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Abstract 

 

This study focuses on an adapted application of the Chicken Swarm Optimization (CSO) Algorithm 

on a Travelling Salesman Problem (TSP). CSO Algorithm aims to search for optimal solution of a 

continuous function metaheuristically as a basis and it need some modifications to be coupled to a 

discontinuous problem like TSP. Some studies have been done before in the process of transforming 

a continuous metaheuristic method into discontinuous. However, as seen in reference studies, the 

algorithm needs also an additional decision-making mechanism after the transformation, and this 

would usually be the Greedy Search (GS) Algorithm when it comes to the CSO. Nevertheless, the 

aftermath of these decision-making mechanisms the customized novel CSO leaves the main logic of 

CSO and being Swarm Intelligence Algorithm and turn into a more colorful variation of the casual 

GS algorithm. The original part that distinguishes this work from others, it is focused on applying the 

CSO algorithm to a discontinuous TSP problem, while staying true to neutral phenomenon mimicked 

method and preserve the CSO’s logical context. The main quest of the paper is not to invent a 

method that gives better results for the example problem on any account, but to reveal how the CSO 

algorithm will give results to the example problem if it maintains its logic integrity. Therefore, an 

extension free bare adaptation of CSO is implemented for a TSP problem and results are observed. 

 
Keywords: Chicken Swarm Optimization, CSO, TSP, Greedy Search, Metaheuristic, Discontinuous 

Transformation. 

 

Tavuk Sürüsü Optimizasyonunun Gezgin Satıcı Problemi Üzerinde Uygulaması 

ve Benzer Çalışmaların İncelenmesi 
 

Süleyman ÖZER*1,2, Adil BAYKASOĞLU3, Özcan KILINÇCI3 

 

Özet 

 

Bu makalede, aslen bir sürekli fonksiyonun en iyi çözümünü metasezgisel olarak aramayı hedefleyen 

Tavuk Sürüsü Optimizasyonu (TSO) algoritmasının, Gezgin Satıcı Problemi (GSP) üzerinde bir 

uygulaması yapılmıştır. TSO, sürekli bir amaç fonksiyonuna sahip olan problemin optimum değerini 

arayan metasezgisel bir yöntemdir ve TSP gibi amaç fonksiyonu kesikli olan bir probleme akuple 

edilebilmesi için bir dönüşümden geçirilmesi gerekir. Sürekli fonksiyonlar için tasarlanmış olan TSO 

mekanizmasının kesikli duruma getirilmesi sürecinde daha önceden başka çalışmalar yapılmıştır ve  

referans çalışmalarda görüldüğü üzere, böyle bir dönüşümden sonra algoritma ek bir karar 

mekanizmasına ihtiyaç duymaktadır. TSO özelinde konuşursak bu mekanizma genellikle Greedy 

Search (GS) algoritması olmaktadır. Fakat bu referans çalışmalarda görüldüğü kadarıyla, dönüşüm 

sonrasındaki böyle bir karar verme mekanizmasında TSO’nun ve Doğa İlhamlı olmanın esas 

mantığından çıkarak GS algoritmasının daha renkli bir varyasyonu haline dönüşmektedir. Bu 

çalışmayı diğerlerinden ayıran özgün kısım, TSO algoritmasını kendi mantıksal bağlamından 
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korpartmadan ve özüne sadık kalarak, örnek bir kesikli probleme (GSP) uygulamaya odaklanmış 

olmasıdır. Makalenin esas arayışı, örnek problem için daha iyi sonuçlar veren bir TSO dönüşümü 

keşfetmek değil, TSO algoritmasının bütünlüğünü koruduğu takdirde örnek probleme nasıl sonuçlar 

vereceğini ortaya çıkartmaktır. Bu nedenle, yalın bir TSO dönüşümü herhangi bir ek mekanizma 

olmadan örnek bir TSP problemine uygulanmış ve sonuçlar elde edilmiştir. 

 

 Anahtar Kelimeler :Tavuk Sürüsü Optimizasyonu, GSP, Greedy Search, Metasezgisel, Kesikli 

Dönüşüm. 

