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Abstract
Adopting the pullback formalism, a new linear connection in Finsler geometry has been in-
troduced and investigated. Such connection unifies all formerly known Finsler connections
and some other connections not introduced so far. Also, our connection is a Finslerian
version of the Tripathi connection introduced in Riemannian geometry. The existence
and uniqueness of such connection is proved intrinsically. An explicit intrinsic expres-
sion relating this connection to Cartan connection is obtained. Some generalized Finsler
connections are constructed from Tripathi Finsler connection, by applying the P 1-process
and C-process introduced by Matsumoto. Finally, under certain conditions, many special
Finsler connections are given.
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1. Introduction
In Riemannian geometry, the Levi-Civita connection is the unique torsion-free connec-

tion that preserves the Riemannian metric. Hayden introduced a metric connection with
torsion [6]. Folland in [3], with the help of a 1-form, explored a symmetric connection
that is non-metric. Yano in [21] investigated a certain type of Hayden connection which is
known as semi-symmetric metric connection. Then, semi-symmetric non-metric connec-
tion had been studied in cf. [1, 15]. A further extension of semi-symmetric connections is
the notion of quarter-symmetric connection [23] which includes Ricci quarter-symmetric
connection. Recently, a generalized quarter-symmetric connection has been introduced
in [18]. Fortunately, in [19], Tripathi defined a new connection which included all these
connections and more as particular cases.

Finsler geometry is a natural generalization of Riemannain geometry [14]. The con-
nection theory in the context of Finsler geometry has been enormously developed in both
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the Klein-Grifone approach and the pullback approach, see for example [5,9–11,17,27,29].
There are four celebrated Finsler connections, namely, Cartan, Berwald, Chern-Rund and
Hashiguchi connections. Some types of Riemannian connections have been extended to
the Finslerian context [13,14,20,26]. In [16], Tripathi connection has been introduced lo-
cally in the Finsler framework. In this paper we generalize [16] in Finsler global formalism.

Global formalism deals with the entire manifold where geometric properties do not
change from coordinate system to another. It is known that global formalism is more
general than local formalism in the sense that one can obtain local results from the global
ones but the converse is not true in general. One reason for this phenomenon is that some
terms existing globally disappear when they are treated locally, such as the Lie bracket of
the natural basis vector fields which is used in the expressions of the torsion and curvature
tensors. Another reason is that certain problems are local by its very nature and hence
can by no means be globalized.

Based on the above discussion, this paper is devoted to a further development of the
theory of connections in Finsler geometry. Our geometric treatment avoids the use of
coordinate indices. We provide a Finslerain extension of Tripathi connection (Theorem
3.2) which not only includes all the aforementioned connections but also much more con-
nections. Successfully, we derive the relation between some geometric objects associated
with Finsler Tripathi connection and the corresponding ones associated with Cartan con-
nection. We follow this by an investigation of its spray, nonlinear connection, torsion and
curvature tensors along with Bianchi identities. Then, in §4, using the P 1-process and
C-process defined in [10], we give a generalized version of the four celebrated Finsler con-
nections. Finally, in §5 as a consequence (26) particular regular Finsler connections are
given.

2. Connections, Sprays and Finsler metrics
Here we recall the necessary material for better understanding the present paper.

For an n dimensional smooth manifold M , consider the tangent bundle π : TM −→ M
and its differential dπ : TTM −→ TM . The vertical bundle V (TM) of TM is just ker(dπ).
Let us denote the pullback bundle of the tangent bundle by π−1(TM). Let F(TM) denote
the algebra of C∞ functions on TM and X(π(M)) the F(TM)-module of differentiable
sections of π−1(TM). The elements of X(π(M)) will be called π-vector fields and denoted
by barred letters X.

Now, we recall the short exact sequence of vector bundle morphisms [4, 17]

0 −→ π−1(TM) γ−→ T (TM) ρ−→ π−1(TM) −→ 0,

where TM is the slit tangent bundle, γ is the natural injection and ρ := (πT M , π).
The tangent structure of TM or the vertical endomorphism is the endomorphism J :

TTM 7→ TTM defined by J = γ ◦ ρ. Note that J2 = 0, [J, J ] = 0 and ker J = Im J =
V (TM). The Liouville vector field is the vector field given by C := γ η, where η(u) = (u, u)
for all u ∈ TM .
Linear connections on the pullback bundle π−1(TM) [17, 29].

Let D be a linear connection on the pullback bundle π−1(TM). The map

K : TTM −→ π−1(TM) : X 7−→ DXη.

is called the connection map of D. The connection D is regular if at each u ∈ TM , we
have the splitting

Tu(TM) = Vu(TM)⊕Hu(TM),
where Hu(TM) := {X ∈ Tu(TM) |K(X) = 0} is the horizontal space at u .
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When M is equipped with a regular connection D, the maps γ, ρ|H(TM) and K|V (TM)
are vector bundle isomorphisms. In this case, β := (ρ|H(TM))−1 is called the horizontal
map of D.

Definition 2.1. The torsion tensor T of a regular connection D on π−1(TM) with hori-
zontal map β has the following two counterparts:

(a) (h)h-torsion tensor Q(X, Y ) = T(βX, βY ),
(b) (h)hv-torsion tensor T (X, Y ) = T(γX, βY ).

The curvature tensor K of D has the following three counterparts:
(c) h-curvature tensor R(X, Y )Z = K(βX, βY )Z,
(d) hv-curvature tensor P (X, Y )Z = K(βX, γY )Z,
(e) v-curvature tensor S(X, Y )Z = K(γX, γY )Z.

Consequently, the contracted curvature tensors of a connection D (denoted by R̂, P̂

and Ŝ) are given, respectively, by

R̂(X, Y ) = R(X, Y )η, P̂ (X, Y ) = P (X, Y )η, Ŝ(X, Y ) = S(X, Y )η
and are called the v(h)-torsion, v(hv)-torsion and v(v)-torsion, respectively.
Geometry of sprays and Finsler metrics [4, 5, 17,27,29].

