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ABSTRACT
Worldwide, the incidence of overweight and obesity is increasing day by day, and this makes the control of body weight and complications 
a primary health problem. Weight loss diet therapy has long been a primary role in the prevention and management of obesity. Evidence 
supporting the specific anti-obesity effects of certain nutrient components, in particular, polyphenolic compounds, are increasing, as 
well as a strategy to limit energy intake to achieve control of body weight. Active brown adipose tissue in adult individuals is gaining 
interest as a new and feasible target for controlling body weight by triggering and increasing energy expenditure. Flavonoids are one of the 
polyphenolic compounds that draw attention by regulating non-shivering thermogenesis. Although each flavonoid has its health benefits; 
many phytochemical compounds classified as flavonoids have an anti-obesity effect by regulating oxidation, synthesis, uptake, and transport 
of fatty acids. In this study, current studies on the therapeutic effect of flavonoids on obesity by regulating energy expenditure through 
various mechanisms of action in brown adipose tissue are reviewed.
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1. INTRODUCTION

Obesity is defined as abnormal or excessive fat accumulation 
that presents a health risk, and a body mass index (BMI) 
above 30 kg/m2 is classified as to have obesity. According to 
this criterion, the World Health Organization (WHO) states 
that 13% of the adult population in the world has obesity and 
that obesity and its complications are one of the most difficult 
public health problems (1). Although energy restriction is the 
best-known dietary intervention to reduce the prevalence 
of obesity, potential anti-obesity effects of bioactive or 
functional food components such as polyphenols are also 
discussed (2-4).

Flavonoids are plant pigments groups that are responsible for 
the colors in many fruits and flowers. Flavonoids, estimated 
to be over 4000, are abundant in tea, apples, onions, 
legumes, tomatoes and red wine. In various studies, it is 
stated that besides the antioxidant properties of flavonoids, 
they have anti-obesity, anti-inflammatory, antiviral, anti-
allergic, antithrombotic and other functions (5-8).

The discovery of the presence of brown adipose tissue (BAT) 
in neonates and adult individuals has led to an increase in 
research into the development of a new therapeutic approach 
to fighting obesity (9). Increasing energy expenditure with BAT 
activation is thought to be promising for the control of obesity 
(10). BAT’s capacity to influence energy expenditure is based 
on the ability to dissipate energy as heat and depends on 
the expression of the uncoupling protein-1 (UCP-1) in brown 
adipocytes. UCP-1 separates the electron transport system 
(ETS) from ATP synthesis, thus dissipating energy (11). The 
presence of BAT in human tissue correlates negatively with 
BMI, body fat mass percentage, and plasma glucose (12-14).

This review presents a critical review of the literature describing 
the possible role of flavonoids in therapeutic strategies against 
obesity through BAT activation and browning.

In this review, studies included in the databases Pubmed, 
Science Direct, Web of Science, and Google Scholar were 
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evaluated, which were performed until December 2021 
with no time limitation. In vivo and in vitro studies written in 
English, and review articles about flavonoids and obesity are 
included in the study. A comprehensive study was carried out 
by two researchers. For flavonoids the keywords ‘flavonoids’, 
‘flavones’, ‘flavonols’, ‘flavanones’, ‘flavanols’, ‘anthocyanins’, 
‘isoflavones’, and for anti-obesity role the keywords ‘brown 
adipose tissue’, ‘brown adipose tissue mechanism of action’, 
‘browning’, ‘obesity’, ‘thermogenesis’, ‘non-shivering 
thermogenesis’, and ‘uncoupling protein-1’ were scanned by 
using the conjunctions ‘AND’ and ‘OR’. Titles of the articles 
were reviewed, and the first elimination was performed during 
the article evaluation process according to our specific subject. 
After that, abstracts were reviewed, and the articles eliminated 
were either included in the study over full text or excluded.

1.1. Properties of Adipose Tissue

Adipose tissue has an important role in regulating biological 
functions and especially energy metabolism with the 
enzyme, cytokine, growth factor and hormones it secretes. 

