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Abstract
The Moore and Bilikam family includes lifetime distributions, hence there is a need for
a meticulous investigation of the proposed family. We evaluate different estimation pro-
cedures for both parameters and reliability function of the Moore and Bilikam family
comprehensively, including the maximum likelihood, Bayesian and E-Bayesian estimation
methods. The estimation methods of the Moore and Bilikam family are compared via
the simulation data, whereas simulation results of the Burr XII sub-model are reported.
Based on the simulation approach, we concluded the estimates of the Moore and Bilikam
family are convergent to the corresponding parameters, and the root mean square error
values derived by the E-Bayesian method are less than other estimators. The analysis of
the time between failures of secondary reactor pumps data set has been represented for
illustrative purposes, which confirmed simulation results.
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1. Introduction
The statistical distributions play an important role in characterizing attributes of nat-

ural phenomena in different fields, such as engineering, environmental, actuarial, medical
sciences, biological studies, economics, hydrology, finance, and insurance. Among different
families of lifetime distribution, the Moore and Bilikam (MB) family has a significant role
in the modeling of lifetime data sets, which covers several distributions, such as exponen-
tial, Weibull, Pareto and Rayleigh, Burr XII, Lomax, linear exponential, Gompertz, etc.
The MB family of lifetime distribution is introduced by [15], and the Bayesian estimators
of the scale parameter and reliability function are obtained based on the type-II censored
data.

Mukhopadhyay et al. [16] prepared the two-stage procedures based on the maximum
likelihood (ML) and uniformly minimum variance unbiased estimators for the bounded
risk point estimation of the parameter and hazard rate in the MB family. Chaturvedi
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et al. [9] focused on the reliability and stress-strength functions of the MB family under
the record data sets. Chaturvedi et al. [8] considered the robust Bayesian analysis of
parameter, reliability and hazard functions of the MB family under the ε-contamination
class of priors under the type-II censoring scheme with squared error loss (SEL) and general
entropy loss functions.

Several reasons lead to unaccomplished sample information, such as lack of time, insuf-
ficient sources, and the need for high-level reliability of products. Therefore, the censoring
scheme is a significant practical design in lifetime data analysis, which means the test is
terminated before all items have failed. Among the different schemes, progressive cen-
soring is the most applicable, due to its flexibility in removing surviving units during the
experiment. We consider the progressively type-II censoring scheme that can be illustrated
as follows. The experiment commences with n units. After each m failure occurred, re-
spectively, r1, r2, . . . , rm−1 and rm, surviving units are randomly withdrawn from the test.
At the last failure, the remaining rm = n − m − r1 − . . . − rm−1 units are excluded from
the experiment. To read more about progressive type-II censoring, we refer to [12] and
[1].

The Bayesian estimators for the finite mixture of Rayleigh and mixed exponential based
on the censored data are obtained by [22] and [14], respectively. Asl et al. [4] concentrated
on the estimation of the Lomax distribution under the progressively type-I hybrid censoring
scheme.

Aslam et al. [5] presented the Bayesian estimation of the shifted exponential distribu-
tion based on progressively type-II censoring with random removals. The parameters of
extended odd Weibull exponential distribution are estimated by [3] under the progressively
type-II censoring scheme with random removal with maximum product spacing and ML
estimation methods.

The expected Bayesian (E-Bayesian) estimation is a new extension to the Bayesian
estimation first proposed by [13], which is an expectation of the Bayesian estimator re-
garding the distributions of hyperparameters of the prior distribution parameter. Reyad
and So [20] obtained the Bayesian and E-Bayesian estimates of the shape parameter of
Kumaraswamy distribution under type-II censoring based on the SEL, Linex, Degroot and
quadratic loss functions. Yin and Liu [23] estimated the reliability function of the geo-
metric distribution with both hierarchical Bayesian and E-Bayesian estimation methods
under the scaled SEL function. Algarni et al. [2] focused on the E-Bayesian estimation of
the scale parameter, reliability and hazard rate functions of Chen distribution under the
type-I censoring scheme. They considered the balanced squared error loss function and
Gamma distribution as a conjugate prior for the E-Bayesian estimators. Rabie and Li [19]
investigated the ML, Bayesian and E-Bayesian estimation of the parameter and reliability
for Burr-X distribution under hybrid generalized type-II censored.

Although the MB family is very common as the probability model, it is less dealing in
literature, so we focus on studying it in the area of lifetime data analysis. Here we focus
on the properties of the MB family with a comprehensive investigation of the parameters
and reliability function estimations. In particular, we obtain the ML (Newton-Raphson
(NR), expectation-maximization (EM) and stochastic EM (SEM) algorithms), Bayesian
and E-Bayesian estimators. The Bayesian and E-Bayesian estimators are considered under
the SEL function with inverse-gamma and gamma priors for scale and shape parameters,
respectively.

The hazard rate function of several distributions has only increasing, decreasing or
constant shapes. Thus, they may not be used to model lifetime data with a unimodal
hazard function. The most popular MB distributions, including the exponential, Weibull,
Rayleigh, Pareto and Gompertz, have monotonic hazard rate functions, whereas the Burr
XII covers both monotone and non-monotonic hazard rate functions. The Burr XII of
the MB family has several flexible properties, which can be applied to data sets with
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both monotone and unimodal hazard rate functions, varying degrees of skewness and
kurtosis and a wide variety of shapes. Therefore, as a paradigm from the MB family, we
concentrated on the Burr XII distribution, and compared the estimation approaches of
parameters and reliability function of the proposed distribution via the root mean squared
error (RMSE) factor.