 

1. Introduction 
 

Neutral phenomenon mimicking algorithms are subset of metaheuristic algorithms which can 

basically be classified under three groups as Evolutionary, Swarm Intelligence Based and Bio-

inspired. It is not hard to predict the working principles of these methods by looking at their 

names. Evolutionary algorithms design a solution universe based on the creation of genetic copies 

and biodiversity in the process, where the strong individuals (better fitness values) have a better 

chance of survival.  As to Bio-inspired algorithms, they are methods that take their inspiration 

from nature and customize it according to their own specifications, rather than completely 

imitating nature. Swarm Intelligence Based (SIB) algorithms, on the other hand, reap the fruits of 

the evolution process that has already been filtered for millions of years by mimicking the 

organization of a social animal colony. The CSO algorithm, which is discussed in this study, is a 

SIB algorithm that seeks the optimum by imitating the search for food in nature. Colonies 

consisting of roosters, hens and chicks form the herd are in competition with each other to reach 

richer food resources. 

 

The explanation of the CSO algorithm is beyond the scope of this study, hence, it would be more 

appropriate to get the details about the CSO directly from the creators of the idea and algorithm, 

Meng at al. [1]. Additionally, many variations of the CSO algorithm are also available for different 

purposes. Enthusiasts can found some in the sub-sections of Deb et Al. [2]. But here it is necessary 

to mention the parameters related to CSO to avoid possible communication failure: I represent 

maximum iteration number, k represent sub-swarm number of the swarm, i represent the chicken 

number of each sub-swarm, G represent the rate of rebuilding hierarchical order, P represent the 

rate of recombining bad solutions from the swarm, H represents the percentage of Hens in each 

sub-swarm.  

 

Flow of the paper fallows these steps: In the second chapter of the study, the adaptation of the 

CSO algorithm to the TSP problem will be examined. The necessity of the decision-making 

mechanism will be questioned. At the third section, an application will be rebuild and the results 

will be investigated in the absence of such a mechanism. Development methods while preserving 

the essence of the program will be studied. At the fourth section, results will be examined. At the 

fifth section, conclusion and discussion be held. 

 

2. Materials and Methods 

 
Among the great variety of metaheuristic methods, the relatively new CSO algorithm is used in 

Wide range from diagnosing brain tumor [9] till classification of water quality [10]. But as shown 

in Deb et al.’s research [2], which is comprehensive and diligent source about CSO, it is 

commonly used with problems which are based upon continuous fitness functions like economic 

load dispatch [11], feature selection [4], reduction of energy consumption of wireless sensor 

network [12], improvement of concatenated convolution turbo code [13], Trajectory optimization 
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of hypersonic vehicles [14], localization of wireless sensor network [15] and control of fast 

steering mirror [16] and outperforms a number of well-known meta-heuristics in a wide range of 

benchmark problems [2]. 

 

It is natural that researchers do not want to limit algorithms that give successful results in wide 

areas such as CSO only to their own continuous areas and try to use them in different types of 

problems like Knapsack and TSP. 

 

2.1.Adopting Continuous Method to Discontinuous Problem 

 

At this juncture, adapting continuous outcomes of an algorithm like CSO into a discrete value or a 

job sequence can be basically divided into two different logical approaches. The first can be to 

preserve the original state of the continuous function and transform its outputs into a job sequence 

or required sequence within a certain logic. An example of this approach is Bean’s Random Keys 

Method [6] or Huang and friends’ the Smallest Position Value (SPV) method [5], which basically 

simplifies the Random Keys Method. SPV is a simple and quick to understand method and is 

based on a simple sequencing process. A basic numeric example from Huang and friends’ paper 

[5] is given in Table 1.  

 
Table 1. Example of the smallest position value (SPV) approach [5] 

 

 

Dimension d 

Position Value  

(Ascending Order) 

 

Job Permutation 

   

1 1,35 (5) 2 

2 -2,46 (1) 6 

3 -1,52 (3) 3 

4 2,31 (6) 5 

5 0,52 (4) 1 

6 -1,68 (2) 4 

 

In Table 1; the value of the continuous output is sorted in ascending order and the corresponding 

dimension d is determined as the new index value. 

