U = {Un : n ∈ N} is an I-γ-cover and F ⊆ X
is such that IF = {n ∈ N : F ⊈ Un} is finite then IF ∈ I.

Proof. Let U = {Un : n ∈ N} be an I-γ-cover and F ⊆ X be such that IF = {n ∈ N :
F ⊈ Un} is finite.

Suppose k ∈ IF = {n ∈ N : F ⊈ Un} is arbitrary.
=⇒ F ⊈ Uk
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=⇒ F \ Uk ̸= ∅
=⇒ x /∈ Uk ∀x ∈ F \ Uk

=⇒ k ∈ {n ∈ N : x /∈ Un} = Ix ∀x ∈ F \ Uk

=⇒ k ∈
∩

x∈F \Uk

Ix

Now, for all x ∈ X, Ix = {n ∈ N : x /∈ Un} ∈ I [∵ U is an I-γ-cover]

But
∩

x∈F \Uk

Ix ⊆ Ix

.
∴ By the subset property of ideal, k ∈

∩
x∈F \Uk

Ix ∈ I ∀k ∈ IF

=⇒
∪

k∈IF

{k} ⊆
∪

k∈IF

{ ∩
x∈F \Uk

Ix

}
=⇒ IF ⊆

∪
k∈IF

{ ∩
x∈F \Uk

Ix

}
But IF is finite and by the finite union property of ideal

∪
k∈IF

{ ∩
x∈F \Uk

Ix

}
∈ I

and by the subset property of ideal IF ∈ I. □
Theorem 3.2. Let U = {Un : n ∈ N} be an open cover of a space X. If for each F ⊆ X
and for each p ∈ {n ∈ N : F ⊈ Un} = IF , finiteness of F \ Up implies that IF ∈ I, then U

is an I-γ-cover.

Proof. Let U = {Un : n ∈ N} be an open cover of the space X. Let for each F ⊆ X and
for each p ∈ {n ∈ N : F ⊈ Un} = IF , finiteness of F \ Up implies that IF ∈ I.

Let x ∈ X be arbitrary. So {x} ⊆ X and {x} \ Up is finite for each p ∈ I{x}. Then by
our assumption I{x} ∈ I for all x ∈ X.

=⇒ {n ∈ N : {x} ⊈ Un} ∈ I for each x ∈ X.
=⇒ {n ∈ N : x /∈ Un} ∈ I for each x ∈ X.
Hence U is an I-γ-cover. □

Theorem 3.3. In a topological space (X, τ), if A ⊆ X and if U = {Un : n ∈ N} is an
I-γ cover of (X, τ), then UA = {A ∩ Un : Un ∈ U} is an I-γ cover for (A, τA), where τA

denotes the sub-space topology.

Proof. Let U = {Un : n ∈ N} be an I-γ cover of (X, τ) and A ⊆ X. Then (A, τA) is a
subspace of (X, τ). Also {n ∈ N : x ̸∈ Un} ∈ I for all x ∈ X as well as x ∈ A. Obviously
UA = {A ∩ Un : Un ∈ U} is a cover of A. Now let y ∈ A ⊆ X be arbitrary. Then

{n ∈ N : y ̸∈ Un} ∈ I.
=⇒ {n ∈ N : y ∈ Un} ∈ F(I).
But {n ∈ N : y ∈ Un} = {n ∈ N : y ∈ A ∩ Un}[∵ y ∈ A].
=⇒ {n ∈ N : y ∈ A ∩ Un} ∈ F(I).
=⇒ {n ∈ N : y ̸∈ A ∩ Un} ∈ I.
Hence UA is an I-γ cover of A. □

Example 3.4. Subcover of an I-γ cover may not be an I-γ cover.
Let E = {2, 4, 6, . . . } and IE = P(E). Obviously IE is a ideal on the set N of natural

numbers. Suppose X = {a, b} and τ = {∅, {a}, X}. Clearly (X, τ) is a topological space.
Consider the open cover U = {Un : n ∈ N} where

Un =
{

{a} if n ∈ 2N
X if n ̸∈ 2N

.
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Here {n ∈ N : x ̸∈ Un} ∈ IE for all x ∈ X. ∴ U is an IE-γ cover.
Also V = {Vn : n ∈ N} where