The rest of the paper is organized as follows. In section 2, the ML (NR, EM and SEM
algorithms), Bayesian and E-Bayesian estimators of the parameter of the proposed family
under progressively type-II censoring are represented when both unknown scale and shape
parameters. In section 3, the ML, Bayesian and E-Bayesian estimators of the reliability
function are obtained. The efficiency of different estimation techniques of the parameters
and reliability function of the proposed family are evaluated through the Monte-Carlo
simulation study for Burr XII distribution in section 4. Finally, the time between failures
of secondary reactor pumps data set is conducted in Section 5 to illustrate the findings of
the study.

2. Estimation of the parameters of the MB family
The MB family of lifetime distributions included many probabilistic models, hence

the applicability of MB family is evident. The probability density function (PDF) and
cumulative distribution function (CDF) of MB family are represented, respectively, as

f(x, β, θ) = β

θ
g′(x)gβ−1(x) exp

(
− gβ(x)

θ

)
, x, β, θ ≥ 0,

F (x, β, θ) = 1 − exp
(

− gβ(x)
θ

)
,

where g(x) is a real-valued, strictly increasing function of x with g(0+) = 0, g(∞) = ∞,
and g′(x) denotes the derivative of g(x) with respect to x.

Progressive censoring is useful in many fields of science that allows the removal of
surviving experimental units before the termination of the test. Here, we concentrate on
the progressively type-II censoring scheme.

Consider the sample size n and t1 < . . . < tm be a progressively type-II censored sample
with sample size m, where the ordered lifetimes have a MB family of distribution with a
specified number of removal, as (r1, . . . , rm), then the likelihood function is given by

L(β, θ, T ) = C
m∏

i=1
f(ti, β, θ)[1 − F (ti, β, θ)]ri (2.1)

= C
(β

θ

)m m∏
i=1

[
g′(ti)gβ−1(ti)

]
exp

(−
∑m

i=1 gβ(ti)
θ

) m∏
i=1

[
exp(−gβ(ti)

θ
)
]ri

= C
(β

θ

)m m∏
i=1

[
g′(ti)gβ−1(ti)

]
exp

(−
∑m

i=1(ri + 1)gβ(ti)
θ

)
,

where C = n(n − 1 − r1) . . . (n − r1 − . . . − rm−1 − m + 1) and both θ and β parameters
are unknown.

We consider an especial case of the MB family with g(x) = ln(1 + xb), b > 0, β = 1
called Burr XII, with the following PDF and CDF

f(x, b, θ) = bxb−1

θ(1 + xb)
1
θ

+1
, b, θ > 0, x ≥ 0

F (x, b, θ) = 1 − 1
(1 + xb)

1
θ

.

In the following several statistical properties of the MB family and especially the Burr
XII distribution are provided.
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2.1. Some statistical properties of the MB family
In this section, some statistical properties of the MB family and Burr XII distribu-

tion are provided, including the r-th moments, moment generating function (MGF) and
incomplete moments.

Proposition 2.1. Consider the MB family of lifetime distributions and the especial case
Burr XII distribution, then

(i) The r-moments are provided as

E(Xr) =
∫ ∞

0
e−u

[
g−1

(
θu)

1
β

)]r

du,

where g−1(.) is the inverse of g(.). For Burr XII, consider u = 1
1+xb , so we have

E(Xr) =
∫ ∞

0

bxr+b−1

θ(1 + xb)
1
θ

+1
dx = 1

θ

∫ 1

0
u

1
θ

−1
( 1

u
− 1

) r
b
du = 1

θ
B

(1
θ

− r

b
,
r

b
+ 1

)
,

where B(., .) is the Beta function as B(α1, α2) =
∫ 1

0 uα1−1(1 − u)α2−1du.
(ii) The MGF of the MB family is given by

MX(t) = E(etX) =
∫ ∞

0
e−uet(g−1(θu)

1
β )du,

and for Burr XII distribution, the MGF is derived as

E(etX) =
∫ ∞

0

bxb−1etx

θ(1 + xb)
1
θ

+1
dx = 1

θ

∞∑
h=0

th

h!

∫ 1

0
u

1
θ

−1
( 1

u
− 1

) h
b
du

=
∞∑

h=0

thΓ(1
θ − h

b )Γ(h
b + 1)

h!Γ(1
θ )

.

(iii) The incomplete moment is represented as

mr(y) =
∫ gβ(y)

θ

0
e−u

[
g−1

(
θu)

1
β

)]r

du,

where mr(y) =
∫ y

0 xrf(x, β, θ)dx and for Burr XII distribution, we have

mr(y) =
∫ y

0

bxr+b−1

θ(1 + xb)
1
θ

+1
dx = 1

θ

∫ 1

1
1+yb

u
1
θ

−1
( 1

u
− 1

) r
b
du

= 1
θ

(
1 − B

( 1
1 + yb

,
1
θ

− r

b
,
r

b
+ 1

))
where B(., ., .) is the incomplete Beta function as B(z, α1, α2) =

∫ z
0 uα1−1(1 −

u)α2−1du.

2.2. The maximum likelihood estimation approaches
Consider the MB family with the type II censoring scheme and the likelihood function

(2.1), by ignoring the additive constant C, the log-likelihood function is obtained as

L(β, θ, T ) ∝ m ln β − m ln θ +
m∑

i=1
ln g′(ti) + (β − 1)

m∑
i=1

ln g(ti) −
m∑

i=1
(ri + 1)gβ(ti)

θ
. (2.2)
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The ML estimator of β and θ can be obtained by setting the score functions of (2.2) equal
zero, as follows

∂L

∂θ
= −m

θ
+

m∑
i=1

(ri + 1)gβ(ti)
θ2 = 0, (2.3)

∂L

∂β
= m

β
+

m∑
i=1

ln g(ti) −
m∑

i=1
(ri + 1)ln(g(ti))gβ(ti)

θ
= 0. (2.4)

From (2.3), we have

θ̂(β) = 1
m

m∑
i=1

(ri + 1)gβ(ti), (2.5)

by substituting (2.5) into (2.4), the equation will be reduced to the following relation

m

β
= −

m∑
i=1

ln g(ti) +
m∑

i=1
(ri + 1)ln(g(ti))gβ(ti)

θ̂(β)
.