Adipocytes are made by lipoblasts differentiating from 
mesenchymal cells. Lipoblasts are transformed into two 
different adipose tissues, namely white adipose tissue 
(WAT) and BAT, with different functions and morphology 
in mammals (15, 16). Respectively, storing energy and 
preventing hypothermia are the main tasks of these tissues 
(17). In addition to WAT and BAT, the third type of adipose 
tissue called ‘beige’ has recently been identified. Adipocytes 
in the stores of beige adipose tissue (BeAT) are similar to 
white adipocytes but have the classic features of brown 
adipocytes (18, 19). The transformation of WAT into BAT, 
that is, the formation of BeAT, occurs as a result of increased 
expression of the UCP-1 pump in WAT cells via the irisin 
hormone stimulated by exercise and cold. WAT cells with 
increased UCP-1 pump in their mitochondria are referred 
to as BeAT. These cells work like BAT cells. Increased UCP-1 
expression inhibits ATP synthesis, and heat production, 
which causes energy consumption in the cell, to increase, 
providing thermogenesis and glucose homeostasis (20-22). 
The characteristics of WAT, BAT, and BeAT are summarized 
in Table 1 (23, 24).

Table 1. General characteristics of white, brown and beige adipose tissue
White
(WAT*)

Adipose Tissue Brown Adipose Tissue
(BAT*)

Beige Adipose Tissue
(BeAT*)

Location Visceral WAT: Around the organs (mesenteric, 
omental, perigonadal	and
retroperitoneal)
Subcutaneous WAT: Inguinal, intramuscular

Interscapular, perirenal Neck and
supraclavicular region

Morphology Unilocular/Large lipid droplets Multilocular/Small lipid droplets Unilocular, large/multiple small lipid
droplets

Lipid content Single large droplet covering
90% of cell volume

Multiple
droplets

small lipid Uncertain

Function Energy storage
Endocrine organ

Heat production Adaptive thermogenesis

Mitochondria
number

+ +++ ++

UCP-1 - +++ ++
Vascularization Few Abundant Uncertain
Obesity Positive Negative Negative
Insulin resistance Positive Negative Negative
Activators High-fat diet Cold, thyroid hormone, 

thiazolidinediones, FGF21*,	
BMP7*,
BMP8b*,	 natriuretic peptide

Cold, thiazolidinediones, a natriuretic 
peptide, FGF21*,
irisin, catecholamines,
β-adrenergic receptor agonists

* BAT; brown adipose tissue, BeAT; beige adipose tissue, BMP7; bone morphogenetic protein 7, BMP8b; bone morphogenetic protein 8b, FGF21; fibroblast 
growth factor 21, UCP-1; uncoupling protein-1, WAT; white adipose tissue.
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1.2. Effect Mechanism of Brown Adipose Tissue

Brown adipose tissue has a negative correlation with BMI, fat 
mass percentage and plasma glucose. It contributes to energy 
expenditure by using energy as heat energy. This effect is 
due to UCP-1 expression in BAT. UCP-1, which is capable of 
separating ATP production from mitochondrial respiration, 
dissipates large amounts of stored energy as heat by allowing 
protons to re-enter the matrix (25).

Norepinephrine is released near the postganglionic nerve 
endings in BAT to increase activation of the sympathetic 
nervous system and situations requiring increased body 
temperature (26). Norepinephrine binds to the b3-adrenergic 
receptor (b3AR) on the surface of brown adipocytes.

Binding to b3AR provides cyclic AMP (cAMP) to be 
produced by adenylate cyclase. Increased intracellular cAMP 
concentrations activate hormone-sensitive lipase (HSL) and 
protein kinase A (PKA) which phosphorylated perilipin to 
promote triglyceride hydrolysis. Then the released free fatty 
acids (FFAs) are opened to the mitochondria via carnitine 
palmitoyltransferase-1 (CPT-1). In mitochondria, FFAs 
activate UCP-1 and fatty acid oxidation produce cofactors 
for ETS. UCP-1 uses the proton gradient generated by ETS to 
produce heat and thus dissipates energy (27, 28).

In parallel with the direct activation of thermogenesis, 
norepinephrine stimulation leads to transcriptional 
regulation of genes important for thermogenesis, that is, the 
induction of the “thermogenic program”. The activated PKA 
also activates cAMP response element-binding protein (CREB) 
and p38 mitogen-activated protein kinase by phosphorylating 
the transcription factor. Respectively, the p38 mitogen-
activated protein kinase phosphorylates transcription factors 
such as activating transcription factor 2 or transcriptional 
coactivator PPAR-g coactivator 1a (PGC-1a) to induce UCP-1 
expression. Phosphorylated CREB enhances transcription of 
type 2 iodothyronine deiodinase, which converts inactive 
tetraiodothyronine to triiodothyronine (T3), which promotes 
binding of T3 receptor. When the receptor is not bound to T3, 
it acts as a UCP-1 transcriptional suppressor. Therefore, T3 
indirectly increases UCP-1 expression (Figure 1) (27, 29, 30). 