Vn =
{

Un if n = 1
U2n otherwise

.

is a subcover of Un. But {n ∈ N : b ̸∈ Vn} = N \ {1} ̸∈ IE . Thus V is not an IE-γ cover.
Theorem 3.5. If U = {Un : n ∈ N} and V = {Vn : n ∈ N} are two I-γ covers of a
topological space (X, τ) then W = U ⊔ V = {Wn = Un ∪ Vn : n ∈ N} is also an I-γ cover.
Proof. Let U = {Un : n ∈ N} and V = {Vn : n ∈ N} be two I-γ covers of a topological
space (X, τ). Thus for all x ∈ X, {n ∈ N : x ̸∈ Un} ∈ I and {n ∈ N : x ̸∈ Vn} ∈ I.

=⇒ For all x ∈ X, {n ∈ N : x ∈ Un} ∈ F(I) and {n ∈ N : x ∈ Vn} ∈ F(I).
But for all x ∈ X, {n ∈ N : x ∈ Un} ⊆ {n ∈ N : x ∈ Un ∪ Vn} ∈ F(I).
=⇒ {n ∈ N : x ̸∈ Un ∪ Vn} ∈ I. Hence W is an I-γ cover. □

4. On I-St-γ covers
Definition 4.1. A countable cover U = {Un : n ∈ N} is said to be an I-St-γ-cover if for
each x ∈ X, the set {n ∈ N : x ̸∈ St(Un,U)} belongs to I.
Proposition 4.2. In a topological space X, every I-γ-cover is an I-St-γ-cover.
Proof. Let U = {Un : n ∈ N} be an I-γ-cover of a topological space X. Then for every
x ∈ X, {n ∈ N : x ̸∈ Un} ∈ I.

Let p ∈ {n ∈ N : x ̸∈ St(Un,U)} for some x ∈ X. Therefore, x ̸∈ St(Up,U). But
Up ⊆ St(Up,U). Therefore, x ̸∈ Up. So p ∈ {n ∈ N : x ̸∈ Un}.

Thus, {n ∈ N : x ̸∈ St(Un,U)} ⊆ {n ∈ N : x ̸∈ Un} and {n ∈ N : x ̸∈ Un} ∈ I.
Thus, {n ∈ N : x ̸∈ St(Un,U)} ∈ I. [By subset property of I].
Therefore, U is an I-St-γ-cover. □

Corollary 4.3. An I-dense subset of an I-γ cover of a topological space (X, τ) is an
I-St-γ cover of that topological space.
Proof. The proof is a direct consequence of Proposition 4.2 of this article and Lemma 2.2
in [9]. Hence omitted. □
Corollary 4.4. Let (Un : n ∈ N), Un = {Un,m : m ∈ N} be a countable sequence of I-γ
covers of X. Then (Vn : n ∈ N), defined by

Vn = {U1,m ∩ U2,m ∩ · · · ∩ Un,m : m ∈ N} \ {∅}
is a sequence of I-St-γ covers of X.
Proof. The proof is a direct consequence of Proposition 4.2 of this article and Lemma 2.3
in [9]. Hence omitted. □
Example 4.5. The converse of the Proposition 4.2 need not be true. Indeed there exists
an I-St-γ cover of a topological space which is not an I-γ cover.

We take I = Ifin, the finite set ideal on N.
Let X = S1((0, 0)) in R2, the open circle with radius 1 and center at the origin. τ =

{Sr((0, 0)) : 0 ≤ r ≤ 1 and r ∈ R} ∪ {∅} is a topology on X. Consider the countable open
cover U = {Un = S 1

n
((0, 0)) : n ∈ N} of X.

So, for every n ∈ N, St(Un,U) = X.
Thus, for every x ∈ X, {n ∈ N : x ̸∈ St(Un,U)} = ∅ ∈ I.
Therefore, U is an I-St-γ cover of the space X.
Now, (1

2 , 0) ∈ X and (1
2 , 0) ̸∈ S 1

m
((0, 0)) = Um for all m ≥ 2.