The last equation does not have an analytical solution, hence numerical methods such as
NR are applied to find the ML estimate of β. Subsequently by inserting this value in (2.5),
the ML estimate of θ is provided.

The ML estimates obtained via the NR method are sensitive to the initial parameter
values and converge slowly to the real values of the parameters in certain cases. More-
over, the NR estimators under the censoring scheme are significantly biased. All these
deficiencies persuade us to discuss the different estimation approaches.

In the following, the EM and SEM algorithms are provided. Moreover, the Bayesian
and E-Bayesian estimation procedures are investigated for more accurate discussion.

2.2.1. EM algorithm. The EM algorithm was recommended by [10] to estimate any
missing or incomplete data. Some superiorities of the EM algorithm to NR are the facility
in running and computational stability with the appropriate convergence rate. Also, the
asymptotic behavior of the EM algorithm estimates can be obtained.
The progressive type-II censoring can be considered as an incomplete data set, and there-
fore, the EM algorithm is recommended instead of the NR method to find the ML esti-
mators.

Let Z = (Z1, Z2, . . . , Zm) with Zj = (Zj1, Zj2, . . . , ZjRj ), j = 1, . . . , m, be the censored
data and suppose the censored data as missing and observed data as T = (t1, . . . , tm).
Therefore, the complete data set X is constructed from the combination of (T, Z) = X.
The joint likelihood function of the complete sample is represented as

Lc(β, θ, X) =
m∏

i=1
f(ti, β, θ)

ri∏
k=1

f(zik, β, θ)

=
(β

θ

)n m∏
i=1

[
g′(ti)gβ−1(ti) exp

(
− gβ(ti)

θ

) ri∏
k=1

g′(zik)gβ−1(zik) exp
(

− gβ(zik)
θ

)]

=
(β

θ

)n m∏
i=1

[
g′(ti)gβ−1(ti)

ri∏
k=1

g′(zik)gβ−1(zik)
]

exp(−
m∑

i=1

gβ(ti)
θ

)

exp(−
m∑

i=1

ri∑
k=1

gβ(zik)
θ

).
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So, the complete log-likelihood function based on X is given by

Lc(β, θ, X) ∝ n ln β − n ln θ +
m∑

i=1
ln g′(ti) +

m∑
i=1

ri∑
k=1

ln g′(zik) + (β − 1)
m∑

i=1
ln g(ti)

(2.6)

+ (β − 1)
m∑

i=1

ri∑
k=1

ln g(zik) −
m∑

i=1

gβ(ti)
θ

−
m∑

i=1

ri∑
k=1

gβ(zik)
θ

.

The ML estimators of the parameters θ and β for complete sample X can be achieved by
equating the score functions of the log-likelihood function (2.6) to zero, as below

∂Lc

∂θ
= −n

θ
+

∑m
i=1 gβ(ti) +

∑m
i=1

∑ri
k=1 gβ(zik)

θ2 = 0, (2.7)

∂Lc

∂β
= n

β
+

m∑
i=1

ln g(ti) +
m∑

i=1

ri∑
k=1

ln g(zik) (2.8)

−1
θ

[ m∑
i=1

ln(g(ti))gβ(ti) +
m∑

i=1

ri∑
k=1

ln(g(zik))gβ(zik)
]

= 0.

The EM algorithm has the two step, E-step and M-step. In the E-step, any function of
Zik must be replaced by E(h(Zik)|Zik > ti). Therefore, (2.7) and (2.8) can be represented
as

∂Lc

∂θ
= −n

θ
+

∑m
i=1 gβ(ti) +

∑m
i=1

∑ri
k=1 E(gβ(zik)|Zik > ti)
θ2 , (2.9)

∂Lc

∂β
= n

β
+

m∑
i=1

ln g(ti) +
m∑

i=1

ri∑
k=1

E(ln g(zik)|Zik > ti) (2.10)

−1
θ

[ m∑
i=1

ln(g(ti))gβ(ti) +
m∑

i=1

ri∑
k=1

E(ln g(zik)gβ(zik)|Zik > ti)
]
.

Given Ti = ti, the conditional distribution of Zik follows a truncated MB distribution with
left truncation at ti as

fz|t(zik|T ) = f(zik)
1 − F (ti)

= β

θ
g′(zik)gβ−1(zik) exp(−gβ(zik)

θ
) exp(gβ(ti)

θ
), zik > ti. (2.11)

Hence, by (2.11), the conditional expectations in equations (2.9) and (2.10) can be com-
puted as follows

E1(t, θ, β) = E(gβ(zik)|Zik > t) (2.12)

= β

θ
exp(gβ(t)

θ
)

∫ ∞

t
g2β−1(zik)g′(zik) exp(−gβ(zik)

θ
)dzik,

E2(t, θ, β) = E(ln(g(zik))|Zik > t)

= β

θ
exp(gβ(t)

θ
)

∫ ∞

t
ln(g(zik))gβ−1(zik)g′(zik) exp(−gβ(zik)

θ
)dzik,

E3(t, θ, β) = E(ln(g(zik))gβ(zik)|Zik > t)

= β

θ
exp(gβ(t)

θ
)

∫ ∞

t
ln(g(zik))g2β−1(zik)g′(zik) exp(−gβ(zik)

θ
)dzik.