 

Another approach is to interfere with the operation of the algorithm instead of continuously 

generating some values and converting them to useful values. Thus, a new job sequence or a 

permutation will be created directly, just like Liu and friends’ offered [8]. The difference between 

the two approaches can be seen as at what stage of the process the transformation will play the 

role. These two approaches are equivalent to each other, and it would be misleading to look for a 

significant difference between them in terms of output. As a matter of fact, the disagreement 

between our argument and other studies emerges at the stage after the continuous-discontinuous 

stage: the stage of acceptance of the new solution. 

 

2.2. Acceptance of the New Solution 

 

Operating fundamental of CSO lies on the movement of chickens throughout iterations and 

continuously scanning the area from local to global (from chick to roaster). A greedy approach as 

"reject this position and return to your old position" when a chicken reaches a poor fitness level 

compared to previous iterations is beside the point. In other words, there is no acceptance/rejection 

decision. In each iteration, the dice are thrown and a hierarchical structure is re-determined in the 

G‘th step according to the results.  
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In essence, imitating nature also requires this. If an algorithm that mimic nature is sterilised, one 

must think twice to call the algorithm as swarm intelligence based. It is not rational to talk about a 

CSO which has been detached from Chicken or Swarm. Looking through Liu and Friends’ [8] 

paper for a specific example will be appropriate. The paper is focused on solving a TSP problem 

with the CSO algorithm like this. While doing this, they use Swap (Swaps two selected values in a 

solution's sort), Order Crossover (crosses the rankings of two solutions in a given range with each 

other) and Reverse Order Mutation (Reverses the order between two selected points in a solution) 

for valid permutation in each iteration. This transformation is created based on CSO functions.  

However, the authors state in a single sentence that they will make an acceptance-rejection 

decision by comparing the new result obtained in each iteration with the old one, but do not make 

any other explanations. A natural question spontaneously appeared: "why?". But there wasn’t an 

answer in the study.  

 

The same uncertainty is existed in other similar studies. They claimed to have applied the CSO 

to their problems and had good results, but they didn't mention why they installed a Greedy accept-

reject mechanism that the CSO didn't have. Likewise, Mohamed [3] applied a similar method to 

his own problem to transform CSO’s continuous algorithm into an integer vector. Although the 

study claims to do a Greedy search beneath the CSO, just as [2], in fact the CSO is just a small 

gear which is working in a Greedy machine, if you focus the big picture. Greedy’s strong arm 

grasps the solution through the darkness, CSO only makes small retouches. It is important that 

better results were found compared to greedy, of course. But the issue that forms the core of this is 

a good understanding of whether this method is a modified CSO or a Greedy which is colored with 

CSO. 

Han and Liu [7] also aimed to adapt the CSO algorithm to a 0-1 Knapsack problem in his study. 

They follow the same path as other studies, with his words “greedy algorithm is adapted in CSO to 

improve the quality of the feasibility”. Distinctively, in the same study, Han and Liu say that the 

solution easily loses the diversity of the population and gets stuck in the local optimum, and 

therefore, it is necessary to make changes in the process. Therefore, they selectively mutate 20% 

of the worst fitness values.  

 

3. Results and Discussion 
 

In this study, a TSP model used which consist of 34 cities. The best solution to this benchmark 

problem is 1286. All phases of the problem coded with MATLAB R2021b. The initial solution is 

randomly created similar to [8] and mutated these sequences at each iteration. In order to keep the 

process simple and fast, only the Order Crossover Method is used among the 3 crossing over 

methods (Swap, Reverse Order Mutation, Order Crossover). 

 

The process works like this: different solutions selected based on the function in the CSO 

algorithm and crossover the nodes determined by the same function, starting from a random point. 

Then the program checks order of both solutions and detects duplicated nodes and replaces with 

missing nodes. When the solution is found to be error-free, the fitness values are recalculated, and 

the hierarchical structure is renewed if the G value is reached. The computing times of our study 

are not given purposeful because the process of checking the nodes one by one and eliminating the 

errors is complex and multifaceted process.  