So, {n ∈ N : (1
2 , 0) ̸∈ Un} = {2, 3, 4, ....} ̸∈ I.

Thus U is not an I-γ cover of the space X.
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According to P. Das [9], for an admissible ideal I, every γ-cover of a space X is an
I-γ-cover for that space but the converse is not true. Thus we have the relation chart for
these classes of open covers as shown in figure 1.

Figure 1. Relation between the variations of γ cover.

Theorem 4.6. In a topological space X, if U = {Un : n ∈ N} is an I-St-γ-cover and
F ⊆ X is such that I ′

F = {n ∈ N : F ⊈ St(Un,U)} is finite then I ′
F ∈ I.

Proof. Let U = {Un : n ∈ N} be an I-St-γ-cover and F ⊆ X is such that I ′
F = {n ∈ N :

F ⊈ St(Un,U)} is finite.
Now, let k ∈ I ′

F = {n ∈ N : F ⊈ St(Un,U)}
=⇒ F ⊈ St(Uk,U)
=⇒ F \ St(Uk,U) ̸= ∅
=⇒ x /∈ St(Uk,U) ∀x ∈ F \ St(Uk,U)
=⇒ k ∈ {n ∈ N : x /∈ St(Un,U)} = I ′

x ∀x ∈ F \ St(Uk,U)

=⇒ k ∈
∩

x∈F \St(Uk,U)
I ′

x

Now, for all x ∈ X, I ′
x = {n ∈ N : x /∈ St(Un,U)} ∈ I.[ ∵ U is an I-St-γ-cover ].

But
∩

x∈F \St(Uk,U)
I ′

x ⊆ Ix

∴ By the subset property of ideal, k ∈
∩

x∈F \St(Uk,U)
I ′

x ∈ I ∀k ∈ I ′
F

=⇒
∪

k∈I′
F

{k} ⊆
∪

k∈I′
F

{ ∩
x∈F \St(Uk,U)

I ′
x

}
=⇒ I ′

F ⊆
∪

k∈I′
F

{ ∩
x∈F \St(Uk,U)

I ′
x

}

But I ′
F is finite and by the finite union property of ideal

∪
k∈I′

F

{ ∩
x∈F \St(Uk,U)

I ′
x

}
∈ I

and by the subset property of ideal I ′
F ∈ I. □

Theorem 4.7. Let U = {Un : n ∈ N} be an open cover of a space X. If for each F ⊆ X
and for each p ∈ {n ∈ N : F ⊈ St(Un,U)} = I ′

F , finiteness of F \ St(Up,U) implies that
I ′

F ∈ I then U is an I-St-γ-cover.

Proof. Let U = {Un : n ∈ N} be an open cover of the topological space X. Let for each
F ⊆ X and for each p ∈ {n ∈ N : F ⊈ St(Un,U)} = I ′

F , finiteness of F \ St(Up,U) implies
that I ′

F ∈ I.
Now, ∀x ∈ X, {x} ⊆ X and {x} \ St(Up,U) is finite for each p ∈ {n ∈ N : {x} ⊈

St(Un,U)} = I ′
{x}.

∴ By our assumption, I ′
{x} ∈ I ∀x ∈ X.

=⇒ {n ∈ N : {x} ⊈ St(Un,U)} ∈ I for every x ∈ X.
=⇒ {n ∈ N : x ̸∈ St(Un,U)} ∈ I for every x ∈ X.
∴ U is an I-St-γ-cover. □
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Proposition 4.8. An I-St-γ cover of a topological space in which every pair of distinct
open sets are disjoint is an I-γ cover of that space.
Proof. The theorem follows automatically, so it’s proof is omitted. □
Example 4.9. In a topological space (X, τ), if A ⊆ X and if U = {Un : n ∈ N} is an
I-St-γ cover of (X, τ), then UA = {A ∩ Un : Un ∈ U} may not be an I-St-γ cover for
(A, τA) ( τA denotes the sub-space topology).