A vector field G on TM is said to be spray on M if ρ ◦ G = η and [C, G] = G.
Each spray induces canonically a nonlinear connection Γ := [J, G], which is homogeneous
(i.e., [C, Γ] = 0). The existence of Γ is equivalent to the existence of an n-dimensional
distribution H : u ∈ TM −→ Hu ∈ Tu(TM) supplementary to the vertical distribution; it
is called the horizontal distribution. The corresponding horizontal and vertical projectors
are given, respectively, by

h := 1
2

(IdT M + Γ), v := 1
2

(IdT M − Γ). (2.1)

Definition 2.2. A smooth Finsler structure on M is a map L : TM −→ [0,∞) such that:
(a) L is C∞ on TM , C0 on TM ,
(b) L is positively homogeneous of degree 1 in the directional argument y, that is

LCL = L, where L is the Lie derivative,
(c) The Hilbert 2-form Ω := 1

2 ddJL2 has a maximal rank.
The Finsler metric g induced by L on π−1(TM) is defined as follows

g(ρX, ρY ) := Ω(JX, Y ), ∀X, Y ∈ X(TM).

Unlike Riemannian geometry which has one canonical linear connection on M , Finsler
geometry admits at least four linear connections on π−1(TM): Cartan, Chern-Rund,
Hashiguchi and Berwald connections [29]. It should be noted that these four connections
are regular with T (X, η) = 0.

Every Finsler structure determines uniquely a spray G, called the geodesic or canonical
spray [7]. For the geodesic spray G there exists a unique homogenous nonlinear connection
Γ = [J, G], called the Barthel or canonical connection associated with the Finsler structure
L.

Definition 2.3. Let (M, L) be a Finsler manifold and D be a regular connection on
π−1(TM) with horizontal map β. Then, the vector field defined by G = β η is called the
spray associated with D. In addition, the vector valued 1-form ΓD := 2 β ◦ ρ − I is a
nonlinear connection, called associated with D.

Lemma 2.4. Let (M, L) be a Finsler manifold and D be a regular connection on π−1(TM)
whose connection map is K and whose horizontal map is β. A necessary and sufficient
condition for the (1, 1)-type tensor defined by Γ = β◦ρ−γ◦K to be a nonlinear connection
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on M is that the (h)hv-torsion T of D satisfies T (X, η) = 0. Thereby, Γ coincides with
the nonlinear connection associated with D. That is, Γ = ΓD = 2β ◦ ρ− I. Consequently,
hΓ = hD = β ◦ ρ and vΓ = vD = γ ◦K.

3. Finsler Tripathi connection
Let us start with the following definition before going to the main result of the paper

(Theorem 3.2).

Definition 3.1. A regular connection D on π−1(TM) is said to be quarter-symmetric if
there exist a scalar 1-form u and a vector 1-form φ on π−1(TM) such that the (h)h-torsion
Q of D satisfies :

Q(X, Y ) = u(Y )φ(X)− u(X)φ(Y ) ∀X, Y ∈ X(π(M)). (3.1)

The 1-forms u and φ are called the quarter-symmetric forms of D.
In particular, if φ = idπ−1(T M), then D is called semi-symmetric. Moreover, if φ = 0

or u = 0, then D is called symmetric. Further, if the pullback bundle is equipped with a
Finsler structure and φ = Rico, where Rico is the horizontal Ricci (1, 1)-type tensor of the
Cartan connection, then D is said to be Ricci quarter-symmetric.

Theorem 3.2. Let (M, L) be a Finsler manifold. For given functions f1, f2 ∈ F(TM),
scalar 1-forms A, B, u and a vector 1-form φ on π−1(TM), there exists a unique regular
connection D(f1, f2, A, B, u, φ), or simply D, on π−1(TM) such that

(I) The horizontal covariant derivative of g with respect to D has the form :

(Dβ̄ X g)(Y , Z) = 2f1A(X) g(Y , Z) + f2{B(Y ) g(Z, X) + B(Z) g(X, Y )},

(II) The metric g is D-vertically parallel, that is DγX g = 0,
(III) D is quarter-symmetric with quarter-symmetric forms u and φ,
(IV) The (h)hv-torsion T of D satisfies g(T (X, Y ), Z) = g(T (X, Z), Y ).

This connection will be named Finsler Tripathi connection and denoted by GCΓ.

Proof. Suppose that (M, L) admits some regular connection D satisfying (I) - (IV). We
prove the the uniqueness of D.

Making use of (II), (IV) and Lemma 2.4, the associated nonlinear connection ΓD is
given by

ΓD = β̄ ◦ ρ− γ ◦ K̄ = h̄− v̄.

Here, h̄, v̄, β̄, K̄ are the horizontal projector, vertical projector, horizontal map and con-
nection map associated with D. From (II), (IV) and applying the Christoffel trick, we
obtain for all X, Y , Z ∈ X(π(M))

2g(DγXY , Z) = γX · g(Y , Z) + g(Y , ρ[β̄ Z, γX]) + g(Z, ρ[γX, β̄ Y ]). (3.2)

Since the difference between two nonlinear connections is a semi-basic vector 1-form on
TM [4, 29], we get

β̄ X = βX + γXt, for some Xt ∈ X(π(M)), (3.3)

where β is the horizontal map of the Cartan connection ∇. As the vertical endomorphism
J satisfies ρ ◦ J = 0, we have

ρ[γX, β̄ Y ] = ρ[γX, βY ]. (3.4)

Considering [27, Theorem 4(a)] together with (3.2) and (3.4), it follows that the vertical
counterpart of D and ∇ coincides, that is

