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ABSTRACT 
 

One of the critical design decisions that arise during the design of an industrial robot is the function of the joints to be used and 

their location. Of course, for the designed robot to provide the expected performance, the selection of the motors and gear 

reducers that will create these joints will primarily affect the determination of these joints. However, both the examination of the 

existing industrial robots and the fact that the motor and gear reducer information that can be supplied can be easily obtained 

with today’s technology, these joints can be determined quickly as a result of a short investigation. Along with the mechanical 

design, robot control unit design also has stages that progress in parallel and depend on or affect the mechanical design decisions. 

One of the most important of these is that especially inverse kinematics calculations can be performed analytically, enabling the 

robot control unit to make decisions and give commands in real-time. 

This article aims to publish the geometric calculation of inverse kinematics of commonly used exampled configuration of 6-DOF 

industrial robot that has offset and spherical joint along with interactive calculation tables and sheets. There are numerous articles 

published on the same subject but none of them has provided any verification supplement so far. Thus, it is also aimed to confirm 

and verify the calculations given in this article by providing convenient tables and sheets and to create a solid foundation for 

future studies. 

 

Keywords: Inverse kinematics, Forward kinematics, 6-DOF Industrial robot, Spherical wrist, Offset wrist, Analytical solution, 

Geometric solution. 

 

 

1. INTRODUCTION 
 

In simple words, kinematics is the study of motion while ignoring the causes of that. Any component of that motion is 

considered to be rigid. Connections among those components are called joints. There are many joint types but in the end, they 

all can be expressed with two base joint types; prismatic (sliding) and rotating. Each base joint in the kinematic body defines the 

DOF1 of that mechanism. For industrial robots, usually, a rotating joint type is used and if the robot has 6 DOF, it generally 

means it has 6 rotating joints.  

Forward kinematics is to compute the position of end-effector2 by using specified joint parameters (for rotating joint, it is 

rotation angle). The solution of any DOF robotic manipulator has to be done in advance and is straightforward theoretical 

calculation [1], [2], [3], [4], [5], [6], [7], [8], [9]. A method called Denavit Hartenberg3 convention widely used solution for both 

Forward & Inverse solutions.  

Inverse kinematics is exactly the opposite of forward kinematics, which is to compute joint angles by using a specified end-

effector position. The solution is also diverse with numerous approaches. Some most well know theoretical ones [3], [6] are: 

Algebraic Solution: Forward kinematics calculations like approach. It has several advantages, such as a) being the most 

robust solution for real-time calculations, b) it is a straightforward math calculation scheme that may not need DH convention, 

and c) it is feasible for 3 DOF robot kinematics. On the other hand, it requires an algebraic calculation of the inverse 

transformation matrix. It introduces the following disadvantages; a) not feasible for almost all 3+ DOF real-life robotics 

kinematics, b) the solution gets much more complicated when offsets exist and DOFs are increased. 

Geometric Solution: Dividing mechanism into several plane geometry problems. When compared with Algebraic, this 

method also requires extended trigonometric knowledge besides conventional math. Advantages of the solution can be; a) as 

with algebraic, the solution does not strictly depend on robot structure. b) As in forward kinematics solution, DH parameters 

representation is also the de-facto standard for the geometric solution. c) the solution is recognized as suitable for real-time 

                                                           
1 Degrees of Freedom 
2 Located at the end of the robotic arm, to interact with the environment 
3 Abbreviated as D-H or DH method and expressed with DH table 
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calculations. Disadvantages might be; a) avoidance might be possible but, almost all solutions include singularities, b) 

nonlinearities (multiple solutions) exist due to the use of local coordinates. 

Quaternion Solution: This is the newest solution approach that uses an alternative artificial imaginary complex space called 

Quaternion. Advantages are a) introducing compact formulation; b) reduced number of equations, c) gimbal lock and other 

singularities are avoided. Drawbacks might be; a) rotations only mechanisms can be handled. b) needs more math to comprehend; 

c) difficult to interpret and d) less intuitive. 

 

 
 

Figure 1. An example robot CAD model 

 

Since our kinematic mechanism includes rotations for each DOF, the quaternion solution seems to be the best fit, but for 

intuition and easy interpretation, the geometric solution approach will be exercised in this paper. In reality, exampled robot joints 

are in 3D space, but for the sake of solution simplicity, they all are projected onto a single plane. Shifts between joints are called 

offsets and the exampled robot has two offsets; the first one is between 1st & 2nd joints and the second one is between 3rd & 

4th joints [10]. The 4th, 5th & 6th joints altogether forms spherical wrist [1]. 6-DOF exampled robot will be divided into two 3-

DOF mechanisms; the first one compromises 1st, 2nd, and 3rd joints, and the second one compromises spherical wrist joints. 

Due to the nature of the inverse kinematics solution, each joint angle could have multiple values. This nature is well 

documented and investigated in many literature [11], [12]. This article and its supplements will only reveal just the single solution 

which covers the widest range. 