Let E = {2, 4, 6, . . . } and IE = P(E). Obviously IE is a ideal on the set N of natural
numbers. Suppose X = [0, 3). Then B = {∅, [0, 1), [1, 2), [2, 3)} is a base for a suitable
topology on the set X and let the topology be τ . Consider the open cover U = {Un : n ∈ N}
where

Un =
{

[0, 2) if n ∈ N \ 2N
[1, 3) if n ∈ 2N

.

Here, St(Un,U) = X for all n ∈ N.
Hence {n ∈ N : x ̸∈ Un} = ∅ ∈ IE for all x ∈ X. ∴ U is an IE-St-γ cover.
Now consider A = [0, 1) ∪ [2, 3) ⊆ X. (A, τA) is a subspace topology. Here UA = {Vn =

A ∩ Un : Un ∈ U} where

Vn =
{

[0, 1) if n ∈ N \ 2N
[2, 3) if n ∈ 2N

.

St(Vn,UA) =
{

[0, 1) if n ∈ N \ 2N
[2, 3) if n ∈ 2N

.

Here, 2.5 ∈ A, {n ∈ N : 2.5 ̸∈ St(Vn,UA)} = N \ 2N ̸∈ IE . Therefore UA is not an
IE-St-γ cover for (A, τA).

The above property makes a huge difference between I-γ covers and I-St-γ covers.
Example 4.10. Subcover of an I-St-γ cover may not be an I-St-γ cover.

Let A = {3, 6, 9, . . . } and I3 = P(A). Obviously I3 is a ideal on the set N of natural
numbers. Suppose X = {a, b, c} and τ is the discrete topology on X. Consider the open
cover U = {Un : n ∈ N} where

Un =


{a, b} if n ∈ {(m − 2) : m ∈ 3N}
{b, c} if n ∈ {(m − 1) : m ∈ 3N}
{c} if n ∈ 3N

.

Here

St(Un,U) =


X if n ∈ {(m − 2) : m ∈ 3N}
X if n ∈ {(m − 1) : m ∈ 3N}
{b, c} if n ∈ 3N

.

∴ {n ∈ N : x ̸∈ St(Un,U)} ∈ I3 for all x ∈ X. ∴ U is an I3-St-γ cover.
Consider the subcover V = {Vn : n ∈ N} of Un. where

Vn =
{

U3n+1 if n ∈ N \ 2N
U3n if n ∈ 2N

.

Also

St(Vn,V) =
{

U3n+1 if n ∈ N \ 2N
U3n if n ∈ 2N

.

But {n ∈ N : c ̸∈ St(Vn,V)} = N \ 2N ̸∈ I3. Thus V is not an I3-St-γ cover.
Theorem 4.11. If U = {Un : n ∈ N} and V = {Vn : n ∈ N} are two I-St-γ covers of
a topological space (X, τ) then W = U ⊔ V = {Wn = Un ∪ Vn : n ∈ N} is also an I-St-γ
cover.
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Proof. Let U = {Un : n ∈ N} and V = {Vn : n ∈ N} be two I-St-γ covers of a topological
space (X, τ). Thus for all x ∈ X, {n ∈ N : x ̸∈ St(Un,U)} ∈ I and {n ∈ N : x ̸∈
St(Vn,V)} ∈ I.

=⇒ For all x ∈ X, {n ∈ N : x ∈ St(Un,U)} ∈ F(I) and {n ∈ N : x ∈ St(Vn,V)} ∈ F(I).
But For all x ∈ X, {n ∈ N : x ∈ St(Un,U)} ⊆ {n ∈ N : x ∈ St((Un ∪ Vn),W)} ∈ F(I).
=⇒ {n ∈ N : x ̸∈ St(Wn,W)} ∈ I. Hence W is an I-St-γ cover. □

5. On ideal based subsets of I-St-γ covers
It is basically understood that an infinite subset of a γ cover is also a γ cover and an

infinite subset of an I-γ cover may not be an I-γ cover. In Lemma 2.2 of [9], it has been
established that an I-dense subset of an I-γ cover is always an I-γ cover. Now we want
to investigate the nature of I-dense subset of an I-St-γ cover.

Example 5.1. I-dense subset of an I-St-γ-cover may not be a cover at all.

Let A = {2, 3, 5, 6, 8, 9, . . . } and consider an ideal I = P(A) of the set of all natural
number N (P(A) is the power set of A). I is obviously a proper Ideal of N.