 

Figure 1. Brown adipose tissue’s effect mechanism. β3AR; β3-adrenergic receptor, cAMP; cyclic 
AMP, HSL; hormone-sensitive lipase, PKA; protein kinase A, CREB; cAMP response element-
binding protein, p38; p38 mitogen- activated protein kinase, FFAs; free fatty acids, CPT- 1; carnitine 
palmitoyltransferase-1, UCP-1; uncoupling protein-1. 

 
 

 

Figure 2. Flavonoids in BAT activation.β3-AR; β3-adrenergic receptor, PKA; protein kinase A, HSL; 
hormone-sensitive lipase, AMPK; AMP-activated protein kinase, PPARα; peroxisome proliferator-
activated receptor- alpha, PPARγ; peroxisome proliferator- activated receptor gamma, PGC1α; 
peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, WAT; white adipose tissue. 

Figure. 1. Brown adipose tissue’s effect mechanism. b3AR; b3-
adrenergic receptor, cAMP; cyclic AMP, HSL; hormone-sensitive lipase, 
PKA; protein kinase A, CREB; cAMP response element-binding protein, 
p38; p38 mitogen – activated protein kinase, FFAs; free fatty acids, CPT – 
1; carnitine palmitoyltransferase-1, UCP-1; uncoupling protein-1.

White adipocytes are highly sensitive to norepinephrine. It 
stimulates lipolysis through norepinephrine-like intracellular 
signaling events, thereby promoting the release of FFA, 
which is used as energetic substrates in BAT to maintain 
thermogenesis (27). In particular, it causes UCP-1 activation 
called “beige” or “brite” in subcutaneous and retroperitoneal 
stores in WAT (31). Beige adipocyte loss has been shown to 
cause obesity, but increasing the amount of beige adipocyte 
in WAT may compensate for the thermogenic activity of 
descending BAT (24, 32). However, the increase in the 
amount of UCP-1 and adipocytes in human WAT is still highly 
debated and conflicting results have been reported (33, 34).

1.3. Flavonoids

Flavonoids are a group of plant pigments that are responsible 
for the colors in many fruits and flowers. They took ‘flavonoid’ 
name because they are yellow derived from ‘flavus’ which 
means yellow in Latin. They have 2-phenyl benzopyrone 
(diphenyl propane) structure of 15 carbon atoms (C6-C3-C6). 
Various flavonoids are formed by binding – OH groups to 
different carbons in the phenyl benzopyrone structure (35). 
Flavonoids, estimated to be over 4000, are abundant in tea, 
apples, onions, legumes, tomatoes and red wine. Flavonoids 
are composed of six subgroups; Flavones, Flavonols, 
Flavanones, Flavanols, Anthocyanins, and Isoflavones (35, 36).

The family of flavonoids has been shown to indicate some 
pharmacological activities that exhibit antioxidant, anti-
inflammatory, anti-obesity, anti-carcinogenic, anti-diabetic, 
anti – allergic, anti-tumor properties (6, 8). While these 
properties may explain the success of some herbal medicines 
in the treatment of inflammatory and infectious diseases, their 
mechanism of action is often not fully understood (35, 37). The 
structural similarity between flavonoids, steroids and other 
cholesterol derivatives suggests that flavonoids may exert 
some of their effects through the nuclear receptor family. 
The random nature of the nuclear receptor ligand – binding 
domain is thought to facilitate direct transcriptional regulation 
of cells through the dietary intake of flavonoids (36).

1.4. Flavonoids and BAT Activation

The most studied species related to BAT activation from 
flavonoids are oligomers such as procyanidins (flavanol), 
catechins, epigallocatechin gallate (EGCG), theaflavins, 
quercetin. Activation of these flavonoid species on BAT is 
provided by biological pathways such as BAT thermogenesis, 
WAT browning, activation of the AMPK / SIRT1 / PGC-1α 
pathway, mitochondrial biogenesis, etc. (25).

