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ABSTRACT 

 

We consider the embedding of a finite metric space into a weighted graph in such a way that the 
total weight of the edges is minimal. We discuss metric spaces with 𝑛 = 3,4,5 points in detail and show 
that the already known classification for these cases can be obtained by simple operations on the 
associated graph of the given metric space. 
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Bu çalışmada, sonlu bir metrik uzaydan, ağırlıklı bir çizgeye, çizge kenarlarının toplam ağırlığı en 
az olacak biçimde gerçekleşen gömme dönüşümlerini gözönüne alıyoruz. Nokta sayıları üç, dört ve beş 
olan  metrik uzaylar üzerinde bu tipten gömme dönüşümlerini detaylı olarak inceliyor ve bu durumlar 
için bilinen sınıflandırmaların, metrik uzaylara karşılık gelen çizgeler üzerinde tanımlanan bazı basit 
operasyonlar yardımıyla elde edilebileceğini gösteriyoruz. 
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1 INTRODUCTION 

Embedding of finite metric spaces into Euclidean spaces or normed spaces or even into trees with 
shortest path metrics has been a century-long adventure which led to some very interesting insights. To 
name one beautiful result, the Schönberg's theorem, a finite metric space  (X; dij, i, j = 1, … , n) can be 

embedded into ℝ𝑚 if and only if the quadratic form 

𝐹(𝑥2, … , xn) = ∑ (𝑑1𝑖
2 + 𝑑1𝑗

2 − 𝑑𝑖𝑗
2 )𝑥𝑖 

𝑛

𝑖,𝑗=2

𝑥𝑗 

is positive semi-definite and of rank 𝑚 (Blumenthal, 1970), (Matousek, 2010). 

It seems that, by the difficulty and the general impossibility of exact isometric embeddings and by 
demands from computer and informatics sciences, the trend switched to embeddings with distortions 
and deep theorems resulted from this inquiry as for example the famous theorem of Bourgain which 
asserts that an 𝑛 −point metric space can be embedded in ℓ2 with distortion 𝑂(log 𝑛) (Bourgain, 1985). 

We consider in this note another interesting version of the embedding question where arbitrary 
(finite) weighted graphs (with shortest path metrics) are allowed as target spaces. The goal is to find 
embeddings (also called “realizations”) with the constraint that the total weight of the ambient graph 
should be as small as possible. There is a rich literature also on this subject. It is proven that any finite 
metric space has an optimal realization in a graph 𝐺 in the sense that the total weight of 𝐺 is minimal 
among all realizations (Dress, 1984), (Imrich and Simoes-Pereira, 1984). The actual construction of 
optimal realizations is a rather difficult problem even for metric spaces with a small number of points 
(Koolen and Lesser, 2009), (Sturmfels and Yu, 2004). A constructive algorithm was given in (Varone, 
2006) which works well in many cases. As a finite metric space is itself a complete weighted graph, the 
question amounts to minimizing the total length of the ``connecting threads" between the nodes. In this 
note we want to make this approach precise and define a "hands-on" procedure to construct realizations 
with stepwise decreasing total weights with the help of some simple operations, or "moves", on a given 
weighted graph. This somewhat naive approach yields nevertheless for metric spaces with few points 
(up to five) optimal realizations and in any case realizations with considerable reduction of the total 
weight (for metric spaces with any number of points). 

We define a notion of "tightness" for weighted graphs and it seems that with the help of the moves 
we define one can embed a given finite metric space into a tight graph which might be a candidate an 
optimal embedding. 

2.PRELIMINARIES 

Definition 2.1 Let G = (V, E) be a finite graph with vertex set 𝑉 and edge set 𝐸. We assume 𝐺 to be 
simple in the sense that it is unoriented, there are no loop-edges and there is no more than one edge 
between any two different vertices. If 𝐺 is connected there is at least one path joining any two vertices 
𝑃 and 𝑄. If there is an edge between two vertices 𝑃 and 𝑄, we will denote this edge by [𝑃𝑄] or ([𝑄𝑃]) 
and say that the vertices 𝑃 and 𝑄 are 1-connected. If there is an edge joining each pair of vertices, 𝐺 is 
called a complete graph. 

Definition 2.2 A weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) is a graph 𝐺 with a positive-valued function 𝑤 on the 
set 𝐸 of the edges. We will denote the weight 𝑤([𝑃𝑄])of the edge [𝑃𝑄] by 𝑤𝑃𝑄. Given two vertices 𝑃 

and 𝑄 of a weighted graph 𝐺 and a path of edges starting at 𝑃 and ending at 𝑄, the sum of the weights 
of these edges is called the weight of the path. The total weight 𝑊(𝐺) of a weighted graph 𝐺 is the sum 
of the weights of its edges. 