Obviously, A ∈ I.
=⇒ N \ A ∈ F(I).
i.e. {1, 4, 7, . . . } ∈ F(I).
Now we construct a topological space on X = [0, 4). Let B = {∅, [0, 1), [1, 2), [2, 3),

[3, 4)}. Clearly, B forms a base for a suitable topology on X. Let τ be the topology
generated by the base B.

Let us consider U = {U1 = [0, 3), U2 = [1, 2), U3 = [2, 4), U4 = U1, U5 = U2, U6 =
U3, U7 = U1, U8 = U2, U9 = U3, . . . }. We want to show that U is an I-St-γ-cover with
respect to the mentioned ideal I.

So we have St(U1,U) = St(U4,U) = St(U7,U) = · · · = X;
St(U2,U) = St(U5,U) = St(U8,U) = · · · = [0, 3);
St(U3,U) = St(U6,U) = St(U9,U) = · · · = X.
Ultimately, {n ∈ N : x ̸∈ St(Un,U)} is either ∅ or {2, 5, 8, . . . } and both of them belongs

to the ideal I.
Let V = {U1, U4, U7, . . . }. V is an I-dense subset of U since {1, 4, 7, . . . } ∈ F(I). But∪
V = [0, 3) ̸= X. i.e. V is not a cover at all. So we can conclude that I-dense subset of

an I-St-γ-cover may not be a cover at all.

Since I-dense subset of an I-St-γ cover may not be an I-St-γ cover, we want to impose
a criteria on the subset of I-St-γ cover so that a subset becomes an I-St-γ cover. In this
regard we introduce the notion of I-St-dense subset.

Definition 5.2. Let U = {Un : n ∈ N} be a cover of a topological space (X, τ) and
V = {Um1 , Um2 , Um3 , . . . } be a subset of U where m1 < m2 < m3 < . . . . We will say V is
I-St dense in U if the set {mi ∈ N : Umi ∈ V and St(Umi ,V) = X} ∈ F(I).

Firstly we verify how different is this I-St-denseness in comparison to I-denseness.

Theorem 5.3. Every I-St-dense subset of an open cover in a topological space (X, τ) is
an I-dense subset of that specific open cover.

Proof. Let V = {Um1 , Um2 , Um3 , . . . }, where m1 < m2 < m3 < . . . be an I-St-dense
subset of an open cover U = {Un : n ∈ N} in a topological space (X, τ).

=⇒ {mi ∈ N : Umi ∈ V and St(Umi ,V) = X} ∈ F(I).
But {mi ∈ N : Umi ∈ V and St(Umi ,V) = X} ⊆ {mi ∈ N : Umi ∈ V}
∴ By the superset property of the dual filter, {mi ∈ N : Umi ∈ V} ∈ F(I). i.e. V is an

I-dense subset of U in (X, τ). Hence the theorem. □
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Example 5.4. I-dense subset of an open cover in a topological space (X, τ) may not be
an I-St-dense subset for that open cover.

Consider the Ideal I, a topological space (X, τ), an open cover U and the subset V of
the open cover U constructed in example 5.1. It is already shown in the example 5.1 that
V = {U1, U4, U7, . . . } is I-dense in U in (X, τ). Now for every Ui ∈ V, St(Ui,V) = [0, 3) ̸=
X. ∴ {mi ∈ N : Umi ∈ V and St(Umi ,V) = X} = ∅ ̸∈ F(I). ∴ V is not an I-St-dense
subset for that open cover U. Hence I-dense subset of an open cover in a topological space
(X, τ) may not be an I-St-dense subset for that open cover.

Relation between I-dense subsets and I-st-dense subsets is shown in figure 2.

Figure 2. Relation between I-dense subsets and I-St-dense subsets.

Example 5.5. I-St-dense subset of an I-St-γ cover may not be an I-St-γ cover at all.

Let A = {3, 4, 7, 8, 11, 12, . . . } and consider an ideal I = P(A) of the set of all natural
number N. I is obviously a proper Ideal of N.

