

MEDITERRANEAN AGRICULTURAL SCIENCES (2022) 35(3): 121-128 DOI: 10.29136/mediterranean.1082196

www.dergipark.org.tr/en/pub/mediterranean

Potential of entomopathogenic fungi as biological control agents of *Yponomeuta malinellus* Zeller, 1838 (Lepidoptera: Yponomeutidae)

Hilal Sule TOSUN¹^(b), Derya BAKI²^(b), Fedai ERLER¹^(b)

¹Department of Plant Protection, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye ²Antalya Directorate of Agricultural Quarantine, Ministry of Agriculture and Forestry, Antalya, Türkiye

Corresponding author: H. S. Tosun, e-mail: hilaltosun@akdeniz.edu.tr Author(s) e-mail: derya.baki@hotmail.com, erler@akdeniz.edu.tr

ARTICLE INFO

ABSTRACT

Received: March 3, 2022 Received in revised form: May 13, 2022 Accepted: July 1, 2022

Keywords:

Apple ermine moth Entomopathogenic fungi Molecular identification Pathogenicity *Yponomeuta malinellus* The apple ermine moth, Yponomeuta malinellus Zeller, 1838 (Lepidoptera Yponomeutidae), is a common pest of apple trees in Asia and Europe, and it has spread to North America. In apple growing regions of Turkey, the population of this pest may increase from time to time, requiring a separate control measure. In such cases, Turkish apple growers generally rely on synthetic insecticides to control this pest. The present study aimed to evaluate indigenous isolates of some entomopathogenic fungi (EPFs) against the pest as potential biological control agents. In the pathogenicity tests, 14 EPF isolates that belong to 4 fungal species [Beauveria bassiana (Bals.) Vuill. - 7, Clonostachys rosea (Link) Schroers - 3, Isaria farinosa (Holmsk.) Fr. - 2 and Purpureocillium lilacinum (formerly known as Paecilomyces lilacinus (Thom) Samson) (Thom) Luangsa-ard, Houbraken, Hywel-Jones & Samson - 2] were assayed against the 4th instar larvae of Y. malinellus under laboratory conditions. All the EPF isolates were tested against the pest with three different conidial suspensions (1 \times 10⁷, 1 \times 10⁸ and 1 \times 10⁹ conidia ml⁻¹), using the spray method. The results of pathogenicity assays demonstrated that the effectiveness of the isolates increased with increasing concentration and elapsed time up to 9 days after treatment. Of the 14 isolates tested, 3 B. bassiana isolates (BbDm-1, BbDs-2 and BbKm-3) were the most pathogenic, causing mortalities between 96.7% and 100% at the highest concentration 9 days post treatment. All the results suggest that the most pathogenic above-mentioned 3 isolates of B. bassiana have a significant biocontrol potential against Y. malinellus.

1. Introduction

The apple ermine moth, *Yponomeuta malinellus* Zeller, 1838 (Lepidoptera Yponomeutidae), is a member of a European group of small ermine moths (Yponomeuta), consisting of nine species (McDonough et al. 1990). Adult *Yponomeuta* species are difficult to separate from one another, even by genitalia examination. Larval foodplant and some larval and pupal features are most reliable in their separation (Kimber 2021). *Y. malinellus* occurs in the Palaearctic region (in both Asia and Europe) (Kuhlmann et al. 1988; McDonough et al. 1990). However, there is a record that this species is also found in North America (Nearctic region) (Unruh et al. 1993).

The moths of this species have pure white forewings with black dots. First instars larvae overwinter under dense thick shield. In early spring, they crawl from under the shield, penetrate into swollen buds, and then mine the top part of leaflets of apple species. After the first molt, they leave the mines and live in the open. The later larval stages (2nd - 5th instars) feed all together in a silken web from May to early June. As larvae grow, their body varies from dark grey to yellowish grey in color, with dark spots along their sides (Iren 1960; Anonymous 2012). Different larval stages can be seen in the same web. A full- grown larva may reach 18 to 25 mm in length (Kimber 2021). During outbreak years, this species can

negatively impact fruit production by defoliating apple trees (Anonymous 2012).

Until the last quarter of the last century, Y. malinellus was the second most important pest in apple orchards in Turkey after the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae) (Iren 1960; Erturk 2016). Although it is still common in apple-growing regions of Turkey, no separate control measures are required for this univoltine pest species in apple orchards in most growing seasons, due to insecticide applications against other pests, especially C. pomonella. However, in some years, the population of this pest may increase enough to require a separate control measure. In such cases, chemical control remains a dominant management tactic against this pest. Although the presence of some effective parasitoids of this species has been reported in Turkey, their effectiveness has been greatly diminished due to excessive use of synthetic pesticides in apple orchards in many parts of the country (Gencer 2003; Narmanlioglu and Coruh 2018). Due to the many undesirable results of chemical applications, biological control methods have become a trend in recent years (Sönmez and Mamay 2018; Mamay and Mutlu 2019). Microbial agents have an important place among biological control agents including entomopathogens such as fungi (Alramadan and Mamay 2019a), bacteria (Alramadan and Mamay 2019b), viruses (Alramadan and Mamay 2019c) and nematodes (Alramadan and Mamay 2019d). Microbial control agents may be viable alternatives to synthetic insecticides in the control of this pest, with no hazardous effects to human health or the environment. Recently, some Bacillus thuringiensis (Berliner) (Bacillales: Bacillaceae) isolates were tested against Y. malinellus as microbial agents and some good results were obtained (Erturk 2016). Entomopathogenic fungi (EPFs) are common in terrestrial environments and play an important role in the regulation of insect populations (Alramadan and Mamay 2019a). EPFs are the most common microbial agents, and they are used in many parts of the world with great success and advantage due to the large number of virulent strains known, easy mass production and improving formulation (Butt et al. 2001; Wraight et al. 2001; Butt 2002; Goettel et al. 2010). Hence, this study had the objective of evaluating the biocontrol potential of indigenous isolates of some EPFs against this pest.