 

 
 

Figure 2. Schematic of robot shown at Figure 1 
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2. EXAMPLED ROBOT AND ITS SCHEMATIC REPRESENTATION 
 

A 6-DOF industrial robot is chosen. Below find its CAD model (Figure 1), and schematics (Figure 2&3) to be used to define 

its home position. Initial solution parameters & variables will be extracted from these schematics as well. 

 

 

3. ROBOT VARIABLES, PARAMETERS & DENAVIT HARTENBERG TABLE 
 

A very commonly used 6-DOF robot has the following variables, parameters, parameters and corresponding Denavit-

Hartenberg (DH) table. In this section, these known and unknown will be exposed using the schematics in previous section 2. 

 

3.1 Variables 

 

This 6-DOF robot manipulator has six links and all of them are revolute joints. By changing the angle of these revolute links, 

a robot can reach and fulfill its function as expected. Therefore, variables of the kinematics system of the introduced robot 

manipulator are these revolute joint angles and their starting value accepted as 0 (zero) at home position, and it should be bigger 

than -180° and less than or equal to 180°. In this article and its supplements; 

— θ denotes joint angle, 

— Subscript n (where n = 1...6) denotes revolute joints, 

— A number (1...6) subscript denotes a revolute joint number which is starts from the robot base and goes to the tip, 

— Subscript v denotes variable, 

— Subscript h denotes home offset joint angle at home position, 

— Subscript f denotes joint angle for forward kinematics calculation which includes both variable and home offset part, 

— Subscript i denotes joint angle for inverse kinematics calculation which includes both variable and home offset part. 

 

 
 

Figure 3: 2D Representation of schematics on Figure 2 
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3.2 Parameters & Denavit-Hartenberg Table 

 

For the specified home position in schematic Figure 2&3, joint angle offset (θ), twist angle (α), joint offset (d), and joint  

length (a) should be defining column parameters of the Denavit-Hartenberg (DH) table. Each row of the DH table defines 

mentioned parameters of each joint. Therefore, we have 6 (row) joints by 4 (column) parameters table. Definition of each 

parameter is; 

θ: Angle about the previous Z, from old X to new X. 

α: Angle about new X, from old Z-axis to new Z-axis. 

d: Offset distance along the previous Z, from old joint to new joint center. 

a: Length along new X, from old joint to new joint center. 

In addition to that while placing the local coordinates in Figure 2 following rules apply; 

— Z-axis is always the joint axis on which the joint rotates about if it is a rotational joint or moves along if it is a 

translational joint. 

— X-axis must be perpendicular and intersect both new Z & old Z 

— Y-axis’s placement follows the right-hand rule based on the X & Z axes 

By using the above transformation parameters definitions, constraints between axes and the schematic representation of the 

robot manipulator shown in Figure 2&3, D-H parameters shown in Table 1 can be derived. 

The most crucial steps for constructing the D-H table are the placement and orientation of local coordinates so that the 

complexity of our solution is minimized. 

 

Table 1: D-H Parameters of robot manipulator that’s schematics shown in Figure 2&3 

 θ°h α° d(mm) a(mm) 

1st Joint 0 90 575 175 

2nd 

Joint 

90 0 0 890 

3rd Joint 0 90 0 50 

4th Joint 0 -90 1035 0 

5th Joint 0 90 0 0 

6th Joint 0 0 185 0 

 

When variables and parameters merged, the θ, α, d and a values for each joint would be as follows; 

 

θ1f = θ1v + θ°1h α1f =  90° d1f =  575 a1f =  175 

θ2f = θ2v + θ°2h α2f =  0° d2f =  0 a2f =  890 

θ3f = θ3v + θ°3h α3f =  90° d3f =  0 a3f =  50 

θ4f = θ4v + θ°4h α4f =  -90° d4f =  1035 a4f =  0 

θ5f = θ5v + θ°5h α5f =  90° d5f =  0 a5f =  0 

θ6f = θ6v + θ°6h α6f =  0° d6f =  185 a6f =  0 

 

In a nutshell, for forward kinematics calculation, the rotation angle at each joint is a variable. There are also 4 D-H parameters 

for each joint. Therefore, for the 6 DOF mechanism robot, there will be 6 variables and 6x4=24 variables to calculate the end-

effector’s 3 (x,y,z) cartesian location and 3 angular orientation. For forward kinematics calculation, these six total unknowns 

always stay constant, whether the mechanism has 2, 3 or 10 joints. 

An increased number of DOF on robotics kinematics has almost no effect on forward kinematics, but this cannot be said for 

inverse kinematics calculation.  Depending on the number of additional DOF and each joint’s formation, the chosen method may 

not be feasible. 