Obviously, A ∈ I.
=⇒ N \ A ∈ F(I).
i.e. {1, 2, 5, 6, 9, 10, . . . } ∈ F(I).
Now we construct a topological space on X = [0, 5). Let B = {∅, [0, 1), [1, 2), [2, 3),

[3, 4), [4, 5)}. Clearly, B forms a base for a suitable topology on X. Let τ be the topology
generated by the base B.

Let us consider U = {U1 = [0, 3), U2 = [2, 5), U3 = [1, 2), U4 = [3, 4), U5 = U1, U6 =
U2, U7 = U3, U8 = U4, U9 = U1, U10 = U2, U11 = U3, U12 = U4, . . . }. We want to show that
U is an I-St-γ-cover with respect to the mentioned ideal I.

So we have,
St(U1,U) = St(U5,U) = St(U9,U) = · · · = X;
St(U2,U) = St(U6,U) = St(U10,U) = · · · = X;
St(U3,U) = St(U7,U) = St(U11,U) = · · · = [0, 3);
St(U4,U) = St(U8,U) = St(U12,U) = · · · = [2, 5).
Ultimately, {n ∈ N : x ̸∈ St(Un,U)} is either ∅ or {3, 7, 11, . . . } or {4,8,12,. . . } and all

of them belong to the ideal I.
Let V = {V1 = U1, V2 = U2, V3 = U3, V4 = U5, V5 = U6, V6 = U7, V7 = U9, V8 =

U10, V9 = U11, . . . } be a subset of U.
{mi ∈ N : Umi ∈ V and St(Umi ,V) = X}
= {1, 2, 5, 6, 9, 10, . . . } ∈ F(I).
∴ V is I-St-dense in U.
Now,
St(V1,V) = St(V4,V) = St(U7,V) = · · · = X;
St(V2,V) = St(V5,V) = St(U8,V) = · · · = X;
St(V3,V) = St(V6,V) = St(U9,V) = · · · = [0, 3).
This implies that the set
{k ∈ N : 3 ̸∈ St(Umk

,V)}
= {k ∈ N : 3 ̸∈ St(Vk,V)}
= {3, 6, 9, . . . } ̸∈ I
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∴ V is not an I-St-γ cover for the topological space (X, τ).
Hence, I-St-dense subset of an I-St-γ cover may not be an I-St-γ cover at all.

Variations of γ covers under the variation of I-dense subsets are shown in figure 3.

Figure 3. Variations of γ covers under the variation of I-dense subsets.

Problem 5.6. What condition can be imposed on the subset of an I-St-γ cover to make
it an I-St-γ cover?

6. Conclusion
(1) In a topological space X, if U = {Un : n ∈ N} is an I-γ-cover and F ⊆ X be such

that IF = {n ∈ N : F ⊈ Un} is finite then IF ∈ I.
(2) For an open cover U = {Un : n ∈ N} of a space X, if for each F ⊆ X and for each

p ∈ {n ∈ N : F ⊈ Un} = IF , finiteness of F \ Up implies that IF ∈ I, then U is an
I-γ-cover.

(3) In a topological space X, every I-γ-cover is an I-St-γ-cover. But converse may not
be true.

(4) An open cover U = {Un : n ∈ N} of a topological space X is an I-St-γ-cover of X
if for each finite set F ⊆ X the set {n ∈ N : F ̸⊆ St(Un,U)} ∈ I.

(5) An I-St-γ cover of a topological space in which every pair of distinct open sets are
disjoint is an I-γ cover of that space.

(6) If U is an I-γ cover for a topological space (X, τ) then the cover formed by using
U for the subspace (A, τA) of the space (X, τ) is also an I-γ cover. But this result
does not hold for I-St-γ covers.

(7) Subcover of an I-γ cover may not be an I-γ cover.
(8) Subcover of an I-St-γ cover may not be an I-St-γ cover.
(9) I-dense subset of an I-St-γ-cover may not be a cover at all.

(10) Every I-St-dense subset of an open cover in a topological space (X, τ) is an I-dense
subset of that specific open cover. But converse may not be true.

(11) I-St-dense subset of an I-St-γ cover may not be an I-St-γ cover at all.
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