2. Materials and methods

2.1. Insect material

Insects used in the experiments were collected from the infested apple orchards in Cavdir (Burdur, Turkey) in June 2020. Silken nests containing 3^{rd} and 4^{th} instars larvae were carefully pruned from branchlets of trees and transported in 5-liter containers to the Entomology Laboratory in the Plant Protection Department, Akdeniz University (Antalya) for testing. The larvae were supplied with fresh apple (*Malus domestica* Borkh. cv. 'Starking') foliage under controlled conditions ($25 \pm 2^{\circ}$ C, 60 ± 5 RH, and 16:8 h L: D photoperiod) in a climate room. They were used in the experiments when all of them reached the 4th instar larval stage (Baki et al. 2021).

2.2. Indigenous EPF isolates

Fourteen indigenous isolates belonging to three soil-borne EPF species, which had been previously isolated from soil samples collected from the selected agricultural habitats and their natural surroundings in Antalya province (South-western part of Turkey), and have already been maintained at the EPF Collection of Plant Protection Department of Akdeniz University, were tested in this study. The species and code names, habitats, sampling sites and geographic coordinates of the isolates tested are presented in Table 1.

 Table 1. Indigenous entomopathogenic fungal isolates used in this study.

2.3. Preparation of conidial suspensions

The EPF isolates were grown on PDA (Potato Dextrose Agar) in Petri dishes (9 cm diameter) and maintained in darkness at $26 \pm 2^{\circ}$ C and 65 ± 5 RH for 14 days for the completion of sporulation. Then, conidia were collected by scraping the surface of the culture of each fungal isolate gently with an inoculation needle and put into vials containing 10 ml of sterile distilled water + 0.03% Tween-80 (Sigma Chemical, St. Louis, Mo, USA). Prepared stock suspensions were filtered using a sieve (60-mesh) to remove hyphae and growing substrate and then homogenized for 3 minutes using a vortex (Yuyao Haiju Laboratory Equipment Co., Ltd., Zhejiang, China). The conidial concentration of stock suspensions was determined by direct count using a Neubauer hemocytometer (Fancelli et al. 2013). Serial dilutions (107–10⁹ conidia ml⁻¹) were prepared in sterile distilled water containing Tween-80 and preserved at 4°C until used in the assays. Three concentrations $(1 \times 10^7, 1 \times 10^8 \text{ and } 1 \times 10^9 \text{ conidia ml}^{-1})$ of each EPF isolate were tested, using the spray method. For each isolate, conidial viability was determined using the method of Goettel and Inglis (1997) before being used in the assays. The isolates with a viability of >95% were used in the assays.

2.4. Pathogenicity assays against the larvae of Y. malinellus

The assays were carried out under controlled conditions $(25 \pm 2^{\circ}C, 60 \pm 5 \text{ RH}, 16:8 \text{ h L: D photoperiod})$ in the Entomology Laboratory of Plant Protection Department of Akdeniz University. For each treatment, randomly selected ten 4th instar larvae of Y. malinellus were introduced to each Petri dish (9 cm in diameter) lined with 3-layer filter paper. The insects were then sprayed through a handheld sprayer from a distance of 30 cm, using 2 ml of any conidial concentration of any EPF isolate. A control treatment (distilled water containing 0.03% Tween-80) was also included in the assays. All the treatments were replicated 3 times, and each treatment contained 10 larvae. After air-drying, treated larvae were transferred to new dishes containing clean fresh apple foliage using a fine camel-hair brush. The lids of the Petri dishes were closed and then perforated with a hot needle for ventilation (20 times per each). All the dishes were kept in the laboratory under the above-mentioned conditions of temperature, humidity and photoperiod. Surviving larvae in each of the dishes were fed on clean fresh apple foliage until the end of the experimental period.