 

 

4. FORWARD KINEMATICS CALCULATION 
 
In 1955, Denavit and Hartenberg proposed a matrix method to construct the coordinate system connected to each link in the 

robot’s joint chains to describe the translational and rotational relationship between adjacent links. This robot kinematics model 

is based on the D-H coordination system. Transformations between two consecutive joints can be written by substituting the 

parameters in the parameter table in their corresponding place in the matrix called “An”, where; 
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𝐴𝑛𝑓 =

[
 
 
 
cos 𝜃𝑛𝑓 −sin 𝜃𝑛𝑓 cos 𝛼𝑛𝑓 sin 𝜃𝑛𝑓 sin 𝛼𝑛𝑓 𝑎𝑛𝑓cos 𝜃𝑛𝑓

sin𝜃𝑛𝑓 cos 𝜃𝑛𝑓 cos 𝛼𝑛𝑓 cos 𝜃𝑛𝑓 sin 𝛼𝑛𝑓 𝑎𝑛𝑓 sin 𝜃𝑛𝑓

0 sin𝛼𝑛𝑓 cos 𝛼𝑛𝑓 𝑑𝑛𝑓

0 0 0 1 ]
 
 
 
 

When known joint parameters are put into their corresponding place in this matrix, then the following matrices are obtained for 

each joint starting from the base (1) to the tip (6); 

𝐴1𝑓 =

[
 
 
 
cos 𝜃1𝑓 0 sin𝜃1𝑓 𝑎1𝑓cos 𝜃1𝑓

sin 𝜃2𝑓 0 −cos 𝜃1𝑓 𝑎1𝑓 sin𝜃1𝑓

0 1 0 𝑑1𝑓

0 0 0 1 ]
 
 
 
 

𝐴2𝑓 = [

cos𝜃2𝑓 −sin 𝜃2𝑓 0 𝑎2𝑓cos 𝜃2𝑓

sin𝜃2𝑓 cos 𝜃2𝑓 0 𝑎2𝑓 sin𝜃2𝑓

0 0 1 0
0 0 0 1

] 

𝐴3𝑓 =

[
 
 
 
cos 𝜃3𝑓 0 sin𝜃3𝑓 𝑎3𝑓cos 𝜃3𝑓

sin𝜃3𝑓 0 − cos𝜃3𝑓 𝑎3𝑓 sin𝜃3𝑓

0 1 0 𝑑3𝑓

0 0 0 1 ]
 
 
 
 

𝐴4𝑓 =

[
 
 
 
cos𝜃4𝑓 0 −sin𝜃4𝑓 0

sin𝜃4𝑓 0 cos 𝜃4𝑓 0

0 −1 0 𝑑4𝑓

0 0 0 1 ]
 
 
 
 

𝐴5𝑓 = [

cos 𝜃5𝑓 0 sin𝜃5𝑓 0

sin 𝜃5𝑓 0 −cos 𝜃5𝑓 0

0 1 0 0
0 0 0 1

] 

𝐴6𝑓 =

[
 
 
 
cos 𝜃6𝑓 −sin𝜃6𝑓 0 0

sin 𝜃6𝑓 cos 𝜃6𝑓 0 0

0 0 1 𝑑6𝑓

0 0 0 1 ]
 
 
 
 

For abbreviation and simplicity following notation substitutions will be used throughout this article; 

𝐶𝑛 = cos 𝜃𝑛 𝑆𝑛 = sin 𝜃𝑛 

𝐶𝑎𝑏 = 𝐶𝑎𝐶𝑏 − 𝑆𝑎𝑆𝑏 𝑆𝑎𝑏 = 𝐶𝑎𝑆𝑏 + 𝑆𝑎𝐶𝑏 

The total transformation matrix from the robot base to the hand is as follows; 

𝑇𝑓 = 𝐴1𝑓𝐴2𝑓𝐴3𝑓𝐴4𝑓𝐴5𝑓𝐴6𝑓 = [

𝑛𝑥𝑓 𝑜𝑥𝑓 𝑎𝑥𝑓 𝑝𝑥𝑓

𝑛𝑦𝑓 𝑜𝑦𝑓 𝑎𝑦𝑓 𝑝𝑦𝑓

𝑛𝑧𝑓 𝑜𝑧𝑓 𝑎𝑧𝑓 𝑝𝑧𝑓

0 0 0 1

] 
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In which; 

𝑛𝑥𝑓 = 𝐶6𝑓(𝐶5𝑓(𝐶1𝑓𝐶23𝑓𝐶4𝑓 + 𝑆1𝑓𝑆4𝑓) − 𝐶1𝑓𝑆23𝑓𝑆5𝑓) + 𝑆6𝑓(𝑆1𝑓𝐶4𝑓 − 𝐶1𝑓𝐶23𝑓𝑆4𝑓) 

𝑛𝑦𝑓 = 𝐶6𝑓(𝐶5𝑓(𝑆1𝑓𝐶23𝑓𝐶4𝑓 + 𝐶1𝑓𝑆4𝑓) − 𝑆1𝑓𝑆23𝑓𝑆5𝑓) − 𝑆6𝑓(𝐶1𝑓𝐶4𝑓 + 𝑆1𝑓𝐶23𝑓𝑆4𝑓) 