 

First, CSO algorithm applied to problem in bare way and the outputs are obtained. A randomly 

generated initial solution is recalculated at each iteration based on the CSO functions, processed 
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without any accept-reject mechanism and A hierarchical order is updated again in each G’th 

iteration. The results of this bare transformation revealed why previous studies insisted on 

integrating the greedy algorithm. Results oscillated consistently between 2800 and 3800 and failed 

to tend any significant (positive or negative) trend. Metaphorically, the chickens wandered around 

blindly and could not realize the presence of food/reward. The parameters have been adjusted to 

stay true to the original work [1]. The average fitness of roosters (best solution found) in Swarm 

with 1000 iterations is presented in Figure 1. 

Figure 1. Bare CSO Adaptation Results (I=1000, i=30, k=60, G=20, H=0,8) 

 

After all the trials, it turned out that there were 3 options. Accepting that the CSO's characteristic is 

incompatible with the TSP, Coupling the CSO with different methods (such as greedy search) with 

ignoring the fact that it is not based on swarm intelligence anymore, discovering an update in a way 

that doesn't break the nature of the method. At this point, idea of reconsidering the crossing over 

process that used during the creation of new solutions is appeared. Exchanging genes randomly with 

each other does not help the solution to be tended toward optimum. Instead of that, process forces 

the solution to oscillate at a specific range. In this case, the cross-over process updated to be 

unidirectional instead of bidirectional. The bidirectional crossover process shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2. – Difference Between Bidirectional and Unidirectional Crossing Over 

 

As shown on Figure 2, the weak chickens (bad fitness value solutions, represented by red 

chromosome) will randomly inherit the genes of the strong ones (represented by green 

chromosome) but they won't give genes to the strong ones. When this approach was applied, the 

results were surprising. All sub-groups in the swarm quickly began to tend towards the optimum 
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value. Some of these have done quite well. Figure 3 represents the average value of all sub-swarms 

(k=60).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Result of Unidirectional Crossover Process (I=1000, i=30, k=60, G=20, P=500, I=4000, H=0,8)  

 

In this figure 3, it is clearly shown that results converging directly to optimum value. But as 

mentioned in the previous chapters, we had a similar problem with other studies. In all trials, the 

program got stuck at local optima. Sometimes it was relatively close to the optimum, sometimes 

far from it but anyway it lost its efficiency after a certain iteration. To solve this problem, also 

hired the approach which introduced at [7] and randomly reordered the worst T number of 

solutions at certain P periods. Value of T is determined randomly in each period. This tweak 

contributed somewhat to the improvement of the solution. In Figure 4, the solution graph which 

obtained with the parameters P=500, I=4000 is presented. It also represents the average value of 

all sub-swarms (k=60). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Result of Random Recombined Solutions per P time (I=1000, i=30, k=60, G=20, P=500, I=4000, H=0,8)  

 

The wriggling in the graph every 500 iterations can be shown clearly on the Figure 4. Because a 

certain number of solutions are randomly recombined, the mean solution may be deteriorated for a 
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while. The amount of this deterioration determined by how many solutions are recombined. Since 

this number is determined randomly each time, some changes may be bigger than others. 

 

4. Conclusions 
 

Although the cleverly designed CSO algorithm delivers stunningly fast and accurate results for 

most types of problems, due to its nature, it had difficulty in finding an answer to a ranking 

problem such as TSP with its plain state. Despite the all updates, plugins and parameter 

arrangements (without touching the core), the results it produces are far from satisfactory. 

 

 Moreover, the difficulty in coding all these adaptations brings a serious cost. For example, our 

code with all the plugins to create the graphic in Figure 3 has exceeded 500 lines, but keep in mind 

that this information is subjective and can be improved. 

 

When the program ran with I=100000 to see the direction of movement, the calculation took 

over 1 hour and showed a slight slope towards the optimum value. However, the best solution 

(1396) it could find was weak compared to other methods.  
 

On the bottom line, the main finding of the study is that the CSO method is not suitable for a 

recombining problem such as TSP. Although good results have been found in previous studies, 

reader must be aware of that the leading role in these results is not the CSO, but the second method 

which is reported as a footnote (eg Greedy Algorithm). This may sound like a trivial and ignorable 

misstatement but ranking this information into scientific indexes can be misleading for the 

literature and researchers. 
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