Isolate code	Fungal species	Sub-region	Vegetation	Latitude and longitude
BbKm-3	Beauveria bassiana	Kumluca	Orange	N 36°22'39.6" E 30°17'40.0"
BbKr-1	B. bassiana	Kemer	Forest	N 36°35'51.0" E 30°33'22.7"
BbMp-1	B. bassiana	Muratpaşa	Fig	N 36°53'07.2" E 30°44'30.4"
BbAl-1	B. bassiana	Alanya	Banana	N 36°33'40.8" E 31°56'43.7"
BbDs-2	B. bassiana	Döşemaltı	Pomegranate	N 37°00'02.4" E 30°38'16.1"
BbKs-1	B. bassiana	Kaş	Olive	N 36°12'08.8" E 29°38'46.3"
BbDm-1	B. bassiana	Demre	Orange	N 36°14'39.7" E 29°58'45.0"
CrFn-1	Clonostachys rosea	Finike	Orange	N 36°19'11.2" E 30°09'12.1"
CrFn-2	C. rosea	Finike	Orange	N 36°21'17.2" E 30°07'59.6"
CrKm-1	C. rosea	Kumluca	Orange	N 36°21'07.6" E 30°14'36.9"
IfKm-1	Isaria farinosa	Kumluca	Wheat	N 36°20'41.5" E 30°15'25.3"
IfDs-1	I. farinosa	Döşemaltı	Pomegranate	N 37°01'39.2" E 30°36'46.9"
PlKa-1	Purpureocillium lilacinum	Konyaaltı	Apple	N 36°53'53.5" E 30°37'51.8"
PlMp-1	P. lilacinum	Muratpaşa	Sassafras tree	N 36°53'42.6" E 30°39'56.7"

The dishes were observed daily under a stereomicroscope, and treatment mortalities were recorded at 3, 5, 7 and 9-days post infection. At each count, all dead larvae were removed individually from the dishes, and they were transferred to new Petri dishes containing damp filter paper individually. The dishes were incubated at 25 ± 2 °C and 65 ± 5 RH in complete darkness for up to 14 days to monitor signs of mycosis in order to confirm fungal infestation as a probable cause of death. Larvae that did not display fungal outgrowths with identical characteristics to those of the applied fungus as treatment were not included in the count because their mortality was attributed to another factor or factors.

2.5. Molecular identification and phylogenetic analysis of EPF isolates

Molecular phylogenetic analyses were executed only for the three most virulent isolates of *B. bassiana* (BbKm-3, BbDs-2 and BbDm-1). For DNA isolation of the BbKm-3, BbDs-2 and BbDm-1 isolates, firstly pure cultures were developed in SDA (Sabouraud dextrose agar) medium at 25°C for 7-10 days incubation. Fungal genomic DNA was extracted from monosporic cultures of these three *B. bassiana* isolates through CTAB method described by Doyle and Doyle (1990). In this study, ITS 1/ITS 4 PCR primers of the ITS gene region, which are used in the molecular identification of many organisms White et al. (1990), and 983/2218 primers used in the amplification of the mRNA translation elongation factor 1-alpha (EF1alpha) (TEF) gene region Rehner (2001) were used in the diagnosis of high virulence entomopathogenic fungus isolates.

The classic PCR was conducted in a Peqlab Thermocycler Primus 96 device using two different primer sets, sequence and PCR conditions as shown in Table 2.

The phylogenetic analyzes were performed using the MEGA7 software (Biodesign Institute, Tempe, Arizona) using the Maximum Likelihood (ML) method based on the Tamura 3-parameter model (Tamura et al. 2011). Phylogenetic analysis was performed relative to the ITS and mRNA translation elongation factor 1-alpha (EF1 alpha) region sequence of the fungal isolates and the nucleotide sequence of other fungi from GenBank.

2.6. Data analysis

During the pathogenicity assays, no control mortality was detected; therefore, no adjustment was made for the mortality values. Prior to analysis, mortalities were arcsine-transformed and analyzed using the general linear model of the SPSS 23.0 Windows by one-way ANOVA (IBM Corp. 2015, USA). Tukey's honest significant difference test (P<0.05) was used to define significant differences among the treatment means. For all EPF isolates, lethal time (LT₅₀ and LT₉₅) values with 95% confidence limits were also calculated using Probit analysis and the Log-probit method (SPSS[®] 23.0).

3. Results

3.1. Effectiveness of EPF isolates on Y. malinellus larvae

The results from the pathogenicity assays with the 4th instar larvae showed that all the EPF isolates tested had different efficacy rates against *Y. malinellus* (Table 3). Mortality was generally time- and concentration-dependent. Mortality rates caused by the isolates varied over time, and differences in mortality at each count date were generally significant among the different fungal isolates (P<0.05). Of all the EPF isolates tested, 4 isolates of *B. bassiana* (BbDm-1, BbDs-2, BbKm-3 and BbKs-1) and 1 isolate of *C. rosae* (CrFn-2) were most pathogenic and caused mortalities between 80% and 100% at all the concentrations tested 9 days post treatment. Even, at the shortest incubation time (3 days after application), these isolates exhibited \geq 60% mortalities, except for the isolate BbKs-1 (Table 3).

For the highest concentration $(1 \times 10^9 \text{ conidia ml}^{-1})$ of EPF isolates tested, the time required for 50% and 95% mortality (LT₅₀ and LT₉₅) of the 4th instar larvae of *Y. malinellus* varied between 0.79-4.57 days and 4.87-34.82 days, respectively (Table 4). The lowest LT₅₀ and LT₉₅ values were calculated for isolates BbDm-1, BbDs-2, BbKm-3, BbKs-1 and CrFn-2 (LT₅₀: 0.79, 1.83, 2.59, 2.66 and 2.36; LT₉₅: 4.87, 7.93, 9.06, 13.93 and 20.22 respectively), implying their high virulence and their biocontrol potential against *Y. malinellus*.