DγXY = ∇γXY . (3.5)
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Now, by (I) and (III), we conclude that

2 g(Dβ̄ XY , Z) = β̄ X · g(Y , Z) + β̄ Y · g(Z, X)− β̄ Z · g(X, Y )− 2 f2 B(Z) g(X, Y )

−u(Z){g(X, φ(Y )) + g(Y , φ(X))}+ g(Z, ρ[β̄ X, β̄ Y ])
+u(Y ) {g(X, φ(Z)) + g(Z, φ(X))}+ g(Y , ρ[β̄ Z, β̄ X])
+u(X){g(Y , φ(Z))− g(Z, φ(Y ))} − g(X, ρ[β̄ Y , β̄ Z])
−2 f1{A(X) g(Y , Z) + A(Y ) g(Z, X)−A(Z) g(X, Y )}. (3.6)

Formula (3.3) gives rise to

ρ[β̄ X, β̄ Y ] = ρ[βX, βY ] + ρ[βX, γY t] + ρ[γXt, βY ].

Then, by [27, Theorem 4(b) and Theorem 6], (3.6) becomes

g(Dβ̄ XY , Z) = g(∇βXY , Z) + g(D◦
γXt

Y , Z)− f2 B(Z) g(X, Y )

+T(Xt, Y , Z) + T(Y t, Z, X)−T(Zt, X, Y )
−u(Z) g(φ1(X), Y ) + u(Y ) g(φ1(X), Z)− u(X) g(φ2(Y ), Z)
−f1{A(X) g(Y , Z) + A(Y ) g(Z, X)−A(Z) g(X, Y )}, (3.7)

where T is the Cartan tensor defined by T(X, Y , Z) := g(T (X, Y ), Z), g(φ1(X), Y ) and
g(φ2(X), Y ) are the symmetric and antisymmetric parts of g(φ(X), Y ), respectively.
Setting X = Y = η in (3.7), using the property that T is indicatory, as in [28, Lemma
4.9], and K̄ ◦ β̄ = K ◦ β = 0, we get

ηt = f1{2 A(η) η − L2 a}+ f2 L2 b + L ℓ(φ1(η)) u− u(η) (φ1 − φ2)(η), (3.8)

where ℓ := L−1 iηg, g(a, X) := A(X), g(b, X) := B(X), g(u, X) := u(X).
Set Y = η again in (3.7) and consider (3.8), we obtain

Xt = f1{A(X) η + A(η) X − L ℓ(X) a + L2 T (a, X)}
+f2{L ℓ(X) b− L2 T (b, X)} − u(η) {φ1(X) + T ((φ2 − φ1)(η), X)}
+L {ℓ(φ1(X)) u− ℓ(φ1(η)) T (u, X)}+ u(X)φ2(η). (3.9)

Therefore, the Cartan tensor satisfies

T(Xt, Y , Z) = f1 {A(η) T(X, Y , Z)− L ℓ(X) T(a, Y , Z) + L2 T(T (a, X), Y , Z)}
+f2{L ℓ(X) T(b, Y , Z)− L2 T(T (b, X), Y , Z)}+ u(X)T(φ2(η), Y , Z)
+L ℓ(φ1(X)) T(u, Y , Z)− L ℓ(φ1(η)) T(T (u, X), Y , Z)
+u(η) T(T ((φ1 − φ2)(η), X)− φ1(X), Y , Z). (3.10)

In addition, the Berwald connection D◦ can be written as follows

D◦
γXt

Y = f1 {A(X) D◦
γη Y + A(η) D◦

γXY − L ℓ(X)D◦
γaY + L2 D◦

γT (a,X)Y }

+f2{L ℓ(X) D◦
γbY − L2 D◦

γT (b,X)Y } − L ℓ(φ1(η)) D◦
γT (u,X)Y

+u(X) D◦
γφ2(η)Y − u(η) D◦

γφ1(X)−γT ((φ1−φ2)(η),X)Y

+L ℓ(φ1(X)) D◦
γuY . (3.11)
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Using the above three relations (3.9) - (3.11), together with the formula∇γ XY = D◦
γ XY +

T (X, Y ) [27], we conclude from (3.7) that

Dβ̄ XY = ∇β XY + f1{A(η)∇γ XY + A(X)∇γ ηY − A(X) Y − A(Y ) X + a g(X, Y )
−L {ℓ(X)∇γaY + ℓ(Y ) T (a, X)}+ L2{∇γT (a,X)Y + S(X, a)Y }+ T(a, X, Y )η}

−f2 {g(X, Y )b− L {ℓ(X)∇γbY + ℓ(Y ) T (b, X)}+ L2 {S(X, b)Y +∇γT (b,X)Y }

+T(b, X, Y )η} − g(φ1(X), Y ) u + u(X){∇γφ2(η)Y − φ2(Y )}
+u(Y ){φ1(X) + T (φ2(η), X)}+ L ℓ(φ1(X))∇γuY + L ℓ(φ1(Y )) T (u, X)
+L ℓ(φ1(η)) {S(u, X)Y −∇γT (u,X)Y } −T(u, X, Y ) φ1(η)−T(φ2(η), X, Y ) u

+u(η){φ1(T (X, Y ))− T (φ1(Y ), X) + S(X, (φ1 − φ2)(η))Y −∇γφ1(X)Y

+∇γT ((φ1−φ2)(η),X)Y }, (3.12)

where S is the v-curvature tensor of Cartan connection.