𝑛𝑧𝑓 = 𝐶6𝑓(𝐶23𝑓𝑆5𝑓 + 𝑆23𝑓𝐶4𝑓𝐶5𝑓) − 𝑆23𝑓𝑆4𝑓𝑆6𝑓 

𝑜𝑥𝑓 = 𝑆6𝑓 (𝐶1𝑓𝑆23𝑓𝑆5𝑓 − 𝐶5𝑓(𝑆1𝑓𝐶23𝑓𝐶4𝑓 + 𝑆1𝑓𝑆4𝑓)) + 𝐶6𝑓(𝑆1𝑓𝐶4𝑓 − 𝐶1𝑓𝐶23𝑓𝑆4𝑓) 

𝑜𝑦𝑓 = 𝑆6𝑓 (𝑆1𝑓𝑆23𝑓𝑆5𝑓 − 𝐶5𝑓(𝑆1𝑓𝐶23𝑓𝐶4𝑓 + 𝐶1𝑓𝑆4𝑓)) − 𝐶6𝑓(𝐶1𝑓𝐶4𝑓 + 𝑆1𝑓𝐶23𝑓𝑆4𝑓) 

𝑜𝑧𝑓 = −𝑆6𝑓(𝐶23𝑓𝑆5𝑓 + 𝑆23𝑓𝐶4𝑓𝐶5𝑓) − 𝑆23𝑓𝑆4𝑓𝐶6𝑓 

𝑎𝑥𝑓 = 𝑆5𝑓(𝐶1𝑓𝐶23𝑓𝐶4𝑓 + 𝑆1𝑓𝑆4𝑓) + 𝐶1𝑓𝑆23𝑓𝐶5𝑓 

𝑎𝑦𝑓 = 𝑆5𝑓(𝑆1𝑓𝐶23𝑓𝐶4𝑓 − 𝐶1𝑓𝑆4𝑓) + 𝑆1𝑓𝑆23𝑓𝐶5𝑓 

𝑎𝑧𝑓 = 𝑆23𝑓𝐶4𝑓𝑆5𝑓 − 𝐶23𝑓𝐶5𝑓 

𝑝𝑥𝑓 = 𝑑6𝑓(𝑆5𝑓(𝐶1𝑓𝐶23𝑓𝐶4𝑓 + 𝑆1𝑓𝑆4𝑓) + 𝐶1𝑓𝑆23𝑓𝐶5𝑓) + 𝐶1𝑓(𝑎1𝑓 + 𝑎2𝑓𝐶2𝑓 + 𝑎3𝑓𝐶23𝑓 + 𝑑4𝑓𝑆23𝑓) 

𝑝𝑦𝑓 = 𝑑6𝑓(𝑆5𝑓(𝑆1𝑓𝐶23𝑓𝐶4𝑓 + 𝐶1𝑓𝑆4𝑓) + 𝑆1𝑓𝑆23𝑓𝐶5𝑓) + 𝑆1𝑓(𝑎1𝑓 + 𝑎2𝑓𝐶2𝑓 + 𝑎3𝑓𝐶23𝑓 + 𝑑4𝑓𝑆23𝑓) 

𝑝𝑧𝑓 = 𝑎2𝑓𝑆2𝑓 + 𝑑1𝑓 + 𝑎3𝑓𝑆23𝑓 − 𝑑4𝑓𝐶23𝑓 + 𝑑6𝑓(𝑆23𝑓𝐶4𝑓𝑆5𝑓 − 𝐶23𝑓𝐶5𝑓) 

The lowest row in the resulting 4x4 transformation matrix is considered as the ineffective row. The top left 3x3 matrix is the 

rotation matrix, and the 3x1 matrix from top to bottom in the far right column is the translation matrix. 

Accordingly, the rotation matrix from the base coordinate system of the robot to the tip of the robot; 

𝑇𝑅𝑓 = [

𝑛𝑥𝑓 𝑜𝑥𝑓 𝑎𝑥𝑓

𝑛𝑦𝑓 𝑜𝑦𝑓 𝑎𝑦𝑓

𝑛𝑧𝑓 𝑜𝑧𝑓 𝑎𝑧𝑓

] 

Where; 

[nxf nyf nzf]: the unit vector indicates the direction of the X-axis at the robot end tip to the base coordinate system. 

[oxf oyf ozf]: the unit vector indicates the direction of the Y-axis at the robot end tip to the base coordinate system. 

[axf ayf azf]: the unit vector indicates the direction of the Z-axis at the robot end tip to the base coordinate system. 

The unit vector shows the direction of the X, Y and/or Z-axis at the robot tip according to the base coordinate system. However, 

the expectation is to express all of these in angular form rather than vectorial. Below find how to express tip rotation in ZY′Z′′ 

Euler and XY′Z′′ Tait-Bryan angles. The matrices used to calculate these angles are available from [13]. 