Many mechanisms underlying the effects of flavonoids from 
dietary polyphenols on thermogenesis, lipid metabolism, and 
mitochondrial biogenesis. Selective activation of β3-AR leads 
to stimulation of lipolysis and thermogenesis; it provides the 
development of white-brown adipocyte phenotype in WAT. PKA 
then leads to increased lipolysis through HSL stimulation, a carrier 
enzyme for lipolysis. In conclusion, stimulation of PKA and HSL-
mediated lipolysis causes increased mitochondrial respiration, in 
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fatty acids, proton’s UCP-1-dependent mitochondrial entry and 
separation from ATP production. The stimulating effect of β3-AR on 
AMPK leads to activation of β-oxidation and provides to reduce lipid 
deposition. Provide full activation of PPAR ligands, including PPARα 
and PPARγ, is required (38-40). In particular, PPARα acts directly as 
the transcriptional master regulator of PGC1α gene transcription 
and plays a role in WAT browning, brown adipocyte determination, 
and function (41, 42). Induction of PPARγ ligand is a prerequisite 
for stimulated activation by stimulating the β-adrenergic receptor 
of brown adipocytes and also stimulates the formation of beige 
adipocytes in WAT. The coordination of all these processes results 
in increased thermogenic capacity and mitochondrial biogenesis, 
and it causes to browning of 3T3-L1 adipocytes. Furthermore, the 
B3-AR / PKA signaling pathway has been reported to stimulate the 
activation of p38 MAPK and the browning of white adipocytes, a 
target for PGC1α (Figure 2) (38, 43).

 

 

Figure 1. Brown adipose tissue’s effect mechanism. β3AR; β3-adrenergic receptor, cAMP; cyclic 
AMP, HSL; hormone-sensitive lipase, PKA; protein kinase A, CREB; cAMP response element-
binding protein, p38; p38 mitogen- activated protein kinase, FFAs; free fatty acids, CPT- 1; carnitine 
palmitoyltransferase-1, UCP-1; uncoupling protein-1. 
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Figure. 2. Flavonoids in BAT activation. β3-AR; β3-adrenergic receptor, 
PKA; protein kinase A, HSL; hormone-sensitive lipase, AMPK; AMP-
activated protein kinase, PPARα; peroxisome proliferator-activated 
receptor – alpha, PPARγ; peroxisome proliferator – activated receptor 
gamma, PGC1α; peroxisome proliferator-activated receptor-gamma 
coactivator 1 alpha, WAT; white adipose tissue.

Besides, the efficacy of dietary flavonoids (e.g. flavan-3-ol, 
green tea catechins, quercetin, etc.) influences weight 
management by increasing BAT thermogenesis and provides 
white adipocyte browning. The different signaling pathways 
of BAT activation are effectively provided by forming 
different combinations of polyphenol subtypes in the diet. 
Mechanisms can act as a therapeutic task for stimulation of 
BAT thermogenesis, body weight loss and improved metabolic 
status. Therefore, diet modulation of brown and beige fat 
tissue development and metabolism is considered a promising 
target for the prevention and treatment of obesity (44).

1.4.1. Flavones

Flavone and flavone glycosides are light yellow compounds 
found in almost every plant formed by the coupling of the 
hydroxyl group to C3 atom. Flavones are much less common 
than other subclasses of flavonoids (45). Flavones are divided 
into various subgroups based on side chains attached to 
backbone molecules such as hydroxylation, methoxylation, 
isoprenylation and glycosylation (46). The major dietary 
sources of flavones are olives, extra virgin olive oil, essential oils 
derived from rosemary, parsley, celery, and citrus fruits. The 
main flavones are apigenin, luteolin, chrysin and tangeretin 
(47). Flavones are effective on BAT activation by increasing 
SIRT1, PGC1α, UCP-1, PRDM16 activation in white and beige 
adipose tissue (22, 48-51). In vitro studies in adipose cells, it 
has been reported that different flavon species (sudachitin; 
chrysin; luteolin) applied in various amounts (30 nM; 1-50 µM; 
100 nM) increased UCP-1 secretion in adipose tissue, induced 
browning of white adipocytes through AMPK / SIRT1 / PGC-1α 
pathway activation (22, 48, 49). In studies in which animals are 
given high – fat diet and different flavon types, flavone groups’ 
body weight, and fat percentage are reduced, WAT browning 
and, as a result, O2 consumption was found to increase (22, 
48, 50). In Table 2, in vitro and in vivo studies related to the 
activity of flavones on BAT activation are summarized.