In the M-step, at (k+1)-th iteration, the value of θ̂(k+1) of the EM algorithm, is obtained
by solving the following equation

∂Lc

∂θ
= − n

θ̂(k+1)
+

∑m
i=1 gβ(k)(ti) +

∑m
i=1 riE1(ti, θ̂(k), β(k))

θ̂2(k+1)
= 0, (2.13)
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once θ̂(k+1) is obtained, then β̂(k+1) is obtained by solving the equation

n

β̂(k+1)
+

m∑
i=1

ln g(ti) +
m∑

i=1
riE2(ti, θ̂(k+1), β̂(k)) (2.14)

− 1
θ̂(k+1)

[ m∑
i=1

ln(g(ti))gβ̂(k+1)(ti) +
m∑

i=1
riE3(ti, θ̂(k+1), β̂(k))

]
= 0.

(θ̂(k+1), β̂(k+1)) is implemented as a new value of (θ, β) in the subsequent iteration and the
steps are repeated until reach convergence. The iterative procedure in Equations (2.13)
and (2.14) are stopped on reaching the convergence as |θ̂(k+1) − θ̂(k)| + |β̂(k+1) − β̂(k)| < ε,
where ε > 0 is an arbitrary small value. Cancho et al. [7] investigated the uniqueness and
existence of the ML estimates.

Here, the closed-form of the expectations (2.12) are obtained for Burr XII distribution.
For g(x) = ln(1 + xb), consider u = ln(1 + zb

ik), the conditional expectations in (2.12) are
computed as follows

E1(t, θ, β) = E
(
g(zik)|Zik > t

)
= (1 + tb)

1
θ

θ

∫ ∞

t

bzb−1
ik ln(1 + zb

ik)(1 + zb
ik)− 1

θ

1 + zb
ik

dzik

= (1 + tb)
1
θ

θ

∫ ∞

ln(1+tb)
ue

−u
θ du = ln(1 + tb) + θ,

E2(t, θ, β) = E
(

ln(g(zik))|Zik > t
)

= (1 + tb)
1
θ

θ

∫ ∞

t

bzb−1
ik ln

(
ln(1 + zb

ik)
)
(1 + zb

ik)− 1
θ

1 + zb
ik

dzik

= (1 + tb)
1
θ

θ

∫ ∞

ln(1+tb)
ln(u)e

−u
θ du

= ln
( ln(1 + tb)

θ

)
− (1 + tb)

1
θ Ei(− ln(1 + tb)

θ
) + ln(θ),

E3(t, θ, β) = E
(

ln(g(zik))g(zik)|Zik > t
)

= (1 + tb)
1
θ

θ

∫ ∞

t

bzb−1
ik ln

(
ln(1 + zb

ik)
)
(1 + zb

ik)− 1
θ

1 + zb
ik

dzik

= (1 + tb)
1
θ

θ

∫ ∞

ln(1+tb)
u ln(u)e

−u
θ du

=
(

ln(θ) + ln
( ln(1 + tb)

θ

))(
ln(1 + tb) + θ

)
− θ(1 + tb)

1
θ Ei(− ln(1 + tb)

θ
) + θ,

where Ei(.) is the exponential integral function defined as Ei(x) = −
∫ ∞

−x
e−t

t dt.

2.2.2. SEM algorithm. The SEM algorithm is a stochastic version of the EM algorithm,
which replaces each missing observation by a value randomly generated from the distri-
bution conditional on results from the previous step and the M-step is a complete-data
ML estimation with convenient computation. Nielsen [18] proved that the SEM algorithm
always converges to some local optimum.
In the SEM algorithm, ri number of samples of zik must be generated from the following
conditional CDF for i = 1, 2, . . . , m, k = 1, 2, . . . , ri

Fz|t(zik|ti) = F (zik) − F (tj)
1 − F (tj)

= 1 − exp(−gβ(z)
θ

) exp(gβ(t)
θ

), zik > ti.
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Now, using (2.7) and (2.8), the estimators of θ at k + 1-step of the algorithm can be
obtained as follows

θ̂(k+1)
SEM

=
∑m

i=1 gβ̂
(k)
SEM (ti) +

∑m
i=1

∑ri
k=1 gβ̂

(k)
SEM (zik)

n
,

and the estimators of β at the k + 1-step of the algorithm is obtained by solving the
following equation

∂Lc

∂β
= n

β
+

m∑
i=1

ln g(ti) +
m∑

i=1

ri∑
k=1

ln g(zik)

− 1
θ̂

(k+1)
SEM

[ m∑
i=1

ln(g(ti))gβ(ti) +
m∑

i=1

ri∑
k=1

ln(g(zik))gβ(zik)
]

= 0.

2.3. Bayesian estimation
In this section, the Bayesian estimators of parameters θ and β of the MB family of

distribution under the progressively type-II censoring scheme are determined when both
θ and β are unknown, under the SEL function.

Consider independent inverse-Gamma prior for the parameter θ and Gamma prior for
the parameter β with the PDFs as

π1(θ|α1, λ1) = λα1
1 θ−(α1+1)e− λ1

θ

Γ(α1)
, (2.15)

π2(β|α2, λ2) = λα2
2 βα2−1e−λ2β

Γ(α2)
, (2.16)

where αi, λi, i = 1, 2 are known hyperparameters and chosen to reflect prior knowledge
about θ and β. The prior distributions of θ and β are given by

π(θ, β) = π1(θ|α1, λ1)π2(β|α2, λ2).