3.2. Phylogenetic placement of the EPF isolates tested

The accession numbers of the three most virulent EPF isolates found in this study, which belong to *B. bassiana*, and those of other isolates of the related species in GenBank are given in Table 5. After alignment analysis, the ITS and TEF region sequences of these three *B. bassiana* isolates data set consisted of 460 aligned positions. All these three *B. bassiana* isolates had 99%-100% homology with other isolates of the respective species in the GenBank (Figures 1 and 2).

Table 2. PCR primers and programs used in the identification of EPF isolates in	this study.
--	-------------

Primers and References	Sequence	PCR conditions			
		Temperature (°C)	Time (Seconds)	Cycles	
		94	300	1	
ITS1/	5'-TCCGTAGGTGAACCTGCGG-3'	94	30		
ITS4	5'-TCCTCCGCTTATTGATATGC-3'	56	60	30	
White et al. (1990)		72	90		
		72	300	1	
		95	300	1	
983/		95	60		
2218	5'-ATGACACCRACRGCRACRGTYTG -3'	58	60	35	
Rehner (2001)	5 Moneneeneedenteedenteedentee	72	60		
		72	300	1	

Table 3. Mortality in the 4th instar larvae of *Yponomeuta malinellus* assayed with different conidial concentrations of EPF isolates at different time intervals after treatment

Fungal species Dose Percent mortality (± SE)					
and isolate name*	(spores ml ⁻¹)**	3 rd day***	5 th day	7 th day	9 th day
Beauveria bassiana		*	•	•	•
	1×107	40.0±0.0 BCDEFbIII	63.3±3.3 ABCaII	76.7±3.3 ABCaI II	90.0±5.8 AaI
BbKm-3	1×10^{8}	46.7±3.3 CDEabIII	73.3±3.3 ABaII	86.7±3.3 ABaI II	93.3±6.7 ABCaI
	1×109	60.0±5.8 BCDaII	76.7±3.3 ABCaI II	90.0±5.8 ABaI	96.7±3.3 ABaI
	1×107	36.7±3.3 CDEFbIII	50.0±0.0 CDEbII	63.3±3.3 ABCbI	70.0±0.0 ABbI
BbKr-1	1×10^{8}	50.0±5.8 BCDEabII	63.3±3.3 BCDab I II	70.0±0.0 ABCabI	76.7±3.3 CDabI
	1×109	63.0±6.7 BCaI	73.3±6.7 ABCDaI	76.7±3.3 ABaI	83.3±3.3 ABaI
	1×107	33.3±3.3 CDEFbII	40.0±5.8 EFGbII	63.3±3.3 ABCaI	76.7±6.7 ABaI
BbMp-1	1×10^{8}	33.3±3.3 DEFbIII	56.7±3.3 BCDabII	66.7±6.7 BCaI II	76.7±3.3 CDaI
	1×109	53.3±3.3 BCDaII	60.0±0.0 CDEFaII	66.7±3.3 BaI II	83.3±6.7 ABaI
	1×10 ⁷	20.0±5.8 EFaII	33.3±3.3 FGaII	56.7±6.7 CDaI	73.3±3.3 ABaI
BbAl-1	1×10^{8}	23.3±3.3 FaII	36.7±6.7 EaII	60.0±5.8 CaI	80.0±0.0 BCDaI
	1×109	36.7±3.3 DaIII	46.7±6.7 FaII III	66.7±6.7 BaI II	80.0±5.8 BaI
	1×10 ⁷	63.3±3.3 ABaI	70.0±0.0 ABbI	80.0±5.8 ABaI	86.7±8.8 AaI
BbDs-2	1×10^{8}	70.0±3.3 ABaII	73.3±3.3 ABabII	86.7±3.3 ABaI	96.7±3.3 ABaI
	1×10 ⁹	73.3±3.3 ABaIII	83.3±3.3 ABaII III	90.0±0.0 ABaI II	100.0±0.0 AaI
	1×10 ⁷	50.0±5.8 ABCDaIII	60.0±0.0 BCDaII III	76.7±3.3 ABCaI II	80.0±5.8 ABaI
BbKs-1	1×10^{8}	53.3±8.8 ABCDaII	63.3±3.3 BCDaI II	80.0±5.8 ABCaI	86.7±3.3 ABCDaI
	1×10^{9}	56.7±8.8 BCDaII	70.0±5.8 BCDEaI II	83.3±6.7 ABaI II	90.0±0.0 ABaI
	1×10 ⁷	70.0±0.0 AbII	76.7±3.3 AbI II	83.3±3.3 AaI	86.7±3.3 AbI
BbDm-1	1×10^{8}	73.3±3.3 AbIII	86.7±3.3 AabII	93.3±3.3 AaI II	100.0±0.0 AaI
	1×10^{9}	90.0±0.0 AaI	93.3±3.3 AaI	96.7±3.3 AaI	100.0±0.0 AaI
Clonostachys rosea					
	1×10^{7}	43.3±6.7 BCDEaII	60.0±0.0 BCDaI II	63.3±3.3 ABCaI	70.0±0.0 ABbI
CrFn-1	1×10^{8}	50.0±0.0 BCDEaIII	63.3±3.3 BCDaII	73.3±3.3 ABCaI II	83.3±3.3 ABCDaI
	1×109	53.3±3.3 BCDaIII	66.7±3.3 BCDEFaII III	76.7±3.3 ABaI II	86.7±3.3 ABaI
	1×10^{7}	56.7±3.3 ABCaII	60.0±0.0 BCDaII	70.0±5.8 ABCaI II	80.0±0.0 ABaI
CrFn-2	1×10^{8}	60.0±5.8 ABCaII	66.7±3.3 BCaI II	73.3±3.3 ABCaI II	83.3±3.3 ABCDaI
	1×109	60.0±0.0 BCDaII	66.7±3.3 BCDEFaII	80.0±0.0 ABaI	86.7±3.3 ABaI
	1×10^{7}	36.7±6.7 CDEFaIII	46.7±3.3 DEFaII III	60.0±5.8 BCaI II	70.0±0.0 ABbI
CrKm-1	1×10^{8}	40.0±5.8 CDEFaIII	50.0±0.0 CDEaII III	63.3±6.7 BCaI II	73.3±3.3 DabI
	1×109	43.3±3.3 CDaIII	53.3±3.3 DEFaIII	66.7±3.3 BaII	80.0±0.0 BaI
Isaria farinosa					
	1×10^{7}	16.7±3.3 FcIII	30.0±3.3 GbII	36.7±3.3 DbII	56.7±3.3 BbI
IfKm-1	1×10^{8}	30.0±0.0 EFbIII	46.7±3.3 DEabII III	63.3±3.3 BCaI II	73.3±6.7 DabI
	1×10 ⁹	46.7±3.3 CDaIII	53.3±6.7 DEFaII III	70.0±5.8 BaI II	80.0±0.0 BaI
	1×10^{7}	26.7±3.3 DEFaII	43.3±6.7 EFGaI II	56.7±3.3 CDaI	60.0±0.0 BbI
IfDs-10	1×10^{8}	30.0±0.0 EFaIII	46.7±3.3 DEalI III	60.0±5.8 CaI II	73.3±3.3 DabI
	1×10 ⁹	43.3±6.7 CDaIII	50.0±0.0 EFaII III	66.7±3.3 BaI II	80.0±5.8 BaI
Purpureocillium lild	ıcinum				
	1×10 ⁷	43.3±3.3 BCDEaII	53.3±3.3 CDEaI II	60.0±0.0 BCaI II	70.0±5.8 ABaI
PlKa-1	1×10 ⁸	46.7±3.3 CDEaII	60.0±0.0 BCDaI II	70.0±5.8 ABCaI	76.7±3.3 CDaI
	1×10 ⁹	50.0±0.0 BCDaIII	60.0±5.8 CDEFaII III	73.3±6.7 ABaI II	83.3±3.3 ABaI
	1×10 ⁷	36.7±8.8 CDEFaIII	43.3±3.3 EFGbII III	70.0±5.8 ABCaI II	73.3±6.7 ABaI
PlMp-1	1×10^{8}	46.7±3.3 CDEaIII	56.7±3.3 BCDaII III	70.0±5.8 ABCaI II	73.7±3.3 CDaI
	1×10 ⁹	50.0±5.8 BCDaIII	60.0±0.0 CDEFaII III	73.3±6.7 ABaI II	83.3±3.3 ABaI
Control	dH ₂ O	0.0±0.0	0.0±0.0	0.0±0.0	0.0±0.0