Consequently, from (3.5) and (3.12), taking into account (3.9), the full expression of
DXY in terms of Cartan connection is the following

DXY = ∇XY + f1 {g(ρX, Y ) a−A(ρX) Y −A(Y ) ρX − L ℓ(Y ) T (a, ρX)
+T(a, ρX, Y ) η + L2 S(ρX, a)Y } −T(u, ρX, Y ) φ1(η)−T(φ2(η), ρX, Y ) u

−f2 {g(ρX, Y ) b− L ℓ(Y ) T (b, ρX) + T(b, ρX, Y ) η + L2S(ρX, b)Y }
−g(φ1(ρX), Y ) u− u(ρX) φ2(Y ) + u(Y ) {φ1(ρX) + T (φ2(η), ρX)}
−u(η) {T (φ1(Y ), ρX) + S((φ1 − φ2)(η), ρX)Y + φ1(T (ρX, Y ))}
+L ℓ(φ1(Y ))T (u, ρX) + L ℓ(φ1(η)) S(u, ρX)Y . (3.13)

Hence, DXY is uniquely determined by the right-hand side of (3.13).

In order to prove the existence of D, just define D by the above formula. Then, it is
easy to check that D is a regular Finsler connection that satisfies the conditions (I) - (IV).
This completes the proof. □
Remark 3.3. It is worth mentioning that the connection GCΓ is the Finslerian version of
the Riemannian Tripathi connection [19] and generalizes the local study provided in [16].

Corollary 3.4. The GCΓ-connection D and the Cartan connection ∇ are related by
DXY = ∇XY + N(ρX, Y ),

where
N(ρX, Y ) = f1 {g(ρX, Y ) a− A(ρX)Y − A(Y ) ρX − L ℓ(Y ) T (a, ρX) + T(a, ρX, Y )η

+L2 S(ρX, a)Y } − f2{g(ρX, Y ) b− L ℓ(Y ) T (b, ρX) + T(b, ρX, Y ) η

+L2 S(ρX, bY )} − {g(φ1(ρX), Y ) + T(φ2(η), ρX, Y )}u− u(ρX) φ2(Y )
+L ℓ(φ1(Y ))T (u, ρX)− u(η){S((φ1 − φ2)(η), ρX)Y + T (φ1(Y ), ρX)
−φ1(T (ρX, Y ))}+ u(Y ){T (φ2(η), X) + φ1(ρX)}
+L ℓ(φ1(η)) S(u, ρX)Y −T(u, ρX, Y ) φ1(η).

Proposition 3.5. Consider a Finsler manifold (M, L) and let D be the Finsler Tripathi
connection. Then,

(a) The canonical spray Ḡ associated with D is given by

Ḡ = G + f1 {2A(η) γη − L2 γa}+ f2 L2 γb + L ℓ(φ1(η)) γu− u(η) γ(φ1 − φ2)(η),
where G is the geodesic spray of the Finsler structure.
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(b) The canonical nonlinear connection Γ associated with D is given by:

Γ(X) := Γ(X) + 2
(

f1{A(ρX) γη + A(η) JX − L ℓ(ρX) γa + L2γT (a, ρX)}

+f2 {L ℓ(ρX) γb− L2γT (b, ρX)}+ L ℓ(φ1(ρX)) γu− u(η)γφ1(ρX)

+u(ρX)γφ2(η)− Lℓ(φ1(η))γT (u, ρX) + u(η) γT ((φ1 − φ2)(η), ρX)
)

,

where Γ is the Barthel connection of (M, L).

Proof. (a) It follows from (3.3), by replacing X by η, and using (3.8).
(b) The expression of Γ is obtained by applying Lemma 2.4, taking into account Equations
(3.3) and (3.9). □
Proposition 3.6. Let D be the Finsler Tripathi connection. Then, the following hold:

(a) the (h)hv-torsion T of D coincides with the (h)hv-torsion T of Cartan connection.
(b) the (h)h-torsion Q of D has the form: Q(X, Y ) = u(Y )φ(X)− u(X)φ(Y ).
(c) the (v)v-torsion Ŝ of D vanishes identically.
(d) the (v)hv-torsion P̂ of D has the form:

P̂ (X, Y ) = P̂ (X, Y )−∇γY Xt −N(X, Y ) + N(ρ[βX, γY ], η).

(e) the (v)h-torsion R̂ of D has the form:

R̂(X, Y ) = R̂(X, Y ) + N(ρ[β̄ X, β̄ Y ], η) + K([βX, γY t] + [γXt, βY ] + [γXt, γY t]),

where P̂ and R̂ are the (v)hv and (v)h torsions of the Cartan connection, respectively.

Proof. (a) Follows from the definition of T , together with Equations (3.4) and (3.5).
(b) Follows directly by condition (III) of Theorem 3.2.
(c) Using (a) above and [30, Proposition 2.5], we obtain

S(X, Y )Z = (DγY T )(X, Z)− (DγXT )(Y , Z) + T (X, T (Y , Z))

−T (Y , T (X, Z)) + T (Ŝ(Y , X), Z). (3.14)
Setting Z = η into (3.14), taking into account (a) together with the properties of T and
the fact that K̄ ◦ γ = idX(π(M)), the result follows.

(d) According to Corollary 3.4 and Proposition 3.5 together with K̄ ◦ β̄ = 0, we get

P̂ (X, Y ) = −Dβ̄ XDγY η + DγY Dβ̄ X η + D[β̄ X,γY ] η = −Dβ̄ XY + D[β̄ X,γY ]η

= −∇β XY +∇[β X,γY ]η −∇γXt
Y +∇[γXt,γY ]η −N(X, Y ) + N(ρ[β̄ X, γY ], η)

= P̂ (X, Y )−∇γY Xt −N(X, Y ) + N(ρ[β X, γY ], η).