ZY′Z′′ Euler angles of the robot tip coordinate axis to the base coordinate axis (subscript e denotes Euler); 
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𝑍𝑒𝑓 = arctan2(
𝑎𝑦𝑓

𝑎𝑥𝑓
) 

𝑌′𝑒𝑓 = arctan2

(

 
√1 − 𝑎𝑧𝑓

2

𝑎𝑧𝑓

)

  

𝑍"𝑒𝑓 = arctan2(
𝑜𝑧𝑓

−𝑛𝑧𝑓
) 

XY′Z′′ Tait-Bryan angles of the robot tip coordinate axis with respect to the base coordinate axis (subscript t denotes Tait-Bryan); 

𝑋𝑡𝑓 = arctan2(
−𝑎𝑦𝑓

𝑎𝑧𝑓
) 

𝑌′𝑡𝑓 = arctan2

(

 
𝑎𝑥𝑓

√1 − 𝑎𝑥𝑓
2

)

  

𝑍"𝑒𝑓 = arctan2(
−𝑜𝑥𝑓

𝑛𝑥𝑓
) 

The translation matrix from the base coordinate system of the robot to the tip of the robot; 

𝑇𝑇𝑓 = [

𝑝𝑥𝑓

𝑝𝑦𝑓

𝑝𝑧𝑓

] 

The transformation matrix that both includes translation and ZY′Z′′ euler angles can be represented as; 

𝑇𝑒𝑓 =

[
 
 
 
 
 
 
𝑝𝑥𝑓

𝑝𝑦𝑓

𝑝𝑧𝑓

𝑍𝑒𝑓

𝑌′𝑒𝑓

𝑍"𝑒𝑓]
 
 
 
 
 
 

 

This concludes the forward kinematics calculation. In proceeding inverse kinematics calculations above derived Tef matrix will 

be taken as input and θn joint rotations will be derived. 

 

 

5. INVERSE KINEMATICS CALCULATION 
 

In the previous session, we have found the end-effector location in cartesian space by inputting joint rotation angles. In real-

world robots operates exactly the opposite; the robot controller needs to know the joint angles for a given end-effector’s location. 

This is done by inverse kinematics calculation which will be explained in this session. Input variables of inverse calculation will 

be the Tef matrix’ cell values derived in the previous session, but all subscripts will be changed from f to i and therefore our input 

matrix will be; 
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𝑇𝑒𝑖 =

[
 
 
 
 
 
𝑝𝑥𝑖

𝑝𝑦𝑖

𝑝𝑧𝑖

𝑍𝑒𝑖

𝑌′𝑒𝑖

𝑍"𝑒𝑖]
 
 
 
 
 

 

 

Rotational angles of each joint will be calculated by using the values in matrix Tei, To do so transformation matrix will be 

constructed from Tei by going reverse.  

The translation part of the transformation matrix is evident; [pxi pyi pzi] vertically forms the top of the rightmost column of 

the transformation matrix. In order to form the rotation matrix, it will be sufficient to substitute the rotation values given as input 

in the relevant euler rotation matrix. In reference [13] corresponding rotation matrix calculation for ZY′Z′′ euler angles is already 

stated. Following substitutions, notations and abbreviations are used to form the rotation matrix from euler angles. As an addition 

only i index is added as a subscript to indicate the inverse calculation; 

 

𝛼𝑖 = 𝑍𝑒𝑖 𝛽𝑖 = 𝑌′𝑒𝑖 𝛾𝑖 = 𝑍"𝑒𝑖 

𝑐1𝑖 = cos(𝛼𝑖) 𝑐2𝑖 = cos(𝛽𝑖) 𝑐3𝑖 = cos(𝛾𝑖) 

𝑠1𝑖 = sin(𝛼𝑖) 𝑠2𝑖 = sin(𝛽𝑖) 𝑠3𝑖 = sin(𝛾𝑖) 
 

Using these abbreviations on the rotation part (3x3 one at upper left) in the transformation matrix; 

 

𝑇𝑖 = [

𝑐1𝑖𝑐2𝑖𝑐3𝑖 − 𝑠1𝑖𝑠3𝑖 −𝑐3𝑖𝑠1𝑖 − 𝑐1𝑖𝑐2𝑖𝑠3𝑖 𝑐1𝑖𝑠2𝑖 𝑝𝑥𝑖

𝑐1𝑖𝑠3𝑖 − 𝑐2𝑖𝑐3𝑖𝑠1𝑖 𝑐1𝑖𝑐3𝑖 − 𝑐2𝑖𝑠1𝑖𝑠3𝑖 𝑠1𝑖𝑠2𝑖 𝑝𝑦𝑖

−𝑐3𝑖𝑠2𝑖 𝑠2𝑖𝑠3𝑖 𝑐2𝑖 𝑝𝑧𝑖

0 0 0 1

] 

 