*The differences between the means with different roman numerals on different days in the same isolate are statistically significant (P<0.05; Tukey test). **The differences between the means with different roman numerals on different days in the same isolate are statistically significant (P<0.05; Tukey test).

Isolate name	Fungal species	$LT_{50} \left(LCL-UCL\right)^*$	LT ₉₅ (LCL-UCL)	Chi-Square (df)	Regression equation (y=ax+b)
BbKm-3	Beauveria bassiana	2.59 (1.52-3.29)	9.06 (7.07-15.81)	54.942 (10)	y= -1.253+3.027x
BbKr-1	B. bassiana	1.59 (0.05-2.80)	34.82 (15.18-6.75)	34.330 (10)	y = -0.251 + 1.229x
BbMp-1	B. bassiana	3.00 (1.36-3.97)	32.37 (16.63-64.7)	34.569 (10)	y = -0.761 + 1.593x
BbAl-1	B. bassiana	4.57 (3.36-5.43)	21.60 (13.95-61.73)	47.433 (10)	y= -1.609+2.439x
BbDs-2	B. bassiana	1.83 (0.96-2.54)	7.93 (6.42-12.14)	30.332 (10)	y=0.724+2.633x
BbKs-1	B. bassiana	2.66 (1.29-3.51)	13.93 (9.56-39.93)	50.951 (10)	y = -0.972 + 2.287x
BbDm-1	B. bassiana	0.79 (0.0-1.87)	4.87 (2.83-16.32)	51.006 (10)	y=0.209+2.086x
CrFn-1	Clonostachys rosea	2.86 (2.07-3.45)	18.46 (13.32-34.09)	17.580 (10)	y = -0.927 + 2.031x
CrFn-2	C. rosea	2.36 (1.77-2.83)	20.22 (15.25-31.93)	14.011 (10)	y = -0.659 + 1.764x
CrKm-1	C. rosea	3.97 (3.29-4.52)	26.10 (18.01-50.73)	15.468 (10)	y = -1.205 + 2.011x
IfKm-1	Isaria farinosa	3.69 (2.53-4.50)	26.79 (16.03-96.84)	31.836 (10)	y= -1.086+1.913x
IfDs-1	I. farinosa	4.08 (2.96-4.92)	26.28 (15.79-95.05)	36.717 (10)	y= -1.245+2.035x
PlKa-1	Purpureocillium lilacinum	3.24 (2.07-4.02)	22.48 (14.14-70.46)	31.779 (10)	y= -0.999+1.956x
PlMp-1	P. lilacinum	3.26 (2.09-4.04)	24.88 (15.22-83.87)	29.116 (10)	y= -0.957+1.864x

Table 4. LT_{50} and LT_{95} (days) values of indigenous EPF isolates tested at 1×10^9 conidia ml⁻¹ to the 4th instar larvae of *Yponomeuta malinellus*.