Definition 2.3 A finite metric space 𝑋𝑛 is a set {𝑃1, … , 𝑃𝑛} together with a distance function 

d( 𝑃𝑖 , 𝑃𝑗) =: 𝑑𝑖𝑗 (𝑖, 𝑗 = 1, … , 𝑛) such that 𝑑𝑖𝑗 = 𝑑𝑗𝑖, 𝑑𝑖𝑖 = 0, 𝑑𝑖𝑗 is positive whenever 𝑖 ≠ 𝑗 and the 𝑑𝑖𝑗 

's satisfy the triangle inequality 𝑑𝑖𝑗 + 𝑑𝑖𝑘 ≥ 𝑑𝑗𝑘  for each triple of indices 𝑖, 𝑗, 𝑘. 

We define the quantity ∆𝑖𝑗𝑘 as  

∆𝑖𝑗𝑘= dij + dik − djk ,                                                          (2.1) 
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and call it the ``excess" of the triangle [𝑃𝑖𝑃𝑗𝑃𝑘] at the vertex 𝑃𝑖. 

The triangle inequality is equivalent to the non-negativity of the ∆𝑖𝑗𝑘 's. 

Note that a finite metric space 𝑋𝑛 can be viewed as a weighted complete graph whose weights 
satisfy the triangle inequality. We will henceforth identify 𝑋𝑛 with the associated complete weighted 
graph. The total weight of 𝑋𝑛 is then 

𝑊(𝑋𝑛) = ∑ 𝑑𝑖𝑗

𝑛

𝑖<𝑗

  . 

We recall that the vertex-set of any weighted graph has a natural metric, called the shortest-path 
metric. Given two vertices 𝑃 and 𝑄 of a weighted graph 𝐺 and a path of edges starting at 𝑃 and ending 
at 𝑄, the sum of the weights of these edges is called the weight of the path; The distance between the 
vertices 𝑃 and 𝑄 is defined as the minimum of the weights of the paths between these vertices. A path 
realizing this minimum is called a shortest path between 𝑃 and 𝑄. Note that, the distance between two 
1-connected vertices 𝑃 and 𝑄 might be less than the weight 𝑤𝑃𝑄 as there could be a path between 𝑃 and 

𝑄 with weight less than the weight of the edge [𝑃𝑄]. We will however assume that this should not be 
happen, so that in weighted graphs we consider below, the edges should be shortest paths between their 
endpoints. This is a convenient and not restrictive assumption for our purposes and to our knowledge 
there is not a separate term for such weighted graphs. To avoid a cumbersome terminology we don't 
want to introduce one either. In such a weighted graph we can use consistently the notation 𝑤𝑃𝑄 for the 

distance (weight of the shortest path) between 𝑃 and 𝑄, whether they are 1-connected or not. 

We can consider ̀ `triangles" [𝑃𝑄𝑅] also in weighted graphs where the ̀ `edges" of the triangle might 
be any specified shortest paths between the vertices. We define the excess of such a triangle at 𝑃 
similarly as ∆𝑃𝑄𝑅= 𝑤𝑃𝑄 + 𝑤𝑃𝑅 − 𝑤𝑄𝑅. We will use this mostly for cases where 𝑄 and 𝑅 will be 

1 −connected to 𝑃. 

Definition 2.4 Let 𝑋𝑛 = {𝑃1, … , 𝑃𝑛} be a finite metric space and let 𝐺𝑚  be a weighted graph (not 
necessarily complete) with 𝑚 ≥ 𝑛 vertices 𝑄𝑖, 𝑖 = 1, … , 𝑚.  An isometric embedding of 𝑋𝑛 (or weight-
preserving embedding of 𝑋𝑛) into 𝐺𝑚  is a map 𝑓 from the vertex set of 𝑋𝑛 into the vertex set of 𝐺𝑚  
such that the weight of the shortest path between 𝑓(𝑃𝑖) to 𝑓(𝑃𝑗) in 𝐺𝑚 equals 𝑑𝑖𝑗.  i.e. 𝑤𝑓(𝑃𝑖)𝑓(𝑃𝑗) = 𝑑𝑖𝑗. 

In other words, we have 

𝑑𝑖𝑗 = 𝑤([𝑓(𝑃𝑖)𝑄𝑖1
])  + 𝑤([𝑄𝑖1

 𝑄𝑖2
]) + ⋯ + 𝑤([𝑄𝑖𝑘

 𝑓(𝑃𝑗)]), 

where 𝑓(𝑃𝑖)𝑄𝑖1
𝑄𝑖2

⋯ 𝑄𝑖𝑘
 𝑓(𝑃𝑗) is a shortest path between 𝑓(𝑃𝑖) to 𝑓(𝑃𝑗) in 𝐺𝑚. (The shortest path need 

not be unique.) 