It follows from (2.2), (2.15) and (2.16) that the joint posterior density function of θ and
β given T is shown by

π(θ, β|T ) ∝ βα2+m−1e−λ2βθ−(α1+m+1)e−
λ1+

∑m

i=1(ri+1)gβ(ti)
θ

m∏
i=1

gβ(ti) (2.17)

∝ Gβ

(
α2 + m, λ2

)
IGθ|β

(
α1 + m, λ1 +

m∑
i=1

(ri + 1)gβ(ti)
)
Q(β),

where G(., .) and IG(., .) represent the PDF of Gamma and inverse-Gamma distribution,
respectively, and Q(β, θ) is given by

Q(β) =
m∏

i=1
gβ(ti).

The Bayesian estimator of a function g(η) under the SEL function is given by
ĝSEL(η) = E(g(η|X)).

The above expression does not have a closed-form, so the importance sampling (IS)
technique is implemented to achieve the Bayesian estimators. Based on the Burr XII
distribution, the IS algorithm is represented in the following, where parameters θ and b
have Gamma(α1, λ1) and inverse-Gamma(α2, λ2) priors, respectively.
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IS algorithm for Bayesian estimates
1. Generate the parameter b from the Gb

(
α2 + m, λ2

)
.

2. Based on the value of b, generate θ from IGθ|b
(
α1 +m, λ1 +

∑m
i=1(ri +1) ln(1+ tb

i)
)

distribution.
3. Repeat s times steps 1 and 2, to reach {(b1, θ1), . . . , (bs, θs)}.
4. Compute the Bayesian estimates of b and θ under SEL function as follows

θ̂B =
∑s

i=1 θiQ(bi)∑s
i=1 Q(bi)

, b̂B =
∑s

i=1 biQ(bi)∑s
i=1 Q(bi)

.

where Q(bi) =
∏m

i=1
tb−1
i

1+tb
i

.

2.4. The E-Bayesian estimators
This section deals with the E-Bayesian estimation of the parameters of the MB family

based on the progressively type-II censoring scheme. Here, we consider the inverse-Gamma
and Gamma priors for parameters θ and β, respectively.

According to [13], the prior parameters θ and β should be selected to guarantee that
the prior π1(θ|α1, λ1) and π2(β|α2, λ2) is a decreasing function of θ and β, respectively.
To ensure this condition is met, the first derivative of π1(θ|α1, λ1) and π2(β|α2, λ2) with
respect to θ and β are represented in the following

∂π1(θ|α1, λ1)
∂θ

= λα1
1 θ−α1−2e− λ1

θ

Γ(α1)

[
− α1 − 1 + λ1

θ

]
,

∂π2(β|α2, λ2)
∂β

= λα2
2 βα2−2e−λ2β

Γ(α2)

[
(α2 − 1) − λ2β

]
.

Thus, for 0 < λ1, α2 < 1 and α1, λ2 > 0, the priors π1(θ|α1, λ1) and π2(β|α2, λ2) are
decreasing function of the parameters. It is worth mentioning that here we suppose θ > 1.

Assuming that the hyperparameters αi, λi, i = 1, 2 are independent random variables
and their density functions are π′(α1), π′(λ1), π′(α2) and π′(λ2), respectively. The joint
bivariate density function of the hyperparameters can be represented

π′
1(α1, λ1) = π′(α1)π′(λ1), π′

2(α2, λ2) = π′(α2)π′(λ2),

then, the E-Bayesian estimate of the parameters θ and β, according to [13], can be obtained
as follows

θ̂EB = E(θ̂B|T ) =
∫ 1

0

∫ s1

0
θ̂Bπ′

1(α1, λ1)dα1 dλ1,

β̂EB = E(β̂B|T ) =
∫ 1

0

∫ s2

0
β̂Bπ′

2(α2, λ2)dλ2 dα2,

where θ̂B and β̂B are the Bayesian estimate of the parameters θ and β under SEL.
Based on the following prior distributions of the hyperparameters, the E-Bayesian es-

timates of the parameters θ and β can be obtained. The selected prior distributions are
given by

π′
11(α1, λ1) = λu1−1

1 (1 − λ1)v1−1

s1B(u1, v1)
, π′

21(α2, λ2) = αu2−1
2 (1 − α2)v2−1

s2B(u2, v2)
, (2.18)

These prior distributions are used to guarantee that priors are decreasing functions of the
parameters θ and β. Same as the Bayesian estimators, the E-Bayesian estimators do not
have a closed-form.

The E-Bayesian estimators of the parameters of Burr XII distribution are computed
stepwise, through the IS algorithm.
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IS algorithm for the E-Bayesian estimates
1. Generate α1 and λ1 hyperparameters from Uniform(0, s1) and Beta(u1, v1) distri-

butions, respectively.
2. Generate α2 and λ2 hyperparameters from Beta(u2, v2) and Uniform(0, s2) distri-

butions, respectively.
3. Regarding the hyperparameters (α2, λ2), obtained in step 2, the parameter b is

generated from the Gβ

(
α2 + m, λ2

)
distribution.

4. Regarding the hyperparameters (α1, λ1), obtained in step 1, the parameter θ, given
the values of the parameters b, is generated from Gθ|b

(
α1 + m, λ1 +

∑m
i=1(ri +

1) ln(1 + tb
i)

)
distribution.

This procedure can be repeated z times to reach a sample of {(b1, θ1), . . . , (bz, θz)}. Ac-
cordingly, the E-Bayesian estimates of b and θ under SEL function are indicated as below

b̂EB =
∑z

i=1 biQ(bi)∑z
i=1 Q(bi)

, θ̂EB =
∑z

i=1 θiQ(bi)∑z
i=1 Q(bi)

.