95% confidence limits (CL); LCL, lower limit; UCL, upper limit.

Table 5. GenBank accession numbers and gene regions used in phylogenetic analysis of indigenous three most virulent Beauveria bassiana isolates and their relatives.

Isolate name	Species	Gene	Accession no.	Isolate name	Species	Species	Accession no.
BbDm-1	B. bassiana	TEF	OM489219	BbDm-1	B. bassiana	ITS	MT441872
BbDs-2	B. bassiana	TEF	OM489220	BbDs-2	B. bassiana	ITS	MT441879
BbKm-3	B. bassiana	TEF	OM489221	BbKm-3	B. bassiana	ITS	MT441870
792	B. bassiana	TEF	AY531957	F19-N	B. bassiana	ITS	MG640376
3097	B. bassiana	TEF	AY531925	MG562497	B. bassiana	ITS	MG562497
ArgB33	B. bassiana	TEF	KT748548	SHU.M.161	B. bassiana	ITS	KU158472
TM1613	B. bassiana	TEF	LT220758	SHU.M.131	B. bassiana	ITS	KU158461
TMCR05	B. bassiana	TEF	LT220759	EABb04	B. bassiana	ITS	KC753382
GMCR51	B. bassiana	TEF	LT220745	SASRI BB444	B. bassiana	ITS	JX110368
CHE-CNRCB 84	B. bassiana	TEF	MH203473	2718	B. bassiana	ITS	KU364353
TMSL142	B. bassiana	TEF	LT220761	EABb 04/01	B. bassiana	ITS	DQ364698
2579	B. bassiana	TEF	AY531916	HHWG1	B. brongniartii	ITS	JX110385
GMGJ75A	B. bassiana	TEF	LT220749	SASRI	B. brongniartii	ITS	JX110388
CHE-CNRCB 414	B. bassiana	TEF	MH203489	FUM03	B. varroae	ITS	MF667767
LPSc1213	B. bassiana	TEF	MK047585	B5	B. varroae	ITS	MH374536
B47	B. caledonica	TEF	MK040132	ARSEF 2641	B. amorpha	ITS	HQ880808
BUB421	B. caledonica	TEF	MG642903	B518a	B. amorpha	ITS	HQ880806
YFCC 7025	B. vermiconia	TEF	MN576997	BYYC-05	B. asiatica	ITS	MG345071
BCC14510	B. asiatica	TEF	MN401502	BUB824	B. asiatica	ITS	MG642836
BCC12907	B. asiatica	TEF	MN401481	ARSEF 4622	B. australis	ITS	HQ880790
YFCC 5600	B. asiatica	TEF	MN576996	ARSEF 4598	B. australis	ITS	HQ880789
BCC75846	B. asiatica	TEF	MN401462	F585	B. caledonica	ITS	DQ529233
BCC2120	B. asiatica	TEF	MN401465	BG47	B. caledonica	ITS	MT180427
C18-2_b	B. brongniartii	TEF	KJ908277	1717	B. vermiconia	ITS	FJ973063
RUG50-1_b	B. brongniartii	TEF	KJ908276	ARSEF 7281	B. sungii	ITS	HQ880815
RUB11-2_b	B. brongniartii	TEF	KJ908275	EFCC 5657	B. sungii	ITS	JX463219

4. Discussion

The results of the present study showed that all indigenous EPF isolates tested had a pathogenic activity against the 4th instar larvae of Y. malinellus under laboratory conditions; however, three isolates of B. bassiana (BbDm-1, BbDs-2 and BbKm-3) were more pathogenic than others. A review of the relevant literature revealed that there is no study on the biological control of Y. malinellus using EPFs. So, we could not compare our results with others. In a previous study with entomopathogenic bacteria, Erturk (2016) evaluated the insecticidal effects of some Bacillus thuringiensis (Berliner) (Bacillales: Bacillaceae) isolates as biological control agents against Y. malinellus. He reported that two B. thuringiensis isolates (HD-1 and BTS-1) were the most pathogenic and caused 97% and 83% mortalities of 4th larvae of *Y. malinellus* at the concentration of 1.8×10^9 72 h post treatment under laboratory conditions. The results obtained from the Erturk's study confirmed that the biological control of the pest may be possible by using entomopathogenic agents. However, the efficiency of entomopathogenic fungi as well as bacteria is greatly influenced by many abiotic factors, such as temperature, relative humidity, solar radiation, etc. (Vidal and Fargues 2007). That is why it is necessary that EPF applications be made at a

Figure 1. The Maximum Likelihood tree based on the Tamura 3-parameter model showing the phylogenetic relationship between the three *B. bassiana* isolates (BbDm-1, BbDs-2 and BbKm-3) found to have high virulence in the present study and other *B. bassiana* isolates from GenBank based on ITS region sequence.

time when ambient temperature and humidity is suitable for optimal entomopathogenic activity. Likewise, it is more appropriate to do applications in the evening or early in the morning when the solar radiation is low or nonexistent.