Table 2. In vitro and in vivo studies on the effects of flavones on non-shivering thermogenesis
Authors Flavone Type Study Group Treatment Result
Tsutsumi et al.
2014 (48)

Sudachitin Primary myoblasts 30 nM SIRT1*, PGC1α*, UCP-1* increase

Choi and Yun 2016 
(49)

Chrysin 3T3-L1 1-50 µM UCP-1,	 PGC1α,	 PRDM16*, FGF21* 
increase
AMPK phosphorylation increase

Zhang et al. 2016 (22) Luteolin Primary adipocytes
from BAT* and sWAT*

100 nM UCP-1, PGC1αand SIRT1 increase
AMPK* phosphorylation increase

Shen et al. 2014 (50) Olive leaf extract 
(luteolin
and apigenin)

C57BL/6N male mice HFD* with 0.15% olive leaf 
extract 8
weeks

 Body weight, fat percentage decrease
Browning and mitochondrial biogenesis 
increase

Tsutsumi et al. 2014 
(48)

Sudachitin C57BL/6 and db/db mice HFD with 5 mg/kg sudachitin
12 weeks

Body weight, fat percentage O2 consumption, 
and energy expenditure decrease
UCP-1 in WAT* increase

Thaiss et al.
2016 (51)

Apigenin and
naringenin

C57BL/6 male mice 80 mg/kg
2 weeks

UCP-1 in BAT increase

Zhang et al. 2016 (22) Luteolin C57BL/6 male mice HFD with 0.01 % luteolin
12 weeks

O2 consumption and	 CO2 production increase
BAT activation increase
WAT browning increase
AMPK / PGC1α signalization increase

*AMPK; AMP-activated protein kinase, BAT; brown adipose tissue, FGF21; fibroblast growth factor 21, HFD; high-fat diet, PGC1α ; peroxisome proliferator-
activated receptor-gamma coactivator 1 alpha, PRDM16; positive regulatory domain containing 16, sWAT; subcutaneous white adipose tissue, SIRT1; silent 
mating type information regulation 2 homolog 1, UCP-1; uncoupling protein-1, WAT; white adipose tissue.



257Clin Exp Health Sci 2024; 14: 253-263 DOI: 10.33808/clinexphealthsci.1082047

Anti-Obesity Role of Flavonoids Review

1.4.2. Flavonols

Flavonol group compounds which are in the structure of 
3-hydroxy flavone are commonly found in glycoside form in 
foods. Major flavonol species include quercetin, myricetin, 
kaempferol, and routine. Flavonols are mostly found in cabbage, 
onion, apple, tea, buckwheat and broccoli (52, 53). Studies have 
shown that flavonols increased non-shivering thermogenesis 
by increasing UCP-1, Cpt1α, Tbx1, PGC1α activation in general 
(54-60). In vitro studies have shown that flavonol species act 
through mechanisms that trigger BAT activation (54-57). In 
studies performed in experimental animals, increase in AMPK 
phosphorylation, SIRT1 and UCP-1 expression, BAT browning, 
O2 consumption, and body temperature were found, resulting 
in a decrease in body weight and white adipose tissue mass 
in flavonol-treated groups compared to HFD-fed groups (54-
60). In vitro and in vivo studies associated with the efficacy of 
flavonols on BAT activation are summarized in Table 3.

1.4.3. Flavanones

Flavanones are flavonoids found in nature as aglycones and 
glycosides having an unsaturated carbon-carbon bond in the C 
ring (53). Naturally existing flavanones are naringenin, hesperidin, 
eriodicthiol, narirutin and erythocytin (61). As the main source, 
citrus fruits such as satsuma mandarin and valentine orange are 
examples of foods that contain narirutin and hesperidin (62). 
Hesperidin is insoluble in water and does not dissolve well in the 
intestine, however, G – hesperidin is water-soluble and absorbs 
faster than hesperidin. It has been shown in experimental studies 
that flavanone species, like other flavonoids, have potential effects 
on increasing energy expenditure and increase in body temperature 
as a result of increased BAT sympathetic nerve activity through BAT 
activation (63-65). Table 4 summarizes in vitro and in vivo studies 
about the efficacy of flavanones on BAT activation.