It was also shown in forward kinematics calculation, the abbreviated notation of this transformation matrix was as follows; 

 

𝑇𝑓 = [

𝑛𝑥𝑖 𝑜𝑥𝑖 𝑎𝑥𝑖 𝑝𝑥𝑖

𝑛𝑦𝑖 𝑜𝑦𝑖 𝑎𝑦𝑖 𝑝𝑦𝑖

𝑛𝑧𝑖 𝑜𝑧𝑖 𝑎𝑧𝑖 𝑝𝑧𝑖

0 0 0 1

]=𝐴1𝑖𝐴2𝑖𝐴3𝑖𝐴4𝑖𝐴5𝑖𝐴6𝑖 

 

In the matrix, the translation values are already determined, rotational values are as follows; 

 

𝑛𝑥𝑖 = 𝑐1𝑖𝑐2𝑖𝑐3𝑖 − 𝑠1𝑖𝑠3𝑖 𝑜𝑥𝑖 = −𝑐3𝑖𝑠1𝑖 − 𝑐1𝑖𝑐2𝑖𝑠3𝑖 𝑎𝑥𝑖 = 𝑐1𝑖𝑠2𝑖 

𝑛𝑦𝑖 = 𝑐1𝑖𝑠3𝑖 − 𝑐2𝑖𝑐3𝑖𝑠1𝑖 𝑜𝑦𝑖 = 𝑐1𝑖𝑐3𝑖 − 𝑐2𝑖𝑠1𝑖𝑠3𝑖 𝑎𝑦𝑖 = 𝑠1𝑖𝑠2𝑖 

𝑛𝑧𝑖 = −𝑐3𝑖𝑠2𝑖 𝑜𝑧𝑖 = 𝑠2𝑖𝑠3𝑖 𝑎𝑧𝑖 = 𝑐2𝑖 
 

The schematic representation of the robot manipulator with dimensions is shown in Hata! Başvuru kaynağı bulunamadı.. 

The process of finding the angles of each joint of the robot manipulator can be divided into two steps as; 

1) find the first three joint angles and then, 

2) find the next three spherical joint angles by making use of the first three angles. 

In Hata! Başvuru kaynağı bulunamadı., a geometric explanation brought to finding the first joint angle θ1i. 

 

𝑃04 = 𝑃06 − 𝑃46 𝑤ℎ𝑒𝑟𝑒, 𝑃06 = [

𝑝𝑥𝑖

𝑝𝑦𝑖

𝑝𝑧𝑖

] ,  𝑃46 = 𝑑6𝑖 [

𝑎𝑥𝑖

𝑎𝑦𝑖

𝑎𝑧𝑖

] 

𝑃04 = [

𝑥05

𝑦05

𝑧05

] = [

𝑝𝑥𝑖

𝑝𝑦𝑖

𝑝𝑧𝑖

] − 𝑑6𝑖 [

𝑎𝑥𝑖

𝑎𝑦𝑖

𝑎𝑧𝑖

] = [

𝑝𝑥𝑖 − 𝑑6𝑖𝑎𝑥𝑖

𝑝𝑦𝑖 − 𝑑6𝑖𝑎𝑦𝑖

𝑝𝑧𝑖 − 𝑑6𝑖𝑎𝑧𝑖

] 
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Thus; 

 𝜃1𝑖 = 𝜃1𝑣 = arctan2 (
𝑝𝑦𝑖−𝑑6𝑖𝑎𝑦𝑖

𝑝𝑥𝑖−𝑑6𝑖𝑎𝑥𝑖
) (1) 

 

 
 

Figure 4: 2D Representation of robot manipulator with key dimensions 

 

 
 

Figure 5: Graphical expression to derive θ1i. 

 

Again using the geometric solution shown in Figure 1 and cosine law (Figure 2), θ3i can be derived as follows; 
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𝑃01 = [

𝑥01

𝑦01

𝑧01

] = [

𝑎1𝑖𝐶1𝑖

𝑎1𝑖𝑆1𝑖

𝑑1𝑖

] , 𝑃04 = [

𝑥04

𝑦04

𝑧04

] = [

𝑝𝑥𝑖 − 𝑑6𝑖𝑎𝑥𝑖

𝑝𝑦𝑖 − 𝑑6𝑖𝑎𝑦𝑖

𝑝𝑧𝑖 − 𝑑6𝑖𝑎𝑧𝑖

] 

 

 
 

Figure 1: Graphical expression to derive θ3i 

 

 
Figure 2: Law of cosine 

 

Thus; 

𝑃14 = [

𝑥14

𝑦14

𝑧14

] = 𝑃04 − 𝑃01 = [

𝑝𝑥𝑖 − 𝑑6𝑖𝑎𝑥𝑖 − 𝑎1𝑖𝐶1𝑖

𝑝𝑦𝑖 − 𝑑6𝑖𝑎𝑦𝑖 − 𝑎1𝑖𝑆1𝑖

𝑝𝑧𝑖 − 𝑑6𝑖𝑎𝑧𝑖 − 𝑑1𝑖

] 