As for the phylogenetic placement of the three most virulent EPF isolates, which are 3 isolates of *B. bassiana* (BbKm-3, BbDs-2 and BbDm-1), the results demonstrated that these three isolates had 99% evolutionary homology with other *B. bassiana* isolates from the NCBI database. In the present study, two different gene regions (ITS and TEF regions) were used for identifying and comparing the above-mentioned EPF isolates. Rehner and Buckley (2005) reported that molecularly based sequences based on a single region can be misleading in determining *B. bassiana* isolates. Also, many researchers used the multiple gene sequencing approach for identifying and comparing *B. bassiana* isolates (Glare and Inwood 1998; Glare 2004; Rehner and Buckley 2005; Glare et al. 2008). Serna-

Dominguez et al. (2019) identified 44 *B. bassiana* isolates from different pests in the west-central Mexico (The state of Colima) using a translation elongation factor $1-\alpha$ (TEF) and Bayesian phylogenetic analysis of the nuclear intergenic Block region. They did not detect any significant genetic associations between any substrate, insect-host, or geographic origin combination. Their results also indicated that the TEF region was effective in identifying *B. bassiana* isolates, similar to those of the present study. Likewise, Castro-Vásquez et al. (2021) molecularly identified 32 *B. bassiana* isolates, 26 from Costa Rica, 5 from Puerto Rico and one from Honduras, using the Bloc, TEF-1 α and RPB2 regions. Their results showed that the TEF region can be used effectively in the identification of *B. bassiana* isolates in molecular characterization and there is a low correlation between geographic origin and variation between isolates.

Based on the results of this study, it was concluded that three indigenous isolates (BbDm-1, BbDs-2 and BbKm-3) of

8

52

53

100

Figure 2. The Maximum Likelihood tree based on the Tamura 3-parameter model showing the phylogenetic relationship between the three *B. bassiana* isolates (BbDm-1, BbDs-2 and BbKm-3) found to have high virulence in the present study and other *B. bassiana* isolates from GenBank based on TEF region sequence.

B. bassiana can be used as potential alternatives for the management of *Y. malinellus*. However, further studies should be conducted under field conditions to better understand the efficacy of these three *B. bassiana* isolates and their potential as effective biocontrol agents within the framework of an integrated pest management (IPM) program in apple orchards.

Acknowledgements

The authors thank to the Scientific Projects Coordination Unit of Akdeniz University for financial support and to the growers for their helps during the collection of insect material.

References

Alramadan Y, Mamay M (2019a) The importance of entomopathogenic fungi in the control of agricultural pests and promising fungal entomopathogens in the field application. 1st International Gobeklitepe Agriculture Congress. Şanlıurfa, Turkey, pp. 266-274.

Beauveria asiatica YFCC 5600

Beauveria asiatica BCC75846

Beauveria asiatica BCC2120

Beauveria brongniartii C18-2 b Beauveria brongniartii RUG50-1 b

Beauveria brongniartii RUB11-2 b

- Alramadan Y, Mamay M (2019b) The importance of entomopathogenic bacteria in the control of agricultural pests and promising these entomopathogens in the field. 1st International Gobeklitepe Agriculture Congress. Şanlıurfa, Turkey, pp.258-265.
- Alramadan Y, Mamay M (2019c) What is the role of entomopathogenic viruses in the control of agricultural pests and their future in the field application? 1st International Gobeklitepe Agriculture Congress. Şanlıurfa, Turkey, pp. 301-309.