1.4.4. Flavanols

Flavanols, which is most common in foods, are flavonoid subclass 
called flavan-3-ol since they contain a group of – OH in the C3 
atom (66). A study using data obtained from NHANES 1999 – 
2002 showed that the average daily intake of flavan-3-ol was 
the highest among other flavonoids and accounted for 82% of 
average flavonoids intake (67). Flavanols are commonly found 
in tea, wine, apple and chocolate (68, 69). Flavanol monomers 
are classified as catechin, epicatechin, epigallocatechin (EGC), 
epicatechin gallate (EG) and EGCG (70). Flavanols have been 
shown to increase UCP-1 activation and BAT activation and 
thus be effective in energy expenditure (71-80). Experimental 
animal studies in which different types of flavanol are given have 
reported reducing body weight by triggering signaling pathways 
that increase the energy expenditure of flavanols (72, 80). While 
there are many in vitro and in vivo studies on the efficacy of 
flavonoids on energy expenditure, human studies are more 
limited. In a study examining EGCG activity in healthy young men, 
a gel capsule of green tea extract containing 1600 mg EGCG and 
600 mg caffeine was given after 3 hours of cold exposure. It was 
observed that energy expenditure was increased in the group 
that received green tea extract and lipids had more contribution 
to total energy expenditure than placebo (74). In another study, 
it was found that BAT concentration increased in healthy young 

female subjects receiving catechin – enriched beverage (540 mg/
day catechin) (78). In vivo studies regarding the effectiveness on 
BAT activation of flavanols are summarized in Table 5.

1.4.5. Anthocyanins

As a flavonoid species, anthocyanins are water-soluble pigments 
that provide blue, purple and red colors in fruits such as 
blackberries, raspberries, pomegranates, black and red currants 
and in vegetables such as eggplant and red cabbage (81). Major 
anthocyanins are peonidine, pelargonidine, malvidine, cyanidine, 
petunidine and delphinidine (82). It has been reported they 
have many positive effects on health such as antioxidant, anti-
inflammatory, antidiabetic and anti-carcinogenic properties 
(81). Anthocyanins have been shown to increase UCP-1, PGC1α, 
Cpt1α, PRDM16 expression in white and brown adipocytes, and 
increase energy expenditure by increasing body temperature (83-
86). Cell studies have reported increased AMPK phosphorylation 
and mitochondrial biogenesis in studies of different doses of 
cyanidin (83, 84). In experimental animal studies where diverse 
anthocyanin varieties were applied in different amounts and time, 
it was observed that energy expenditure increased as a result of 
increased AMPK activity (85, 86).

1.4.6. Isoflavones

Isoflavones, known as phytoestrogens, are found in a variety 
of legumes, mainly soy and soybeans. Among the isoflavones, 
daidzein, genistein, glisitin, and formononetin are prominent (87). 
It increases O2 consumption and CO2 production by increasing 
UCP-1 function and affects BAT activation by increasing browning 
(88-92). In animal studies in which isoflavone subtypes were 
given, it was found that BAT browning and energy expenditure 
increased as a result of increased UCP-1 secretion (89-92). 
Table 6 summarizes in vitro and in vivo studies of the efficacy of 
anthocyanins and isoflavones on BAT activation.

Obesity is a disease in which adipocytes grow by accumulating 
excessive amounts of lipids and is characterized at the cellular 
level by an increase in the number and size of differentiated 
adipocytes in adipose tissues (2, 4, 16). As treating obesity with 
medications is often associated with negative side effects and 
little long-term efficacy, some study results suggest that the use 
of natural plant extracts may be an interesting alternative for long-
term weight management, and flavonoids can be suggested as 
one possible source (69, 93). In vitro and in vivo studies examined 
in this review have shown that some of the dietary flavonoids are 
effective at clinical levels. However, the majority of data show 
the effects of flavonoids on BAT and browning WAT at pre-clinical 
levels using mammalian cells and animals (48-51). Some types 
of flavonoids are metabolized by intestinal bacteria in the large 
intestine and then absorbed into the body. This suggests that 
the effects of flavonoids on non-shivering thermogenesis may be 
regulated by indirect signaling cascades such as the microbiome 
(94). In addition, the efficacy of dietary flavonoids is controversial 
because the number of flavonoids taken with diet is not known 
clearly like supplements. Because it is difficult to measure the 
BAT activity of dietary flavonoids in humans, more clinical studies 
should be conducted to confirm the effect of flavonoids on non-
shivering thermogenesis before flavonoids can be recommended 
for improving metabolic diseases (5, 69, 95).
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Table 3. In vitro and in vivo studies on the effects of flavonols on non-shivering thermogenesis
Authors Flavonol Type Study Group Treatment Result
Moon et
2013 (54)

al. Quercetin
(onionpeel)

3T3-L1 25-100 µg/mL CPT1α* increase

Lee,	 Parks,
and Kang 2017
(55)

Quercetin 3T3-L1 25-100 µM UCP-1*, CPT1α, TBX1*, PGC1α*, PPARγ*,
PRDM16 * increase