3. The reliability analysis
The reliability function is widely utilized in reliability analysis and lifetime data, and

the estimation of reliability function is important for several reasons. For instance, the
reliability function can be applied for stochastic orderings and estimation of the unreli-
ability, conditional reliability, hazard rate and cumulative risk functions. The reliability
function of the MB family is represented as

R(t) = P (X ≥ t) = e
−gβ(t)

θ , t, β, θ ≥ 0.

In this section, we focused on the estimation of the reliability function via the ML,
Bayesian and E-Bayesian estimation methods, where both parameters are unknown.

Corollary 3.1. Due to the invariant property of the ML estimators of the model’s param-
eters, the reliability function estimator of the MB family based on ML methods is derived
as

R̂ML(t) = exp
(−gβ̂ML(t)

θ̂ML

)
,

where (β̂ML, θ̂ML) are the corresponding ML estimators.

Corollary 3.2. Consider the SEL and independent inverse-Gamma and Gamma priors
for the parameters θ and β, respectively. Regarding the IS method for the Bayesian es-
timation of parameters, the Bayesian estimator of the reliability function is represented
as

R̂B(t) =

z∑
i=1

Q(βi) exp
(

−gβi (t)
θ

)
z∑

i=1
Q(βi)

.

Corollary 3.3. Consider SEL and independent inverse-Gamma and Gamma priors for
the parameters θ and β, respectively. Set 0 < λ1, α2 < 1 and α1, λ2 > 0, assuming that
the hyperparameters αi, λi, i = 1, 2 are independent random variables. The E-Bayesian
estimator of the reliability function of the MB family is obtained as follows
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R̂EB(t) = E(R̂B(t)|T ) =
∫ 1

0

∫ s1

0

∫ 1

0

∫ s2

0
R̂B(t)π′(α1, λ1)π′(α2, λ2)dλ2 dα2dα1 dλ1,

where R̂B(t) is the Bayesian estimate of the reliability function under SEL. According to
the IS method for the E-Bayesian estimation of the parameters, the E-Bayesian estimate
of the reliability function of the MB family is provided as

R̂EB(t) =

z∑
i=1

Q(βi) exp
(

−gβ(t)
θ

)
z∑

i=1
Q(βi)

.

4. Simulation study
In this section, we represent the Monte-Carlo simulation results, which have been con-

ducted to evaluate the performance of the estimates using the ML (via NR, EM, SEM),
Bayesian and E-Bayesian estimation methods of the parameters of the MB family under
progressive type-II censoring for the different combinations of parameters and sample sizes.
The estimation procedures are repeated h = 1000 times and the simulation program is
written by statistical software R.

The progressively type-II censored data from MB family is generated based on the
algorithm proposed by [6] with censoring schemes r1 = (12, 0m−7, 24, n − m − 10), r2 =
(22, 02, 1, 22, n−m−9, 0m−8) and (n, m) = (30, 10), (30, 15), (70, 30), (70, 50). For arbitrary
function g(x), we consider the Burr XII distribution as g(x) = ln(1 + xb), with β = 1, b =
0.5, 1.5, θ = 1.5, 2.5. It is worth mentioning, the simulation comparisons of other sub-
models of MB family, such as Weibull and Pareto, are conducted which leads to the same
results as Burr XII. So, extra tables are removed due to reducing the manuscript page
numbers.

The Burr XII distribution has decreasing (when 0 < b < 1) and inverted bathtub-shaped
(when b > 1) hazard rate function, which is depicted in Figure 1.

Figure 1. The hazard rate plot for Burr XII distribution
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In order to obtain the hyperparameters of informative prior, we first generate 1000
samples from the complete MB family and derive the ML estimates of parameters based on
each sample. Subsequently, we compare the mean and variance of samples and considered
priors [11,21]. The RMSE is calculated to compare the estimators. The estimation results
are demonstrated in Table 1 and Table 2.

For the reliability function, we consider the ML, Bayesian and E-Bayesian estimation
approaches and the estimation results of the reliability function are represented in Table 3.

Table 1 and Table 2 represent the mean and RMSE (in brackets) of the ML, Bayesian
and E-Bayesian estimates of the parameters of the Burr XII distribution under the pro-
gressively type-II censoring for different combinations of the parameters. Consequently,
it can be observed that the estimates are convergent to the real values of the parameters.
Moreover, increasing the sample size implies smaller RMSE values.

Regarding comparing different estimation approaches, it can be seen that the RMSE
values derived by the E-Bayesian estimation approach are less than ML and Bayesian
estimators. Also, the higher values of n lead to better estimates in the sense close to the
true parameter values and have smaller RMSE values.

The reliability function estimates of the MB family and RMSE values under the progres-
sively type-II censoring for t = 1, 2, 3, 4, 5 are represented in Table 3, which demonstrated
that as the sample size n and the effective sample size m increase, RMSEs decrease.
The E-Bayesian estimators are better than Bayesian and ML estimators of the reliability
function, which have the smallest values of the RMSE.