If 𝑓(𝑃𝑖) and 𝑓(𝑃𝑗) are 1-connected in 𝐺, then by our general assumption above the edge [𝑓(𝑃𝑖)𝑓(𝑃𝑗)]  is 

a shortest path between the vertices 𝑓(𝑃𝑖) and 𝑓(𝑃𝑗) and the weight of the edge [𝑓(𝑃𝑖)𝑓(𝑃𝑗)] equals 𝑑𝑖𝑗. 

We will study the problem of embedding of a finite metric space (or the associated complete 
weighted graph) into a weighted graph 𝐺 such that the total weight of 𝐺 is minimal among all possible 
ambient weighted graphs into which the given metric space is embeddable. We will call such an 
embedding an optimal embedding (or realization). 

The case for 𝑛 = 2 is trivial. We will first consider 𝑛 = 3 case in detail. 
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3 OPTIMAL EMBEDDING of 𝑿𝟑 
Let 𝑋3 be a metric space with 3 vertices 𝑃1, 𝑃2 and 𝑃3 and let 𝐺4 be the weighted “𝑌”-space as 

shown in Figure 1. 

 

 

Figure 1 

 

Let 𝑓(𝑃𝑖) = 𝑄𝑖. The weight preservation condition gives 

𝑤14 + 𝑤42 = 𝑑12, 
 

𝑤14 + 𝑤43 = 𝑑13, 
 

𝑤24 + 𝑤43 = 𝑑23, 
i.e,  

𝑤14 =
1

2
(𝑑12 + 𝑑13 − 𝑑23) =

1

2
∆123, 

𝑤24 =
1

2
(𝑑12 + 𝑑23 − 𝑑13) =

1

2
∆213, 

𝑤34 =
1

2
(𝑑13 + 𝑑23 − 𝑑12) =

1

2
∆312 

 
The mapping described above is called the “∆ − 𝑌”transform. (In case of a degenerate 𝑋3 the “𝑌”-

space also degenerates.) The total weights of 𝑋3 and 𝐺4 are respectively 

𝑊(𝑋3) = 𝑑12 + 𝑑13 + 𝑑23 

and 

𝑊(𝐺4) = 𝑤14 + 𝑤24 + 𝑤34 =
1

2
(𝑑12 + 𝑑13 + 𝑑23) 

hence 

𝑊(𝐺4)

𝑊(𝑋3)
=

1

2
. 

We give a direct proof that the ∆ − 𝑌 transform is minimal. 

Proposition 3.1 The ∆ − 𝑌 transform is an optimal embedding. 
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Proof Let the (non-degenerate) 𝑋3 be embedded into a minimal weighted graph 𝐺, with 𝑄1, 𝑄2, 𝑄3 being 
the images of 𝑃1, 𝑃2, 𝑃3. As the total weight of the previous special 𝑌 is 
1

2
(𝑑12 + 𝑑13 + 𝑑23), the total weight of 𝐺 can be at most that much. The length of the shortest path 

between 𝑄1 and 𝑄2 has to be equal to 𝑑12, which we assume to be realized by 𝑄1 𝑅1 𝑅2 ⋯ 𝑅𝑘  𝑄2. 
Likewise, let 𝑄1 𝑆1 𝑆2 ⋯ 𝑆𝑙  𝑄3 be a shortest path with length 𝑑13. If these paths were edge-disjoint, then 
the graph 𝐺 would have a total weight of at least 𝑑12 + 𝑑13. But, since 𝑑12 + 𝑑13 >
1

2
(𝑑12 + 𝑑13 + 𝑑23), this would contradict the minimality of 𝐺. Hence, some initial segment of these 

paths must coincide and let us assume 𝑅1 = 𝑆1, 𝑅2 = 𝑆2, … , 𝑅𝑡 = 𝑆𝑡 and 𝑅𝑡+1 ≠   𝑆𝑡+1. Since 𝐺 is 
minimal, the length of the path 𝑆𝑡  𝑆𝑡+1 ⋯ 𝑄3 can be at most  

1

2
(d12 + d13 + d23) − 𝑑12 =

1

2
(𝑑13 + 𝑑23 − 𝑑12). 

But then, the length of the path 𝑄1 𝑅1  ⋯ 𝑅𝑡 would be at least 

𝑑13 −
1

2
  (𝑑13 + 𝑑23 − 𝑑12) =

1

2
  (𝑑12 + 𝑑13 − 𝑑23). 

If the length of the path 𝑄1 𝑅1 ⋯ 𝑅𝑡 would be more than this value, than the length of the path 𝑅𝑡 ⋯ 𝑄2 
would be less than 

𝑑12 −
1

2
(𝑑12 + 𝑑13 − 𝑑23) =

1

2
(𝑑12 + 𝑑23 − 𝑑13). 