Yuan	 et al. Rutin C H T
3 10 1/2

cells 0.1-100 µM UCP-1, PRDM16, PGC1α increase

2017 (56) Deacetylation of PGC1α by stabilizing SIRT1* increase
Hu et al. 2018 (57) Myricetin C H T

3 10 1/2
cells 0.001-10 µM UCP-1, PGC1α, SIRT1 increase

Adiponectin increase
Varshney et al. 
2019 (58)

Quercetin 
Rutin Myricetin 
Kaempferol

3T3-L1 and L6
cells

1,10,50 µM PPARγ and Fabp4* decrease
Lipid and triglyceride decrease
AMPK* phosphorylation increase

Moon et al. 2013 
(54)

Quercetin 
(onionpeel)

Sprague Dawley male 
mice

HFD* with
0.36% and
0.72% OPE*
8 weeks

Body weight and fat content decrease
UCP-1 and CPT1α (epididymal WAT*) increase

Dong	 et al. Quercetin C57BL/6 male HFD	 with Body weight, epididymal WAT decrease
2014 (59) mice 0.1% AMPK* phosphorylation, SIRT1 expression

Quercetin 12  and UCP-1 increase
weeks

Lee,	 Parks, 
and Kang 2017
(55)

Quercetin (onion 
peel)

C57BL/6
mice

male HFD	 with 
0.5% OPE 8
weeks

Adipocyte browning increase

Yuan	 et al. Rutin C57BL/6	 male HFD with 1 Mitochondrial	 biogenesis and energy
2017 (56) mice mg/kg rutin expenditure increase

And db/db mice 10 weeks BAT* and browning increase
Hu et al. 2017 (60) Rutin Female rats with PCOS 100	 mg/kg

rutin 
3
weeks

UCP-1, PPARα*, PGC1α, and CPT1α increase
Body temperature increase

Hu et al. 2018 (57) Myricetin db/db male mice HFD with 400 mg/kg 
myricetin	 14
weeks

Body weight, fat mass, blood glucose decrease d
Body temperature, O2 consumption, BAT activity increase
Browning, mitochondrial biogenesis increase

Varshney et al. 
2019 (58)

Quercetin 
Rutin Myricetin 
Kaempferol

C57BL/6 male mice HFD with 25 mg/kg 
(each flavonols)
7 weeks

Body weight decrease
Serum triglyceride, cholesterol, LDL Blood glucose level decrease
Glucose tolerance, insulin sensitivity increase

*AMPK; AMP-activated protein kinase, BAT; brown adipose tissue, Cpt1α; carnitine palmitoyltransferase 1 alpha, Fabp4; Fatty Acid-Binding Protein 4, HFD; 
high fat diet, OPE; onion peel extract, PGC1α ; peroxisome proliferator-activated receptor-gammacoactivator 1 alpha, PPARα; peroxisome proliferator-
activated receptor – alpha, PPARγ; peroxisome proliferator – activated receptor gamma, PRDM16; positive regulatory domain containing 16, SIRT1; silent 
mating type information regulation 2 homolog 1, TBX1; T-box transcription factor, UCP-1; uncoupling protein-1, WAT; whiteadipose tissue.

Table 4. In vitro and in vivo studies on the effects of flavanones on non-shivering thermogenesis
Authors Flavanone Type Study Group Treatment Result
Choi et al. 2016 (63) Hesperidin 3T3-L1 12.5 and 50

µg/mL
UCP-1* and PRDM16* increase

Shen et al. 2009 (64) G-hesperidin Male Wistar rats 60 mg of oral G – 
hesperidin

BAT* sympathetic nerve activity increase
Body temperature decrease
Cutaneous	sympathetic nerve activity decrease

Choi et al. 2017 (65) Hesperidin ICR male rats HFD* with 50 and 200 
mg/kg/day
7 weeks

Body weight, fat mass, insulin, TG* decrease
 AMPK* phosphorylation, and
BAT activity increase

AMPK; AMP-activated protein kinase, BAT; brown adipose tissue, HFD; high fat diet, PRDM16; positive regulatory domain containing 16, TG; triglyceride, UCP-
1; uncoupling protein-1.
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Table 5. In vivo studies on the effects of flavanols on non-shivering thermogenesis
Authors Flavanol

Type
Study Group Treatment Result

Dulloo et al. 2000 
(71)

Green tea extract 
(catechin and
EGCG*)

Male SD rats 0-200 µM BAT* activation and O2 uptake rate increase

Choo 2003 (72) Green	 tea
(EGCG)