Hence, the result follows by taking into account (c) above.
(e) The proof is similar to that of (d) above. □
Proposition 3.7. Let S, P and R (S, P and R) be the v-, hv- and h-curvatures of the
GCΓ-connection D (the Cartan connection ∇), then we have

(a) S(X, Y )Z = S(X, Y )Z,
(b) P (X, Y )Z = P (X, Y )Z + (∇γY N)(X, Z) + N(T (Y , X), Z)

+ f1{A(η) S(X, Y )Z − L ℓ(X) S(a, Y )Z + L2 S(T (a, X), Y )Z}
+ f2{L ℓ(X) S(b, Y )Z + L2 S(T (b, X), Y )Z}+ L ℓ(φ1(X)) S(u, Y )Z
+ u(X) S(φ2(η), Y )Z − L ℓ(φ1(η)) S(T (u, X), Y )Z
+ u(η) {S(T ((φ1 − φ2)(η), X), Y )Z − S(φ1(X), Y )Z},
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(c) R(X, Y )Z = R(X, Y )Z + P (X, Y t)Z − P (Y , Xt)Z + S(Xt, Y t)Z
+ UX,Y {(∇β̄ Y N)(X, Z) + N(Y , N(X, Z)) + N(T (Y t, X), Z)},

where UX,Y {B(X, Y )} := B(X, Y )−B(Y, X).

Proof. (a) Follows from (3.5). (b) and (c) follow from both (3.5) and (3.12). □
Proposition 3.8. For the GCΓ-connection, the following identities hold:

(a) P (X, Y )Z − P (Z, Y )X = (Dβ̄ZT )(Y , X)− (Dβ̄XT )(Y , Z)− (DγY Q)(Z, X)
+ T (Y , Q(Z, X))− T (P̂ (Z, Y ), X) + T (P̂ (X, Y ), Z)
−Q(Z, T (Y , X)) + Q(X, T (Y , Z)),

(b) SX,Y ,Z{R(X, Y )Z−T (R̂(X, Y ), Z)} = SX,Y ,Z{Q(X, Q(Y , Z))−(Dβ̄ XQ)(Y , Z)},
(c) (Dβ̄ ZS)(X, Y , W )− P (Z, Ŝ(X, Y ))W =

= UX,Y {(DγY P )(Z, X, W ) + P (T (X, Z), Y )W + S(P̂ (Z, X), Y )W},
(d) (DγXR)(Y , Z, W ) = S(R̂(Y , Z), X)W − P (Q(Y , Z), X)W+

+UZ,Y {(Dβ̄ZP )(Y , X, W ) + P (Z, P̂ (Y , X))W + R(T (X, Z), Y )W},
(e) SX,Y ,Z{(Dβ̄XR)(Y , Z, W ) + P (X, R̂(Y , Z))W + R(Q(X, Y ), Z)W} = 0.

Proof. It results from [30, Propositions 2.5, 2.6], taking into account Corollary 3.4 and
Propositions 3.6, 3.7 above. □

4. A generalization of the four celebrated Finsler connections
This section is devoted to constructing new Finsler connections from our general connec-

tion GCΓ by means of the P 1-process and C-process introduced by Matsumoto [10]. First,
let us denote Cartan, Berwald, Hasiguashi and Chern-Rund connections by CΓ, BΓ, HΓ
and RΓ, respectively.

Definition 4.1. Let D be the GCΓ-connection. The process of adding the associated
(v)hv-torsion P (Y , X) to the horizontal part Dβ̄ XY of GCΓ is called the P

1-process.
Moreover, the process of subtracting the associated (h)hv-torsion T (X, Y ) from the vertical
part DγXY of GCΓ is called C-process.

Theorem 4.2. By means of the P
1-process and C-process, we have:

(a) The P
1-process of GCΓ yields a generalized Hashiguchi connection (GHΓ).

(b) The C-process of GCΓ yields a generalized Chern-Rund connection (GRΓ).
(c) The P

1-process followed by the C-process of GCΓ (or the C-process followed by
the P

1-process) yields a generalized Berwald connection (GBΓ).

Now, we define a vanishing condition (or in short VC) by setting f1 = f2 = u = 0.
Based on Theorem 4.2 and Corollary 3.4, if the VC is satisfied, we obtain the following
diagram:

GBΓ C-proc.←−−−− GHΓ P
1-proc.←−−−−− GCΓ C-proc.−−−−→ GRΓ P

1-proc.−−−−−→ GBΓ

VC

y VC

y VC

y yVC

yVC

BΓ C-proc.←−−−− HΓ P 1-proc.←−−−−− CΓ C-proc.−−−−→ RΓ P 1-proc.−−−−−→ BΓ
The arrows of the second row arise from the usual P 1-process and C-process and they

are well known [10]. The arrows of the first row arise from Theorem 4.2 and they are
completely new. Moreover, the connections of the second row come from the generalized
connections of the first row under the VC.
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One notes from the above discussion that the Finsler Tripathi connection may be con-
sidered as a generalized Cartan connection, and this justifies the symbol GCΓ which was
attributed to this connection.

5. Special cases
In the present section, we give some important particular cases (26 cases) of our con-

nection D which result from certain choices of f1, f2, A, B, u, φ1, φ2. Some of the following
cases have been already studied in the context of Finsler geometry while many others have
not.
Generalized quarter-symmetric recurrent metric Finsler connection:
A = B, f1 = 1− t, f2 = −t, t ∈ R

(1) In this case, D reduces to a Finslerian version of the connection introduced in [18]
and is written in the form:

DXY = ∇XY − (1− t) {A(ρX)Y + A(Y ) ρX}+ g(ρX, Y ) a− L ℓ(Y ) T (a, ρX)
+L2 S(ρX, a)Y − {g(φ1(ρX), Y ) + T(φ2(η), ρX, Y )}u− u(ρX) φ2(Y )
+L ℓ(φ1(Y ))T (u, ρX)− u(η){S((φ1 − φ2)(η), ρX)Y + T (φ1(Y ), ρX)
−φ1(T (ρX, Y ))}+ u(Y ){T (φ2(η), X) + φ1(ρX)}+ T(a, ρX, Y )η
+L ℓ(φ1(η)) S(u, ρX)Y −T(u, ρX, Y ) φ1(η).