This however would create a path 𝑄2 ⋯ 𝑅𝑡 ⋯ 𝑄3 with length less than 

1

2
(𝑑12 + 𝑑23 − 𝑑13) +

1

2
(𝑑13 + 𝑑23 − 𝑑12) = 𝑑23, 

contradicting the embedding assumption that the shortest path between 𝑄2 and 𝑄3 must have length 𝑑23. 

Consequently, the length of the path 𝑄1 𝑅1 ⋯ 𝑅𝑡 must be exactly 
1

2
(𝑑12 + 𝑑13 − 𝑑23). In that case, for 

the path 𝑄1 ⋯ 𝑄3 to have the correct length, the path 𝑆𝑡 ⋯ 𝑄3 must have (not at most, but exactly) the 

length 
1

2
(𝑑13 + 𝑑23 − 𝑑12). This brings us to the “𝑌” graph (with the middle vertex 𝑅𝑡 = 𝑆𝑡 ) and there 

can't be any other unused edges of 𝐺 so that we get 𝐺 = "𝑌". 

4 SOME TOTAL-WEIGHT-DECREASING MOVES 

Let 𝑋𝑛 = {𝑃1, … , 𝑃𝑛} be a finite metric space and 𝑓: 𝑋𝑛 →  𝐺𝑚 be an isometric embedding of 𝑋𝑛 
into a weighted graph 𝐺𝑚 with 𝑚 ≥  𝑛 vertices. We call the vertices 𝑓(𝑃𝑖) as ``primary nodes" with 
respect to this embedding while the remaining ones are called “auxiliary nodes”. 

Note that the ambient graph is itself a metric space hence we can talk of the distances between 
auxiliary nodes too.  By abuse of notation we will use 𝑑 for both metrics. We will rename these vertices 
and denote them by 𝑃𝑖 (𝑖 = 1, … , 𝑛) again. Such an embedding can be interpreted as a process of 
adjoining new vertices to the complete graph 𝑋, discarding some edges or adding new edges within the 
enlarged vertex set and assigning weights to the new edges such that the distances 𝑑𝑖𝑗 are still preserved 

as lengths of shortest paths, with the proviso that if an edge [𝑃𝑖𝑃𝑗] of 𝑋 is retained, then it is still a 

shortest path between 𝑃𝑖 and 𝑃𝑗 in 𝐺. 

We will now define two basic operations (say, “moves”) on the ambient graph 𝐺, which will convert 
the weighted graph 𝐺 into another weighted graph 𝐺′, together with an isometric embedding of 𝑋 into 
𝐺′ with the aim of reducing  the total weight. 

 i) First move: (Joining edges) 

Let 𝑄𝑖 be a vertex of 𝐺 and let us consider some (or all) of the vertices 1-connected to 𝑄𝑖, say 𝑅1, … , 𝑅𝑙 . 

Let 𝑥 = 𝑚𝑖𝑛{1≤ 𝑗<𝑘≤ 𝑙}{
1

2
(𝑤𝑄𝑖𝑅𝑗

+ 𝑤𝑄𝑖𝑅𝑘
− 𝑤𝑅𝑗𝑅𝑘

)} and assume 𝑥 > 0. (Recall that 𝑤𝑅𝑗𝑅𝑘
  is the weight 

of a shortest path between 𝑅𝑗 and 𝑅𝑘.) Now we apply the following process: Delete all the edges from 

𝑄𝑖 to 𝑅1, … , 𝑅𝑙; introduce a new vertex 𝑄, put an edge between 𝑄𝑖 and 𝑄 of weight 𝑥, and put edges 
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from 𝑄 to 𝑅1, … , 𝑅𝑙 with weights 𝑤𝑄𝑖𝑅𝑗
− 𝑥 for 𝑗 = 1, … , 𝑙. The new graph 𝐺′ satisfies our hypothesis 

and the embedding of 𝑋𝑛 into 𝐺 gives an embedding of 𝑋𝑛 into 𝐺′,  preserving the primary nodes (but 
possibly rendering them no more 1-connected by the presence of the auxiliary node). The total weight 
of 𝐺 is decreased by the amount (𝑙 − 1)𝑥. 

ii) Second move: (Removing edges) 

If an edge of 𝐺 can be avoided by at least one shortest path between the primary nodes of 𝐺 
simultaneously (i.e. if we still get an embedding of 𝑋𝑛 into 𝐺′, where 𝐺′ is obtained by deleting an edge 
from 𝐺), then delete it. 

The “∆ − 𝑌” transform is a consequence of the above moves and can be applied to any triangle 
[𝑄𝑖  𝑄𝑗 𝑄𝑘] with  1-connected vertices in 𝐺 : If we apply the first move at the vertex 𝑄𝑖 and delete 

afterwards the edge [𝑄𝑗𝑄𝑘], which becomes unnecessary, then we get a ∆ − 𝑌 transform.  By this move, 

the total weight of 𝐺 will be decreased by half the total weight of the triangle [𝑄𝑖𝑄𝑗𝑄𝑘]. 