Table 1. Estimation of parameters of Burr XII with RMSE in brackets for r1

b̂ θ̂

n m NR EM SEM Bayes E-Bayes NR EM SEM Bayes E-Bayes

(b, θ) = (0.5, 1.5)

30 15 0.79232 0.54622 0.53118 0.49084 0.50627 1.85278 1.55541 1.478903 1.49170 1.49441
(0.03541) (0.03157) (0.03232) (0.02817) (0.02113) (0.04761) (0.03881) (0.04167) (0.03697) (0.03271)

20 0.764995 0.53337 0.48136 0.49118 0.49411 1.80664 1.54837 1.53395 1.49232 1.49529
(0.03304) (0.03072) (0.02954) (0.02592) (0.01968) (0.04240) (0.03755) (0.03901) (0.03525) (0.02909)

70 30 0.55676 0.50508 0.49530 0.49080 0.496429 1.53398 1.48838 1.523490 1.488709 1.49584
(0.03148) (0.02387) (0.02548) (0.02115) (0.01359) (0.03702) (0.03640) (0.03814) (0.02777) (0.01839)

50 0.52327 0.49062 0.50115 0.49581 0.49826 1.514239 1.49535 1.49091 1.49878 1.49981
(0.02838) (0.01965) (0.01856) (0.01434) (0.00851) (0.03174) (0.02724) (0.03136) (0.02179) (0.01192)

(b, θ) = (1.5, 2.5)

30 15 1.73632 1.48093 1.48633 1.486530 1.49403 2.36568 2.52217 2.5144 2.49016 2.49264
(0.05985) (0.05387) (0.05482) (0.04553) (0.04044) (0.09109) (0.08466) (0.08619) (0.07956) (0.07271)

20 1.69118 1.48665 1.48898 1.48944 1.49414 2.39887 2.49347 2.49279 2.49399 2.49573
(0.05503) (0.05287) (0.05384) (0.04224) (0.03855) (0.08813) (0.08296) (0.08541) (0.07221) (0.06925)

70 30 1.55345 1.49329 1.49236 1.49536 1.50053 2.52025 2.51407 2.49448 2.49232 2.49612
(0.04209) (0.03729) (0.03926) (0.03592) (0.02444) (0.06227) (0.05725) (0.05849) (0.05186) (0.04232)

50 1.52171 1.49411 1.49349 1.49602 1.50019 2.50708 2.49302 2.49571 2.49737 2.49878
(0.03602) (0.03066) (0.03318) (0.02828) (0.01949) (0.05733) (0.05118) (0.05201) (0.04512) (0.03736)
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Table 2. Estimation of parameters of Burr XII with RMSE in brackets for r2

b̂ θ̂

n m NR EM SEM Bayes E-Bayes NR EM SEM Bayes E-Bayes

(b, θ) = (0.5, 1.5)

30 15 0.62798 0.48209 0.51172 0.48466 0.48663 1.25208 1.46456 1.47945 1.48501 1.49103
(0.03759) (0.03227) (0.03595) (0.02951) (0.02575) (0.05414) (0.04729) (0.04982) (0.04277) (0.03783)

20 0.57459 0.48629 0.48361 0.48524 0.48946 1.32377 1.47109 1.48788 1.48848 1.49256
(0.03604) (0.03068) (0.03248) (0.02593) (0.02315) (0.05169) (0.04429) (0.04516) (0.03757) (0.03417)

70 30 0.51781 0.49397 0.49221 0.49496 0.49515 1.52029 1.48911 1.48665 1.50809 1.49697
(0.02709) (0.02206) (0.02587) (0.01878) (0.01519) (0.03844) (0.03191) (0.03418) (0.02954) (0.02045)

50 0.50843 0.4425 0.01599 0.49066 0.49797 1.48686 1.49087 1.50616 1.49668 1.49758
(0.02298) (0.01837) (0.01919) (0.01577) (0.01003) (0.03505) (0.02876) (0.03175) (0.02645) (0.01304)

(b, θ) = (1.5, 2.5)

30 15 1.75280 1.47818 1.46656 1.48137 1.48736 2.79979 2.47841 2.46422 2.48247 2.48802
(0.06288) (0.05313) (0.05939) (0.04907) (0.04287) (0.10281) (0.09201) (0.09626) (0.08439) (0.07606)

20 1.7254 1.48401 1.47407 1.48289 1.48942 2.71129 2.47927 2.46905 2.50181 2.49393
(0.05831) (0.05188) (0.05479) (0.05001) (0.04044) (0.09102) (0.08289) (0.08913) (0.08165) (0.07354)

70 30 1.5384 1.48601 1.48969 1.49022 1.49357 2.5775 2.48767 2.48760 2.49075 2.49554
(0.04538) (0.03874) (0.04127) (0.03424) (0.02656) (0.07231) (0.06055) (0.06497) (0.04981) (0.04454)

50 1.51405 1.49183 1.49202 1.49563 1.49708 2.52393 2.48997 2.50208 2.49637 2.49853
(0.03903) (0.03089) (0.03246) (0.02764) (0.02045) (0.06611) (0.05404) (0.05698) (0.04288) (0.03953)

5. Real data analysis
In this section, the application of the MB family is represented under progressively type-

II censoring, where we consider several sub-models of the proposed family. Here, we focus
on the Exponential (g(x) = x, β = 1), Weibull (g(x) = x), Rayleigh (g(x) = x, β = 2),
Lomax (g(x) = ln(1 + x

ν ), β = 1), modified Weibull (g(x) = xνeνx, β = 1), Gompertz
(g(x) = α

β (ebx − 1), β = 1), Chen (g(x) = exb − 1, β = 1) distributions and also Burr XII
distribution.

The data set represents the time between failures (thousands of hours) of secondary
reactor pumps with n = 23 [17]. The performance of the estimation procedures is evaluated
by the real data set under the progressively type-II censoring scheme, which verifies the
simulation results.

Some statistical indices of the failures are demonstrated in Table 4, which indicates that
the empirical distribution is right-skewed and leptokurtic.

Based on the sub-models of the MB family, the ML estimators of the parameters and
Kolmogorov-Smirnov (K-S) distance results are represented in Table 5. Also, the goodness
of fit statistics (Akaike information criterion (AIC)) of the failure data set under several
distributions of the MB family are provided in Table 5.