Quarter-symmetric metric Finsler connection: f1 = f2 = 0
(2) D becomes a Finslerian version of the Riemannian connection given in [23, formula

(3.3)], that is,
DXY = ∇XY − {g(φ1(ρX), Y ) + T(φ2(η), ρX, Y )}u− u(ρX) φ2(Y )

+L ℓ(φ1(Y ))T (u, ρX)− u(η){S((φ1 − φ2)(η), ρX)Y + T (φ1(Y ), ρX)
−φ1(T (ρX, Y ))}+ u(Y ){T (φ2(η), X) + φ1(ρX)}
+L ℓ(φ1(η)) S(u, ρX)Y −T(u, ρX, Y ) φ1(η).

(3) In addition, when φ = Rico, then we obtain a Finslerian version of the Ricci
quarter-symmetric metric connection appeared in [12, formula (2.2)].

(4) When φ2 = 0, we get a Finslerian version of the quarter-symmetric metric con-
nection presented in [12, formula (1.6)]. Thus, D has the form:

DXY = ∇XY − g(φ1(ρX), Y ) u + L ℓ(φ1(Y ))T (u, ρX)− u(η){S(φ1(η), ρX)Y
+T (φ1(Y ), ρX)− φ1(T (ρX, Y ))}+ u(Y ) φ1(ρX)
+L ℓ(φ1(η)) S(u, ρX)Y −T(u, ρX, Y ) φ1(η).

(5) When φ1 = 0, D reduces to a Finslerian version of the connection given in [23,
formula (3.6)]. That is,

DXY = ∇XY −T(φ2(η), ρX, Y ) u− u(ρX)φ2(Y ) + u(Y ) T (φ2(η), X)
+ u(η) S(φ2(η), ρX)Y .

Quarter-symmetric non-metric Finsler connection: f1 6= 0, f2 = 0
(6) If f1 = 1

2 , then we obtain an intrinsic formula of the quarter-symmetric h-recurrent
Finsler connection presented in [16]. Thereby, D becomes

DXY = ∇XY + 1
2
{g(ρX, Y ) a−A(ρX)Y −A(Y ) ρX − L ℓ(Y ) T (a, ρX)

+L2 S(ρX, a)Y } − {g(φ1(ρX), Y ) + T(φ2(η), ρX, Y )}u
−u(ρX) φ2(Y ) + L ℓ(φ1(Y ))T (u, ρX)− u(η){S((φ1 − φ2)(η), ρX)Y
+T (φ1(Y ), ρX)− φ1(T (ρX, Y ))}+ u(Y ){T (φ2(η), X) + φ1(ρX)}
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+L ℓ(φ1(η)) S(u, ρX)Y −T(u, ρX, Y ) φ1(η) + 1
2

T(a, ρX, Y )η.

(7) When φ2 = 0, D reduces to a Finslerian version of the connection given in [19, §4.2
(4)]. Then, D can be written as follows

DXY = ∇XY + f1 {g(ρX, Y ) a−A(ρX)Y −A(Y ) ρX − L ℓ(Y ) T (a, ρX)
+T(a, ρX, Y )η + L2 S(ρX, a)Y }+ L ℓ(φ1(Y ))T (u, ρX) + u(Y )φ1(ρX)
−u(η){S(φ1(η), ρX)Y + T (φ1(Y ), ρX)− φ1(T (ρX, Y ))}
+L ℓ(φ1(η)) S(u, ρX)Y − g(φ1(ρX), Y ) u−T(u, ρX, Y ) φ1(η).

(8) If f1 = 1, A = u and φ2 = 0, then we get a Finslerian version of the connection D
presented in [19, §4.2 (5)]. Therefore, D is given by:

DXY = ∇XY + g(ρX − φ1(ρX), Y ) u− u(ρX)Y − u(Y ) ρX − L ℓ(Y ) T (u, ρX)
+T(u, ρX, Y )η + L2 S(ρX, u)Y + L ℓ(φ1(Y ))T (u, ρX)
−u(η){S(φ1(η), ρX)Y + T (φ1(Y ), ρX)− φ1(T (ρX, Y ))}
+u(Y ) φ1(ρX) + L ℓ(φ1(η)) S(u, ρX)Y −T(u, ρX, Y ) φ1(η).

(9) If φ1 = 0, then we obtain a Finslerian version of the quarter-symmetric recurrent
connection D given in [19, §4.2 (6)]. Thus, D has the form

DXY = ∇XY + f1{g(ρX, Y )a−A(ρX)Y −A(Y ) ρX − Lℓ(Y )T (a, ρX)
+T(a, ρX, Y )η + L2 S(ρX, a)Y } − u(ρX)φ2(Y ) + u(Y )T (φ2(η), X)
−T(φ2(η), ρX, Y )u + u(η) S(φ2(η), ρX)Y .

(10) When f1 = 1, A = u and φ1 = 0, D reduces to a Finslerian version of the special
quarter-symmetric recurrent connection presented in [19, §4.2 (7)] . That is,

DXY = ∇XY + g(ρX, Y )u− u(ρX)Y − u(Y )ρX − Lℓ(Y )T (u, ρX)
+T(u, ρX, Y )η + L2 S(ρX, u)Y − u(ρX)φ2(Y ) + u(Y )T (φ2(η), X)
−T(φ2(η), ρX, Y )u + u(η) S(φ2(η), ρX)Y .

Quarter-symmetric non-metric Finsler connection: f1 = 0, f2 6= 0
(11) If φ2 = 0, we get a Finslerian version of the connection given in [19, §4.2 (8)].