We will now exemplify the usefulness of these moves by constructing an isometric embedding of 
a four-point metric space 𝑋4. 

5 AN ISOMETRIC EMBEDDING OF 𝑋4 

In this section we want to describe an isometric embedding of a four-point metric space which is 
known to be optimal among all possible alternatives (Imrich and Simoes-Pereira, 1984). 

We want first to propose a definition for being “generic” for a metric space. 

Definition 5.1 A finite metric space 𝑋𝑛 = {𝑃1, … , 𝑃𝑛} is called generic, if the set of the 𝑑𝑖𝑗 's are linearly 
independent over the rationals. 

We make this assumption only for convenience and it would be worth to clarify the relationship of 
this notion with the other genericity notions in the literature. Note that the embeddings of degenerate 
cases can be obtained by some kind of limiting process. Now, let 𝑋4 = {𝑃1, 𝑃2, 𝑃3, 𝑃4} be a generic 4-
point space (see Figure 2). 

 

Figure 2 

To avoid a mess of indices, we use the abbreviations 𝑑12 = 𝑎, 𝑑13 = 𝑏, 𝑑23 = 𝑐, 𝑑24 = 𝑑, 𝑑34 =
𝑒, 𝑑14 = 𝑓. The edge-pairs with lengths (𝑎, 𝑒), (𝑏, 𝑑) and (𝑐, 𝑓) are ``diagonals" and we assume  
𝑎 + 𝑒 <  𝑏 + 𝑑 <  𝑐 + 𝑓. One can always arrange this by renaming the vertices and by genericity. 

Let us now start with the complete graph 𝑋4 and apply the first move to the vertex 𝑃1. We have 𝑥 =

𝑚𝑖𝑛{ 
1

2
(𝑎 + 𝑏 − 𝑐),

1

2
(𝑎 + 𝑓 − 𝑑),

1

2
(𝑏 + 𝑓 − 𝑒) }. By our assumption 𝑎 + 𝑒 <  𝑏 + 𝑑 <  𝑐 + 𝑓, this 

minimum equals 
1

2
(𝑎 + 𝑏 − 𝑐). By sticking the ends of edges at 𝑃_1, we get the new graph 𝐺′ with a 

new auxiliary node 𝑄1 as shown in Figure 3. (In figures below the primary nodes will be denoted by 
black vertices.) 
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Figure 3 : The graph 𝐺 

Now we apply the first move at 𝑃2. The excess of the triangle [𝑃2𝑄1𝑃4] at 𝑃2 is 
1

2
(𝑎 − 𝑏 +

𝑐

2
+ 𝑑 −

2𝑓−𝑎−𝑏+𝑐

2
 ) =

1

2
(𝑎 + 𝑑 − 𝑓). The excess of [𝑃2𝑄1𝑃3] at 𝑃2 is (𝑎 − 𝑏 + 𝑐) and the 

excess of [𝑃2𝑃3𝑃4] at 𝑃2 is 
1

2
(𝑐 + 𝑑 − 𝑒) so that the sticking length of the edges at 𝑃2 is 𝑚𝑖𝑛{ 

1

2
(𝑎 +

𝑑 − 𝑓),
1

2
(𝑎 − 𝑏 + 𝑐),

1

2
(𝑐 + 𝑑 − 𝑒)}. By the assumption 𝑎 + 𝑒 <  𝑏 + 𝑑 <  𝑐 + 𝑓, this minimum is 

1

2
(𝑎 + 𝑑 − 𝑓) and we get a new graph 𝐺′′ with a new auxiliary node 𝑄2 as shown in Figure 4. 

 

Figure 4 : The graph 𝐺′′ 

We now apply the first move at the vertex 𝑃3  of the graph 𝐺′′. The excesses at 𝑃3 (of the triangles 

[𝑃3𝑄1𝑄2], [𝑃3𝑄2𝑃4] and [𝑃3𝑄1𝑃4]) are 
1

2
(𝑏 − 𝑎 + 𝑐),

1

2
(𝑐 − 𝑑 + 𝑒) and 

1

2
(𝑏 + 𝑒 − 𝑓). The minimal 

excess is 
1

2
(𝑏 + 𝑒 − 𝑓) and we get a new graph 𝐺′′′ with a new auxiliary node 𝑄3 as shown in Figure 5. 
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Figure 5 : The graph 𝐺′′′ 

As a last application of the first move we stick the ends of the edges at 𝑃4. The excesses are 
1

2
(𝑑 − 𝑎 + 𝑓),

1

2
(𝑒 − 𝑏 + 𝑓) and 

1

2
(𝑑 + 𝑒 − 𝑐), the last one being the minimum. We now get a graph 

𝐺′′′′ with a new auxiliary node 𝑄4 as shown in Figure 6. 