- Alramadan Y, Mamay M (2019d) The importance of entomopathogenic nematode and their role in the control of agricultural pests. 1st International Gobeklitepe Agriculture Congress. Şanlıurfa, Turkey, pp. 301-309.
- Anonymous (2012) Yponomeuta malinellus (Apple Ermine Moth) Fact Sheet. Canadian Food Inspection Agency pp. 13.
- Baki D, Tosun HS, Erler F (2021) Indigenous entomopathogenic fungi as potential biological control agents of rose sawfly, *Arge rosae* L. (Hymenoptera: Argidae). Turkish Journal of Zoology 45(7): 517-525.
- Butt TM, Jackson C, Magan N (2001) Introduction fungal biological control agents: progress, problems and potential. In: Fungi as Biocontrol Agents: Progress, Problems and Potential. Butt, T. M., C. Jackson and N. Magan, (Eds), CAB International, Wallingford, pp. 1-8.
- Butt TM (2002) Use of entomogenous fungi for the control of insect pests. In: Mycota. Esser, K. and J.W. Bennett, (Eds), Springer, Berlin, pp. 111-134.
- Castro-Vásquez RM, Molina-Bravo R, Hernández-Villalobos S, Vargas-Martínez A, González-Herrera A, Montero-Astúa M (2021) Identification and phylogenetic analysis of a collection of *Beauveria* spp. Isolates from Central America and Puerto Rico. Journal of Invertebrate Pathology 184:107642. doi: 10.1016/j.jip.2021.107642.
- Doyle J, Doyle J (1990) Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
- Erturk O (2016) Insecticidal effects of some *Bacillus thuringiensis* (Berliner) (Bacillales: Bacillaceae) isolates on the larvae of *Yponomeuta malinellus* Zell. (Lepidoptera: Yponomeutidae) and *Cydia pomonella* L. (Lepidoptera: Tortricidae). Harran Journal of Agricultural and Food Science 20(3): 183-191.
- Fancelli M, Dias AB, Delalibera IJ, Cerqueira de Jesus S, Souza do Nascimento A, Oliveira e Silva S (2013) *Beauveria bassiana* strains for biological control of *Cosmopolites sordidus* (Germ.) (Coleoptera: Curculionidae) in Plantain. BioMed Research International. doi.org/10.1155/2013/184756.
- Gencer L (2003) The Parasitoids of *Yponomeuta malinellus* Zeller (Lepidoptera: Yponomeutidae) in Sivas. Turkish Journal of Zoology 27: 43-46.
- Glare TR, Inwood A (1998) Morphological and genetic characterization of *Beauveria* spp. from New Zealand. Mycological Research 102: 250-256.
- Glare TR (2004) Molecular characterization in the entomopathogenic fungal genus *Beauveria*. Laimburg Journal 1: 286-298.
- Glare TR, Reay SD, Nelson TL, Moore R (2008) *Beauveria caledonica* is a naturally occurring pathogen of forest beetles. Mycological Research 112: 352-360.
- Goettel MS, Inglis GD (1997) Fungi Hyphomycetes: Manual of Techniques in Insect Pathology. Academic Press, San Diego, pp. 213-248.
- Goettel MS, Eilenberg J, Glare TR (2010) Entomopathogenic fungi and their role in regulation of insect populations. In: Insect Control: Biological and Synthetic Agents. Gilbert, L.I. and S. Gill, (Eds), Academic Press, London, pp. 387-432.
- Iren Z (1960) Researches on ermine moth (*Yponomeuta*) species, their host plants, brief biology and controls in Ankara Region. Ziraat Vekaleti C-4, pp. 141 (in Turkish).

- Kimber I (2021) UK Moths. https://ukmoths.org.uk/species/yponomeuta-malinellus. Accessed 2 November, 2021.
- Kuhlmann U, Carl KP, Mills NJ (1988) Quantifying the impact of insect predators and parasitoids on populations of apple ermine moth, *Yponomeuta malinellus* (Lepidoptera: Yponomeutidae), in Europe. Bulletin of Entomological Research 88: 165-175.
- Mamay M, Mutlu C (2019) Optimizing container size and rearing density for rapid and economic mass rearing of *Oenopia* conglobata (Linnaeus, 1758) (Coleoptera: Coccinellidae). Turkish Journal of Entomology 43(4): 395-408.
- McDonough LM, Davis HG, Smithhisler CL, Voerman S, Chapman PS (1990) Apple ermine moth, *Yponomeuta malinellus* Zeller two components of female sex pheromone gland highly effective in field trapping tests. Journal of Chemical Ecology 16(2): 477-486.
- Narmanlioglu HK, Coruh S (2018) Parasitoids of the apple ermine moth, *Yponomeuta malinellus* Zeller, 1838 (Lepidoptera: Yponomeutidae), in the Çoruh Valley, Erzurum Province, Turkey. Turkish Journal of Entomology 41: 357-365.
- Rehner S (2001) Primers for elongation factor 1–α (EF1–α). Available at: http://ocid.nacse.org/research/deephyphae/EF1primer.
- Rehner SA, Buckley E (2005) A *Beauveria* phylogeny inferred from nuclear ITS and EF1- α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97: 84-98.
- Serna-Domínguez MG, Gilda Y (2019) Andrade-Michel, Rogelio Rosas-Valdez, Patricia Castro-Félix, Hugo C. Arredondo-Bernal, Adrien Gallou, High genetic diversity of the entomopathogenic fungus *Beauveria bassiana* in Colima, Mexico, Journal of Invertebrate Pathology 163: 67-74.
- Sönmez C, Mamay M (2018) Biological control in sustainable agriculture. In Proceedings of the International GAP Agriculture & Livestock Congress, Sanliurfa, Turkey, 25-27 April 2018.
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731-2739.
- Unruh TR, Congdon BD, LaGassa E (1993) *Yponomeuta malinellus* Zeller (Lepidoptera: Yponomeutidae), a new immigrant pest of apples in the Northwest: phenology and distribution expansion, with notes on efficacy of natural enemies. Pan-Pacific Entomologist 69: 57-70.
- Vidal C, Fargues J (2007) Climatic constraints for fungal bioinsecticides, In S. Ekesi, and N. K. Maniania (eds.), Use of entomopathogenic fungi in biological pest management. Research Signpost Inc., Kerala, pp. 39-55.
- White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a Guide to Methods and Applications. Academic Press, New York, USA, pp. 315-322.
- Wraight SP, Jackson MA, De Kock SL (2001) Production, stabilization, and formulation of fungal biocontrol agents. In: Fungi as Biocontrol Agents: Progress, Problems and Potential. Butt, T.M., C.W. Jackson and N. Magan, (Eds), CAB International, Wallingford, pp. 253-258.