Then, the connection D has the form:
DXY = ∇XY − f2{g(ρX, Y ) b− L ℓ(Y ) T (b, ρX) + T(b, ρX, Y ) η

+L2 S(ρX, a)Y } − g(φ1(ρX), Y )u + L ℓ(φ1(Y ))T (u, ρX)
−u(η){S(φ1(η), ρX)Y + T (φ1(Y ), ρX)− φ1(T (ρX, Y ))}
+u(Y φ1(ρX) + L ℓ(φ1(η)) S(u, ρX)Y −T(u, ρX, Y ) φ1(η).

(12) When B = u and φ2 = 0, D becomes a Finslerian version of the connection
appeared in [19, §4.2 (9)]. That is,

DXY = ∇XY − f2{g(ρX, Y ) u− L ℓ(Y ) T (u, ρX) + T(u, ρX, Y ) η

+L2 S(ρX, a)Y } − g(φ1(ρX), Y )u + L ℓ(φ1(Y ))T (u, ρX)
−u(η){S(φ1(η), ρX)Y + T (φ1(Y ), ρX)− φ1(T (ρX, Y ))}
+u(Y ) φ1(ρX) + L ℓ(φ1(η)) S(u, ρX)Y −T(u, ρX, Y ) φ1(η).

(13) If φ1 = 0, we obtain a Finslerian version of the connection given in [19, §4.2 (10)].
The connection D can be written as

DXY = ∇XY − f2{g(ρX, Y ) b− L ℓ(Y ) T (b, ρX) + T(b, ρX, Y ) η

+L2 S(ρX, a)Y } −T(φ2(η), ρX, Y ) u− u(ρX) φ2(Y )
+u(η) S(φ2(η), ρX)Y + u(Y ) T (φ2(η), X).



146 A. Soleiman, E. H. Taha

(14) If B = u and φ1 = 0, we get a Finslerian version of the connection presented in
[19, §4.2 (11)]. The connection D is given by:

DXY = ∇XY − f2{g(ρX, Y ) u− L ℓ(Y ) T (u, ρX) + T(u, ρX, Y ) η

+L2 S(ρX, a)Y } −T(φ2(η), ρX, Y ) u− u(ρX) φ2(Y )
+u(η) S(φ2(η), ρX)Y + u(Y ) T (φ2(η), X).

Semi-symmetric metric Finsler connection: f1 = f2 = 0, φ = idπ−1(T M)

• (15) We obtain the Finslerian version of the connection defined in [21]. That is,
DXY = ∇XY − g(ρX, Y )u + u(Y )ρX + Lℓ(Y )T (u, ρX)

+L2T (T (ρX, Y ), u)− L2T (T (u, Y ), ρX)− T (u, ρX, Y )η.

(16) If u = ℓ, we get an intrinsic version of the connection given in [16, §5.3].
DXY = ∇XY − L−1g(ρX, Y )η + ℓ(Y )ρX.

Note that special classes of semi-symmetric metric Finsler connections have been intro-
duced and investigated in [24] and [25].
Semi-symmetric non-metric Finsler connection: f1 6= 0, f2 = 0, φ = idπ−1(T M)

(17) D reduces to a Finslerian version of the semi-symmetric recurrent connection given
in [16,19]. Thus, D is written in the form:
DXY = ∇XY + f1{g(ρX, Y )a−A(ρX)Y −A(Y ) ρX − Lℓ(Y )T (a, ρX)

+T(a, ρX, Y )η + L2{T (T (a, Y ), ρX)− T (T (ρX, Y ), a)}}
−g(ρX, Y )u + u(Y )ρX + Lℓ(Y )T (u, ρX)
−L2T (T (u, Y ), ρX)−T(u, ρX, Y )η + L2T (T (ρX, Y ), u).

(18) If f1 = 1
2 , we obtain a Finslerian version of the semi-symmetric recurrent connec-

tion D studied in [2, 8, 16]. In this case, D is given by:

DXY = ∇XY + 1
2
{g(ρX, Y )a−A(ρX)Y −A(Y ) ρX − Lℓ(Y )T (a, ρX)

+T(a, ρX, Y )η + L2{T (T (a, Y ), ρX)− T (T (ρX, Y ), a)}}
−g(ρX, Y )u + u(Y )ρX + Lℓ(Y )T (u, ρX)
+L2T (T (ρX, Y ), u)− L2T (T (u, Y ), ρX)− T (u, ρX, Y )η.

(19) If f1 = 1
2 and A = u = ℓ, we obtain a special semi-symmetric h-recurrent Finsler

connection [16] given by:

DXY = ∇XY − 1
2
{L−1g(ρX, Y )η + ℓ(ρX)Y − ℓ(Y )ρX}.

Semi-symmetric non-metric Finsler connection: f1 = 0, f2 6= 0, φ = idπ−1(T M)

(20) We obtain a Finslerian version of the semi-symmetric non-metric connection given
in [19, §4.4 (14)], that is,

DXY = ∇XY − f2{g(ρX, Y )b− Lℓ(Y )T (b, ρX) + T(b, ρX, Y )η
+L2{T (T (b, Y ), ρX)− T (T (ρX, Y ), b)}}
−g(ρX, Y )u + u(Y )ρX + Lℓ(Y )T (u, ρX)
−L2T (T (u, Y ), ρX)−T(u, ρX, Y )η + L2T (T (ρX, Y ), u).

(21) If f2 = −1, we obtain a Finslerian version of the connection discussed in [15], that
is,

DXY = ∇XY + g(ρX, Y )b− Lℓ(Y )T (b, ρX) + T(b, ρX, Y )η
+L2{T (T (b, Y ), ρX)− T (T (ρX, Y ), b)}
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−g(ρX, Y )u + u(Y )ρX + Lℓ(Y )T (u, ρX)
−L2T (T (u, Y ), ρX)−T(u, ρX, Y )η + L2T (T (ρX, Y ), u).