 

Figure 6 : The graph 𝐺′′′′ 

We can now apply the second move and delete the edges 𝑄1𝑄4 and 𝑄2𝑄3 in the graph 𝐺′′′′ as they 
can be avoided by shortest paths between the primary nodes. The resulting graph 𝐺 with 8 vertices (4 
primary and 4 auxiliary) is shown in Figure 7. 
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Figure 7: The graph 𝐺 

Its total weight 𝑊(𝐺8) equals 𝑐 + 𝑓, the sum of the long ``diagonals" of 𝑋4. The ratio 
𝑊(𝐺8)

𝑊(𝑋4)
=

𝑐+𝑓

𝑎
+ 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 is less than 

1

2
 since 𝑎 + 𝑏 + 𝑑 + 𝑒 > 𝑐 + 𝑓 for the generic case (and ≤

1

2
 

generally). Non-generic cases where 
i) 𝑎 + 𝑒 = 𝑏 + 𝑑 < 𝑐 + 𝑓,  

ii) 𝑎 + 𝑒 < 𝑏 + 𝑑 = 𝑐 + 𝑓 and  

iii) 𝑎 + 𝑒 = 𝑏 + 𝑑 = 𝑐 + 𝑓  

are depicted in Figures 8, 9 and 10.  

All of these isometric embeddings of 𝑋4 are optimal. 
 
6 SIMULTANEOUS MOVES 

In the example of the four-point metric space above, we sequentially applied several times the first 
move (of joining the edges); but this could have been done also simultaneously. 

Proposition 6.1 

Let 𝑋𝑛 = {𝑃1, … , 𝑃𝑛} be a generic finite metric space, regarded as a complete weighted graph 𝐺. Let 
𝐺′ be the graph obtained from 𝐺 by applying the first move at the vertex 𝑃1, 𝐺′′ the graph obtained from 
𝐺′ by applying the first move at 𝑃2, and 𝐺(𝑛) the graph obtained from 𝐺(𝑛−1) by applying the first move 
at 𝑃𝑛. Let, on the other hand, 𝐺∗ be the graph obtained from 𝐺 by applying the first move at all vertices 
𝑃1, … , 𝑃𝑛 simultaneously (in the obviously understood sense, creating the auxiliary points 
𝑄𝑖  simultaneously and defining the weight 𝑤𝑄𝑖𝑄𝑗

 to be 𝑤𝑃𝑖𝑃𝑗
− 𝑥𝑖 − 𝑥𝑗, where 𝑥𝑖 is the sticking length 

at 𝑃𝑖, i.e. 𝑥𝑖 = 𝑚𝑖𝑛𝑘≠𝑖,𝑙≠ 𝑖,𝑘≠ 𝑙  {
1

2
(𝑤𝑃𝑖𝑃𝑘

+ 𝑤𝑃𝑖𝑃𝑙
− 𝑤𝑃𝑘𝑃𝑙

)}.  Then, the graphs 𝐺(𝑛)  and 𝐺∗ are the same 

(isometric) weighted graphs.  

This proposition can be proven by a straightforward (but somewhat tedious) check.  

Note that after applying the simultaneous first move, there will be 𝑛, or possibly fewer, edges to be 
deleted by the second move. 

Using this property we could obtain the optimal representation of 𝑋4 instantly: We would get from 
Figure 2 by simultaneous moves directly Figure 6 by virtue of 
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𝑚𝑖𝑛{
1

2
(𝑎 + 𝑏 − 𝑐),

1

2
(𝑎 + 𝑓 − 𝑑),

1

2
(𝑏 + 𝑓 − 𝑒)} =

1

2
( 𝑎 + 𝑏 − 𝑐), 

𝑚𝑖𝑛{
1

2
(𝑎 + 𝑐 − 𝑏),

1

2
(𝑎 + 𝑑 − 𝑓),

1

2
(𝑐 + 𝑑 − 𝑒)} =

1

2
(𝑎 + 𝑑 − 𝑓), 

etc. by our assumption 𝑎 + 𝑒 <  𝑏 + 𝑑 <  𝑐 + 𝑓. Then, applying the second move (removing the 
edges), we would get the Figure 7, the optimal representation. 

 

7 CLASSIFICATION OF GENERIC 𝟓 −POINT METRIC SPACES 

In this section we will classify 5 −point metric spaces by the possible sets of triangle excess to 
obtain the 3 types of optimal graphs given in (Koolen and Lesser, 2009). 

Let ∆𝑎𝑏𝑐  be the minimal excess at node 𝑎 and 𝑖 be a node different from 𝑎, 𝑏 and 𝑐. The following 
relations among triangle excess can be checked easily by using the definition. 