Male SD rats HFD* with 20 g/kg
green tea extract

Body weight decrease
Energy expenditure, BAT intensity increase

Nomura et al.
2008 (73)

Tea catechins
(TC*)

Male SD rats LFD* and HFD with
0.5% TC 5 weeks

UCP-1* (LFD with TC group) increase
No difference in the HFD group (-)

Gosselin and Haman 
2012
(74)

EGCG Healthy young men 3 hours cold exposure 1600 mg EGCG 
and
600 mg caffeine

Energy expenditure increase
Shivering thermogenesis decrease

Yan, Zhao, and Zhao 
2013
(75)

Green	 tea 
catechins

Male SD rats LFD and HFD with 100 mg/kg
5 weeks

PPARδ*, UCP-1, CPT1α* increase

Matsumura et al. 
2014 (76)

Cocoa flavanols Male ICR mice 10 mg/kg cocoa flavonoid BAT activity, AMPK* phosphorylation increase
Plasma catecholamine level increase

Yamashita	et al. 
2014 (77)

Oolong, black tea Male ICR mice Tea boiled with 2 g tea
leaves in 100 mL 7 days

Weight of WAT* decrease
AMPK phosphorylation and UCP-1 increase

Nirengi et al.
2016 (78)

Catechin Healthy young
women

540 mg/day catechin
12 weeks

BAT density increase

Rabadan – Chávez 
et al. 2016 (79)

Cocoa flavanols Male Wistar rats HFD with 1 g/kg cocoa powder, 100 
mg/kg cocoa extract and 10 mg/kg 
epicatechin (EC*)
8 weeks

UCP-1, PPARγ*, PPARα*, SIRT1*,
PGC1α* increase
AMPK phosphorylation increase
Plasma catecholamine level increase

Gutiérrez – Salmeán 
et al.
2014 (80)

Epicatechin Male Wistar rats HFD for 5 weeks with – EC (1 mg/kg)
for an extra 2 weeks

Browning increase
Body weight decrease

AMPK; AMP-activated protein kinase, BAT; brown adipose tissue, CPT1α; carnitine palmitoyl transferase 1 alpha, EC; epicatechin, EGCG; Epigallocatechin 
gallate, HFD; high fat diet, LFD; low fat diet, PGC1α ; peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, PPARα; peroxisome proliferator 
– activated receptor-alpha, PPARγ; peroxisome proliferator-activated receptor gamma, PPARδ; peroxisome proliferator-activated receptor sigma, SIRT1; silent 
mating type information regulation 2 homolog 1, TC; tea catechins, UCP-1; uncoupling protein-1.

Table 6. In vitro and in vivo studies on the effects of anthocyanins and isoflavones on non – shivering thermogenesis
Authors Type Study Group Treatment Result
Anthocyanin
You et al. 2015 Cyanidin C3 H10 T1/2 cells 10 µg/mL	 mulberry Increase;

UCP-1*, PGC1α*, Cpt1α*,
PRDM16*p38 phosphorylation 
Cellular O2 respiration

(83) extract, mulberry wine
extract

Matsukawa etal. Cyanidin 3T3-L1 50 or 100 µM Increase;
Cellular cAMP* concentration

2017 (84) AMPK* phosphorylation
UCP-1, PGC1α
Mitochondrial biogenesis

Takikawa
al. 2010
(85)

et Bilberry
extract

Male KK-Ay mice 27 g/kg diet
5 weeks

AMPK in sWAT* and skeletal muscle increase

You et al. 2017 Cyanidin Male db/db mice 1 mg/mL Energy expenditure, 
O2 consumption increase
BAT* activation, body temperature, mitochondrial 
biogenesis increase
Browning increase
Body weight gain, the weight of
WAT* decrease

(86) 16 weeks

t
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2. CONCLUSION

Increasing BAT activation and non-shivering thermogenesis 
is a potential approach to ameliorating metabolic diseases. 
While dietary energy restriction is the best-known intervention 
to reduce obesity, several studies have shown potential 
anti-obesity effects of bioactive or functional nutrient 
components such as flavonoids. Many flavonoid species 
are effective in activating some transcription factors in WAT 
browning, increasing BAT activation and thereby increasing 
energy expenditure. However, although flavonoids have a 
positive effect on energy metabolism by regulating non-
shivering thermogenesis, low bioavailability of flavonoids and 
structure modification via the digestive system when taken 
into the body by diet should also be considered. More studies 
are needed to better understand the effects of flavonoids on 
anti – obesity in humans.
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