 

and, 
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𝑃14𝐿 = √| 𝑃14
𝑇 ∙ 𝑃14 | , 𝑙1 = √𝑎3𝑖

2 + 𝑑4𝑖
2   

Where L subscript represents the length of the corresponding vector. Applying cosine law and well known trigonometric formula; 

𝜑 = arccos(
𝑙1
2 + 𝑎2𝑖

2 − 𝑃14𝐿

2𝑙1𝑎2
) ,          𝜁 = arctan2 (

𝑑4𝑖

𝑎3𝑖
) 

Therefore; 

 θ3i = θ3v = φ − ζ − π (2) 

Once again using the geometric solution described in Figure 3, cosine law (Figure 2), and well know trigonometric formula θ2i 

can be derived as; 

𝑃14 = [

𝑥14

𝑦14

𝑧14

] = [

𝑝𝑥𝑖 − 𝑑6𝑖𝑎𝑥𝑖 − 𝑎1𝑖𝐶1𝑖

𝑝𝑦𝑖 − 𝑑6𝑖𝑎𝑦𝑖 − 𝑎1𝑖𝑆1𝑖

𝑝𝑧𝑖 − 𝑑6𝑖𝑎𝑧𝑖 − 𝑑1𝑖

] 

 

 
 

Figure 3: Graphical expression to derive θ2i 

 

 

From the above equation, β1 and β2 can be found as; 
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 𝛽1 = arctan2(
𝑧14

√𝑥14
2 +𝑦14

2
) 

 𝛽2 = arccos (
𝑎2𝑖

2 −𝑃14𝐿
2 −𝑙1

2

2𝑎2𝑃14𝐿
) 

From geometry; 

 θ2i = θ2v +
𝜋

2
= 𝛽1 + 𝛽2 (3) 

The first phase of the inverse calculation is finalized by finding the first three joint rotational angles. The second and the last 

phase to find the rest of the three joints that make up the spherical wrist will be solved geometrically. 

 

To calculate θ5i we will assume θ4i = 0, or better, the absence of the 4th joint. Then the angle between the rotation vectors (Rz) 

will give us θ5i. 

Before doing that some equality declaration has to be stated to be the base for further calculations; 

 

𝐴1𝑖 = [

𝐶1𝑖 0 𝑆1𝑖 𝑎1𝑖𝐶1𝑖

𝑆1𝑖 0 −𝐶1𝑖 𝑎1𝑖𝑆1𝑖

0 1 0 𝑑1𝑖

0 0 0 1

] 

 

𝐴2𝑖 = [

𝐶2𝑖 −𝑆2𝑖 0 𝑎2𝑖𝐶2𝑖

𝑆2𝑖 𝐶2𝑖 0 𝑎2𝑓𝑆2𝑖

0 0 1 0
0 0 0 1

] 

 

𝐴3𝑖 = [

𝐶3𝑖 0 𝑆3𝑖 𝑎3𝑖𝐶3𝑖

𝑆3𝑖 0 −𝐶3𝑖 𝑎3𝑖𝑆3𝑖

0 1 0 0
0 0 0 1

] 

 

The following is also known; 

 

𝐶12 = 𝐶1𝐶2 − 𝑆1𝑆2 𝑆12 = 𝐶1𝑆2 + 𝑆1𝐶2 

 

For the sake of finding the 5th joint angle, it is assumed that the 4th joint is absent. 1st to 3rd joint transformation matrix will be 

also considered to be 1st to 4th joint transformation matrix. Since all first three joint angles know, A13 and consequently A14 can 

be derived; 
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Figure 4: Graphical expression to derive θ5i 

 

𝐴14𝑖 = 𝐴13𝑖 = 𝐴1𝑖 ∙ 𝐴2𝑖 ∙ 𝐴3𝑖 = [

𝐶1𝑖𝐶23𝑖 𝑆1𝑖 𝐶1𝑖𝑆23𝑖 𝐶1𝑖(𝑎1𝑖 + 𝑎2𝑖𝐶2𝑖 + 𝑎3𝑖𝐶23𝑖)

𝑆1𝑖𝐶23𝑖 −𝐶1𝑖 𝑆1𝑖𝑆23𝑖 𝑆1𝑖(𝑎1𝑖 + 𝑎2𝑖𝐶2𝑖 + 𝑎3𝑖𝐶23𝑖)
𝑆23𝑖 0 −𝐶23𝑖 𝑎2𝑖𝑆2𝑖 + 𝑑1𝑖 + 𝑎3𝑖𝑆23𝑖

0 0 0 1

] 

From input values, the rotation vector about z (R6zi) is known. From the above-mentioned assumption that is R4zi is equal to R3zi, 

R4zi is known. Then the angle between two vectors formula as shown on Figure 4 will be applied to find the θ5i unknown. 