(22) If f2 = −1 and B = u, then we get the Finslerian version of the connection studied
in [1], that is,

DXY = ∇XY + u(Y )ρX.

Symmetric non-metric Finsler connection: u = 0
(23) We obtain a Finslerian version of the connection appeared in [19, §4.5 (15)]. It is

given by:
DXY = ∇XY + f1 {g(ρX, Y ) a−A(ρX)Y −A(Y ) ρX − L ℓ(Y ) T (a, ρX)

+T(a, ρX, Y )η + L2 S(ρX, a)Y } − f2{g(ρX, Y ) b− L ℓ(Y ) T (b, ρX)
+T(b, ρX, Y ) η + L2 S(ρX, b)Y }.

(24) If f1 = 1
2 and f2 = 0, then D reduced to a Finslerian version of the symmetric

recurrent connection (Weyl connection) investigated in [3, 13,26]. That is,

DXY = ∇XY + 1
2
{g(ρX, Y ) a−A(ρX) Y −A(Y ) ρX − L ℓ(Y ) T (a, ρX)

+T(a, ρX, Y ) η + L2 S(ρX, a)Y }.
(25) If f1 = f2 = −1 and A = B, then D is a Finslerian version of the connection

considered in [22], that is,
DXY = ∇XY + A(ρX)Y + A(Y ) ρX.

(26) If f1 = 1
2 , A = ℓ and f2 = 0, then we obtain a special symmetric h-recurrent

Finsler connection studied in [13,26], that is,

DXY = ∇XY + 1
2
{L−1g(ρX, Y )η − ℓ(ρX)Y − ℓ(Y )ρX}.

We end this work by the following remark: applying the P 1-process and C-process to each
of the above mentioned special cases, one can get more new Finsler connections.

6. Concluding remarks
We conclude the present paper by some comments and remarks.
• In this paper we provide a general class of Finsler connections, large enough to include

the classical four Finsler connections (Berwald, Cartan, Chern-Rund and Hashiguchi) and
so many other generalizations.

• In Riemannian geometry, the Levi-Civita connection is the unique linear connection
that is metric and symmetric. This connection can be generalized by replacing:
– the metricity condition (MR-condition) by requiring the covariant derivative of the
metric tensor to be a prescribed (0, 3)-type tensor (symmetric in the first 2 arguments).
– the symmetric condition (TR-condition), by requiring the torsion tensor to be a given
vector valued 2-form.
There are many choices for the (0, 3)-type tensor as well as for the vector valued 2-form.
Such a choice was used by Tripathi in his formulae (2.5) and (2.6) of [19, Theorem 2.1].
Tripathi uses for the MR-condition:

∇g(X, Y, Z) = 2f1u1(Z)g(X, Y ) + f2[u2(X)g(Y, Z) + u2(Y )g(X, Z)], (6.1)
which is a (0, 3)-type tensor symmetric in X and Y , and for the TR-condition:

T (X, Y ) = u(X)φ(Y )− u(Y )φ(X), (6.2)
which is a vector valued 2-form. Of course, these are not the only possible choices for the
two MR- and TR-conditions, but any choice should be motivated.
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• Similar ideas can be extended to the Finslerian context. A very general Finsler
connection (including the classical four Finsler connections) can be defined by providing
information about:
– the metricity condition (MF-condition): the horizontal and vertical covariant derivatives
of the metric tensor are prescribed (0, 3)-type tensor (symmetric in the first 2 arguments).
– the symmetric condition (TF-condition): horizontal and vertical counterparts of the
torsion tensor field are given by vector valued 2-form.
In the main theorem of this paper (Theorem 3.2), for the MF-conditions, the horizon-
tal covariant derivative is provided by condition (6.1) and the vertical covariant deriv-
ative vanishes (here of course one can generalize by providing a given tensor). For the
TF-conditions, the h(h)-torsion uses condition (6.2), while the other torsion counterpart
satisfies some symmetry.

• Justification of our choices for MF- and TF-conditions.
We have chosen the MF- and TF-conditions of Theorem 3.2 in such a way that the following
two criteria are fulfilled.
(1) When the objects f1, f2, A, B, u, φ vanish, we retrieve the Cartan connection. This
corresponds to the fact that when these objects vanish in the Riemannian context, the
Levi-Civita connection is retrieved. For this reason, Condition IV of Theorem 3.2 is
mandatory and Condition II (DγXg = 0) is the optimal condition for the intrinsic proof to
be feasible; if we replace the RHS by a nonzero object the proof becomes so complicated
or even impossible.
(2) Generalizing [19] form Riemannian to Finslerian context and generalizing [16] form
local to global formalism retaining all what was gained in [19] and [16] and, moreover,
possessing the ability to produce other new Finsler connections that do not exist in the
Finsler literature.

• The particular cases treated in the §5 fall in the following three categories:
1. Connections that have been generalized from Riemannian to Finsler geometry such as
(1)-(5), (7)-(15), (20)-(23), (25).
2. Finsler Connections that have been generalized from local to global (or intrinsic)
formalism such as (6), (16)-(19).
3. Finsler connections in the global formalism reobtained such as (24), (26).

• From the Finsler Tripathi connection GCΓ (3.13), four new fundamental Finsler
connections have been obtained: generalized Cartan (which is GCΓ itself), generalized
Berwald, generalized Hachiguchi, generalized Chern-Rund. From the later connections,
the classical Finsler connections (Cartan, Berwald, Hachiguchi, Chern-Rund) are retrieved
by placing f1 = f2 = u = 0 (§4). Many other new Finsler connections that do not
exist neither locally nor globally in the literature can be obtained by various choices of
the objects f1, f2, A, B, u, φ (different from those considered in §5), which merit to be
investigated. This indicate the great potentiality of the Finsler Tripathi connection.
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