∆abi − ∆𝑎𝑏𝑐= ∆cbi − ∆𝑐𝑎𝑖= ∆iac − ∆𝑖𝑏𝑐= ∆bac − ∆𝑏𝑎𝑖                           (7.1a) 

∆aci − ∆𝑎𝑏𝑐= ∆bci − ∆𝑏𝑎𝑖= ∆iab − ∆𝑖𝑏𝑐= ∆cab − ∆𝑐𝑎𝑖                           (7.1b) 

 

Thus if ∆𝑎𝑏𝑐 is the minimal excess at node 𝑎 then, ∆𝑐𝑏𝑖 and ∆𝑐𝑎𝑏 cannot be minimal at node 𝑐, ∆𝑏𝑐𝑖 
and ∆𝑏𝑎𝑐 cannot be minimal at node 𝑏 and ∆𝑖𝑎𝑐 and ∆𝑖𝑎𝑏 cannot be minimal at node 𝑖. Putting 𝑎 = 1, 
𝑏 = 2, 𝑐 = 5 and 𝑖 = 3,4 we can see that the sets of possible minimal excess' at nodes 2, 3, 4 and 5 are  

Node 2: {∆213, ∆214, ∆234}, 
Node 3: {∆314, ∆324, ∆325, ∆345}, 
Node 4: {∆413, ∆423, ∆425, ∆435}, 
Node 5: {∆513,   ∆514, ∆534}. 

 

Without loss of generality, we may assume that the nodes are labeled so that ∆123≥ ∆124. Then, by 
using the relations 

∆𝑎𝑏𝑖 − ∆𝑎𝑏𝑗= ∆𝑏𝑎𝑗 − ∆𝑏𝑎𝑖= ∆𝑖𝑎𝑗 − ∆𝑖𝑏𝑗= ∆𝑗𝑏𝑖 − ∆𝑗𝑎𝑖,                (7.2) 

with 𝑎 = 1, 𝑏 = 2, 𝑖 = 3, 𝑗 = 4, we can see that ∆214, ∆314, ∆423 cannot be minimal. Thus the set of 
possible minimal excess's is reduced to 

 

Node 2: {∆213, ∆234} 
Node 3: {∆324, ∆325, ∆345} 
Node 4: {∆413, ∆425, ∆435} 
Node 5: {∆513, ∆514, ∆534} 

 

First, assume that ∆234 is minimal at node 2. Applying (7.1a) with 𝑎 = 2, 𝑏 = 3, 𝑐 = 4 and 𝑖 = 1,5 
we can see that ∆324, ∆345, ∆413 and ∆435 cannot be minimal but there is no further restriction at node 
5. The 3 alternatives at node 5 give the types 𝐸1, 𝐸2 and 𝐸3 of Table 1. 

𝐸2:     ∆125→  ∆234→   ∆325→  ∆425→  ∆513. 

𝐸1:     ∆125→  ∆234→   ∆325→  ∆425→  ∆514. 

𝐸3:     ∆125→  ∆234→   ∆325→  ∆425→  ∆534. 

Now, let ∆213 be minimal at node 2. This condition gives no restriction on the set of minimal 
excess's at node 3. If ∆324 is minimal, then applying (7.1a) with 𝑎 = 3, 𝑏 = 2, 𝑐 = 4 and 𝑖 = 1,5 we can 
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see that ∆425 cannot be minimal. If ∆413 is minimal then ∆534 and ∆514 cannot be minimal, while if 
∆435 is minimal then ∆513 and ∆534 cannot be minimal. These two alternative give respectively the cases 
𝐶1 and 𝐴1 of Table 1. 

𝐶1:     ∆125→  ∆213→   ∆324→  ∆413→  ∆513, 

𝐴1:     ∆125→  ∆213→   ∆324→  ∆435→  ∆514. 

 

If ∆325 is minimal, then applying (7.1a) with 𝑎 = 3, 𝑏 = 2, 𝑐 = 5 and 𝑖 = 1,4 we can see that  ∆435 
can not be minimal. Then, if ∆413 is minimal, it can be seen that at node 5, the only possibility is the 
minimality of ∆513. On the other hand, if ∆425 is minimal there is no further restriction at node 5. This 
gives the cases 𝐶2, 𝐵1, 𝐴2 and 𝐷1. 

𝐶2:      ∆125→  ∆213→  ∆325→  ∆413→  ∆513, 

𝐵1:     ∆125→  ∆213→   ∆325→  ∆425→  ∆513, 

𝐴2:     ∆125→  ∆213→   ∆325→  ∆425→  ∆514, 

𝐷1:     ∆125→  ∆213→   ∆325→  ∆425→  ∆534. 

Finally, if ∆345 is minimal, then applying (7.1a), with we can see that ∆413 is the only alternative 
at node 4 and ∆513 is the only alternative at node 5. This gives the case 𝐶3 of Table 1. 