The P-value of the K-S test confirms the adequacy of the Burr XII distribution, among
other distributions of the MB family, since the Burr XII distribution has the maximum
P-value with minimum K-S distance. The Burr XII distribution has the smallest value of
AIC, which confirms that the Burr XII distribution provides the best modeling among the
other relevant distributions of the MB family for the failure data set.

The total time on test (TTT) plot of the failure data in Figure 2 shows the decreasing
hazard rate, which is compatible with the Burr XII distribution.
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Table 3. Estimation of reliability of Burr XII with RMSE in brackets for r1

R(t) n m t R̂ML(t) R̂B(t) R̂EB(t) n m t R̂ML(t) R̂B(t) R̂EB(t)

0.62996 1 0.64223 0.63702 0.62141 1 0.63206 0.62221 0.62782
(0.01148) (0.00912) (0.00624) (0.00884) (0.00654) (0.00284)

0.55566 2 0.52937 0.53363 0.54524 2 0.54104 0.54872 0.55169
(0.01085) (0.00747) (0.00514) (0.00721) (0.00516) (0.00216)

0.51169 30 15 3 0.49398 0.49727 0.50419 70 30 3 0.50211 0.51827 0.50912
(0.00752) (0.00652) (0.00435) (0.00608) (0.00487) (0.00183)

0.48074 4 0.46101 0.46529 0.47146 4 0.47172 0.47655 0.47952
(0.00917) (0.00817) (0.00692) (0.00749) (0.00563) (0.00209)

0.45707 5 0.42179 0.42765 0.43394 5 0.44179 0.44721 0.45322
(0.01078) (0.00899) (0.00737) (0.00835) (0.00641) (0.00279)

0.62996 1 0.63914 0.63529 0.62312 1 0.63017 0.62748 0.62812
(0.01103) (0.00872) (0.00596) (0.00608) (0.00586) (0.00201)

0.55566 2 0.53458 0.53797 0.54913 2 0.54697 0.55034 0.55271
(0.01051) (0.00671) (0.00497) (0.00577) (0.00409) (0.00187)

0.51169 30 20 3 0.49742 0.49954 0.50672 70 50 3 0.50684 0.51396 0.51293
(0.00694) (0.00516) (0.00388) (0.00478) (0.00343) (0.00104)

0.48074 4 0.46669 0.46924 0.47367 4 0.48521 0.47936 0.48113
(0.00896) (0.00743) (0.00629) (0.00564) (0.00476) (0.00157)

0.45707 5 0.42888 0.43081 0.43974 5 0.48819 0.45199 0.45503
(0.00905) (0.00822) (0.00692) (0.00612) (0.00566) (0.00211)

Table 4. Some statistical index of the failures data

Mean Median Variance Skewness Kurtosis

1.577 0.614 3.727 1.364 3.544

Table 5. Results of the failure data analysis

Model ML estimates K-S distance P-value AIC

Exponential θ̂ = 1.577 0.199 0.286 68.97
Weibull β̂ = 0.807, θ̂ = 1.305 0.118 0.883 69.02
Rayleigh θ̂ = 6.055 0.482 0.002 114.92
Lomax θ̂ = 0.446, ν̂ = 2.167 0.101 0.958 68.99
Modified Weibull θ̂ = 2.329, ν̂ = 0.289 0.204 0.259 79.72
Gompertz α̂ = 1.527, θ̂ = 1.883, b̂ = 0.141 0.142 0.705 71.91
Chen θ̂ = 2.472, b̂ = 0.456 0.136 0.754 71.68
Burr XII b̂ = 1.13, θ̂ = 0.762 0.098 0.972 67.09

Now, the progressively type-II censored samples of size m = 10 are generated from the
failure data set. Based on the censored data, the ML, Bayesian and E-Bayesian estimates
of the parameters of the Burr XII distribution are illustrated in Table 6.
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Figure 2. The TTT plot for data set of the failure data

Finally, the ML, Bayesian and E-Bayesian estimate of the reliability function of the
Burr XII distribution are represented in Table 7.

Table 6. The parameters estimate of the Burr XII distribution under the pro-
gressively type-II censoring

parameters NR EM SEM Bayes E-Bayes

b̂ 0.899 0.835 0.906 0.871 0.862
θ̂ 1.022 0.973 1.095 1.139 1.267

Table 7. The reliability estimate of Burr XII distribution under progressively
type-II censoring

t R̂ML R̂B R̂EB

1 0.491 0.544 0.578
2 0.349 0.401 0.441
3 0.275 0.324 0.365
4 0.229 0.275 0.316
5 0.198 0.241 0.285

Conclusion
In this paper, several estimation approaches of the MB family of lifetime distributions

are considered for both parameters and reliability function. The estimation approaches
such as ML (NR, EM and SEM algorithms), Bayesian and E-Bayesian estimates of the
parameters of the MB family are proposed, when the data are progressively type-II cen-
sored. Moreover, the reliability function estimation of the proposed family is discussed
via different estimation methods. An especial case of the proposed family called Burr XII
distribution is considered. By simulation attitude, the different estimations are compared,
which leads to the superiority of the E-Bayesian estimation over other estimation meth-
ods. Moreover, it is observed that the reliability estimation based on the E-Bayesian is
more efficient than Bayesian and ML estimators with respect to RMSE values. The real
data analysis, based on failure data, also approves the findings in the simulation study.
Some competitive distributions are considered in modeling the failure data. Based on the
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AIC measure, the adequacy of the Burr XII distribution is confirmed among the other
sub-models of the MB family. The estimation approaches can be compared based on their
computer running times, which may lead to some new results. The new transformations
of the MB family are not considered in previous literature, which can be interesting in
future research with a concentration on the most accurate estimation method, including
both RMSE and minimum running time indices.
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