𝑅6𝑧𝑖 = [

𝑎𝑥𝑖

𝑎𝑦𝑖

𝑎𝑧𝑖

],          𝑅3𝑧𝑖 = 𝑅4𝑧𝑖 = [

𝐶1𝑖𝑆23𝑖

𝑆1𝑖𝑆23𝑖

−𝐶23𝑖

] 

 

Since both R6zi and R4zi are unit vectors, matrix multiplication will give the cosine of the angle between two vectors; 

 θ5i = θ5v = arccos(𝑅6𝑧𝑖
⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙ 𝑅3𝑧𝑖

⃗⃗ ⃗⃗ ⃗⃗  ⃗) (4) 

4th and 6th joints are only the joint angles left which are unknown to us. 

Since both A13i & A16i are known, we can derive A46i as follows; 

𝐴46𝑖 = 𝐴13𝑖
−1 ∙ 𝐴16𝑖 = [

𝐼𝑥 𝐽𝑥 𝐾𝑥 𝐿𝑥

𝐼𝑦 𝐽𝑦 𝐾𝑦 𝐿𝑦

𝐼𝑧 𝐽𝑧 𝐾𝑧 𝐿𝑧

0 0 0 1

] 

Where all I, J, K, and L are calculated and known values. 

On the other hand, the A46i matrix can also be derived symbolically by multiplying the following matrices; 

𝐴46𝑖 = 𝐴4𝑖 ∙ 𝐴5𝑖 ∙ 𝐴6𝑖 = [

𝐸𝑥 𝐹𝑥 𝐺𝑥 𝐻𝑥

𝐸𝑦 𝐹𝑦 𝐺𝑦 𝐻𝑦

𝐸𝑧 𝐹𝑧 𝐺𝑧 𝐻𝑧

0 0 0 1

] 
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Where; 

𝐸𝑥 = 𝐶4𝑖𝐶5𝑖𝐶6𝑖 − 𝑆4𝑖𝑆6𝑖 𝐹𝑥 = −(𝐶4𝑖𝐶5𝑖𝑆6𝑖 + 𝑆4𝑖𝐶6𝑖) 𝐺𝑥 = 𝐶4𝑖𝑆5𝑖 𝐻𝑥 = 𝐶4𝑖𝑆5𝑖𝑑6𝑖 

𝐸𝑦 = 𝑆4𝑖𝐶5𝑖𝐶6𝑖 + 𝐶4𝑖𝑆6𝑖 𝐹𝑦 = −𝑆4𝑖𝐶5𝑖𝑆6𝑖 + 𝐶4𝑖𝐶6𝑖 𝐺𝑦 = 𝑆4𝑖𝑆5𝑖 𝐻𝑦 = 𝑆4𝑖𝑆5𝑖𝑑6𝑖 

𝐸𝑧 = −𝑆5𝑖𝐶6𝑖 𝐹𝑧 = 𝑆5𝑖𝑆6𝑖 𝐺𝑧 = 𝐶5𝑖 𝐻𝑧 = 𝐶5𝑖𝑑6𝑖 + 𝑑4𝑖 

 

From the previous symbolic matrix, it can be easily noticed that the inverse tangent (arctan2) of matrix elements 2.3 (Hy) over 

1.3 (Hx) gives θ4i and the inverse tangent of elements 3.2 (Fz) over 3.1 (Ez) gives θ6i. 

 θ4i = θ4v = arctan2 (
Hy

Hx
) = arctan2 (

Ly

Lx
) (5) 

and, 

 θ6i = θ6v = arctan2 (
Fz

Ez
) = arctan2 (

Jz

Iz
) (6) 

Thus, all unknown angles for 6 joints are found by using the geometric solution approach. 

 

 

6. CONCLUSION 
 

Open source coding for forward and inverse kinematics solution might be obtained in low or high-level languages, but using 

the code might be painful for many reasons such as; 

 

— compiler may need to be purchased 

— coding language might be learned 

— debugging is hard if there is any bug in the code 

— coding should be fully understood before adapting or extending 

 

These difficulties most likely lead to moving away from those who want to dive into robotics and progress at a rapid pace. 

With this article and provided supplemental calculation sheets (SMath & Excel) [14], a solid foundation is thought to be 

established for understanding both forward & especially inverse kinematics solutions. 

For both easy understanding and solution simplicity, just a single solution is introduced. Inverse kinematics solution covers 

the widest but limited range. For instance, the 5th joint cannot derive to negative rotational angles. Angles on the 1st and 2nd 

quadrants of the unit circle are covered because this joint angle is derived from the arccos function. 

Applicability of the chosen inverse calculation approach can be exercised with supplied interactive table sheet. Compared to 

quaternion, it is not a singularity-free solution. In case these singularities are in the robot’s working space, additional algorithms 

may be needed to resolve them. 

If desired, other inverse kinematics solution variants can be easily developed. Previously mentioned [11], [12] references are 

a great starting point. 
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