𝐶3:      ∆125→  ∆213→  ∆345→  ∆413→  ∆513. 

 
Table 1: Minimal Excesses at node 𝑖 

Type   1             2            3          4              5  
𝐴1 ∆125       ∆213      ∆324     ∆435        ∆514 5 edges removed 
𝐴2 ∆125       ∆213      ∆325     ∆425        ∆514 3 edges removed 
𝐵1 ∆125       ∆213      ∆325     ∆425        ∆513 2 edges removed 
𝐶1 ∆125       ∆213      ∆324     ∆413        ∆513 3 edges removed 
𝐶2 ∆125       ∆213      ∆325     ∆413        ∆513 2 edges removed 
𝐶3  ∆125       ∆213      ∆345     ∆413        ∆513 3 edges removed 
𝐷1 ∆125       ∆213      ∆325     ∆425        ∆534 3 edges removed 
𝐸1 ∆125       ∆234      ∆325     ∆425        ∆514 3 edges removed 
𝐸2 ∆125       ∆234      ∆325     ∆425        ∆513 3 edges removed 
𝐸3 ∆125       ∆234      ∆325     ∆425        ∆534 2 edges removed 

 

We will now show how to arrive at the three classes of generic 5 −point spaces of (Koolean and 
Lesser, 2009). The table above is a guide how to do the joining and removing operations on a given 
5 −point graph. We will now illustrate this on the types 𝐴1, 𝐴2 and 𝐵1. These will yield the types (a), 
(c) and (b) of (Koolean and Lesser, 2009). In a similar vein, all the remaining cases in our table can 
easily be seen to result in one of the three types of [5]. 

Type 𝐴1: 

Given a generic 5 −point metric space 𝑋5 = {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5} of type 𝐴1, applying first the 
simultaneous joining move we get the graph 𝐺 in Fig.8. The information on the excesses given in the 
first row of the table enables us to remove all the "diagonals" of the "pentagon". (Notice that the excesses 
at the auxiliary nodes 𝑄𝑖 of 𝐺 vanish and at each 𝑄𝑖 we remove the diagonal causing this vanishing.) 
We thus get the graph 𝐺′ in Fig.9 which is of class (a) of (Koolean and Lesser, 2009). 
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Figure 8 : The graph 𝐺 

 

 
Figure 9 : The graph 𝐺′ 

Type 𝐴2: 
Given a generic 5-point metric space 𝑋5 of type 𝐴2, applying first the simultaneous joining move 

we get again the graph 𝐺 in Fig.8. The information on the excesses given in the second row of the table 
enables us to remove the "diagonals" 𝑄1𝑄3, 𝑄1𝑄4, 𝑄2𝑄5, giving the graph 𝐺′ in Fig.10.  

 
Figure 10: The graph 𝐺′ 
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We now apply the ∆ − 𝑌 transform to the triangle [𝑄2𝑄3𝑄4] and get the graph 𝐺′′, shown in Fig.11, 
which can also be drawn as in Fig.12. 

 

Figure 11: The graph 𝐺′′ 

 

Figure 12 

One can easily compute that ∆𝑄5𝑄3𝑄4
= 2(∆𝑃5𝑃4𝑃3

− ∆𝑃5𝑃1𝑃4
), which is positive by the minimality 

of ∆𝑃5𝑃1𝑃4
 and the genericity assumption, so that we can apply the joining move at [𝑄5𝑄3𝑄4] to obtain 

the final graph 𝐺′′′, shown in Fig.13. This graph belongs to class (c) of (Koolean and Lesser, 2009). 

 

Figure 13: The graph 𝐺′′′ 

Type 𝐵1: 

Given a generic 5 −point metric space 𝑋5 of type 𝐵1, applying first the simultaneous joining move 
we get again the graph 𝐺 in Fig.8. The information on the excesses given in the third row of the table 
enables us to remove the "diagonals" 𝑄1𝑄3 and 𝑄2𝑄5, giving the graph 𝐺′ in Fig.14. 
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Figure 14: The graph 𝐺′ 

Now we apply the ∆ − 𝑌 transform to the triangles [𝑄1𝑄4𝑄5] and [𝑄2𝑄3𝑄4], obtaining the graph 
𝐺′′ in Fig.15. This graph can also be drawn as in Fig.16, which belongs to the class (b) of (Koolean and 
Lesser, 2009). 

 

Figure 15: The graph 𝐺′′ 

 

 

Figure 16 
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Figure 17: The graph 𝐺′′ with weights 

An advantage of our approach is that we can explicitly give the weights of the ambient graph by 
stepwise applying the shortening rules. As an example we show them on Fig.16. (In Figs.13 and 16, the 
quadrangles are "parallelograms" with respect to weights.) 
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