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1. Background
Poor sleep is a common health hazard in modern societies, and 
it impairs the rhythmic expression of clock genes responsible 
for circadian rhythm regulation for the central clock in the 
central suprachiasmatic nucleus (SCN) and the peripheral 

clocks throughout the body (1). Moreover, sleep deprivation is 
associated with impaired cognition, metacognition (2), stress 
coping, and affective disorder (3). These cases are summarized 
in Fig. 1.

 

Fig. 1. Causes and management of sleep disturbances
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During sleep, there are ongoing processing and running 
activity for different cognitive domains like consolidation of 
motivationally relevant information, which depends on sleep 
spindles and slow-waves oscillatory activity (4), dopamine 
system activation (5), decision-making, and conditioned 
learning (6). 

According to Caputo et al. (7), learning and cognitive 
memory mechanisms play a vital role in developing and 
maintaining anxiety since exposure to cues related to aversive 
situations induces high arousal and anticipatory anxiety. 
Memory becomes unstable following reactivation, and 
modification is then possible via reconsolidation and 
extinction, and inhibition of these processes results in 
attenuation of contextual cues on the anticipatory anxiety (8). 

Circadian rhythm refers to all the physiological and 
behavioral activities repeated in a cyclic manner around 24 
hours. The periodicity patterns depend on external factors or 
cues called zeitgebers, such as exposure to light or dark and 
temperature changes. The circadian phase determines multiple 
aspects of sleep physiology, including total sleep duration, the 
phasic alternation between rapid eye movement (REM) sleep 
and non-rapid eye movement sleep (NREM), sleep continuity, 
and spindle activity (9). 

Accordingly, the circadian phase affects wakefulness and 
sleep duration, reflected in synaptic plasticity markers (10). 
Daily stress, hyper-arousal, and pre-sleep cognitive activities 
significantly affect sleep latency and insomnia (11).  

Melatonin and cortisol levels are hormonal markers of 
circadian phases. Melatonin is the primary regulator of sleep-
wake timing (12). In contrast, cortisol is a stress hormone 
strongly linked to anxiety and depression and plays a role in 
arousal (13). Sleep effects on cognition are not related to age. 
However, aging makes the person more susceptible to the 
hazards of sleep deprivation and interruption of circadian 
rhythm and cognition (14, 15). Accordingly, maintaining 
normal sleep could be a protective or therapeutic tool for 
certain cognitive disorders (16). 

Metacognition is a higher level of managing and 
controlling cognition; it is firmly related to decision-making 
and problem-solving with neural systems located in the 
prefrontal cortex (17). Metacognition is a powerful academic 
tool that can lift academic achievement and learning if used 
properly. It represents our driving and control of thinking 
through two significant steps: metacognitive knowledge and 
regulation (18). Metacognitive knowledge is what we all know 
about our thinking, which approach is the best and 
differentiates between what we know and what we understand 
(19). The second step for metacognition is metacognitive 
regulation, which involves the actions and procedures we 
perform to learn (20). 

The direct relationship between metacognition and sleep 
deprivation is not well studied relative to cognitive functions. 

Baranski (21) reported that sleep deprivation affects cognition 
and metacognition with more stress on cognitive functions. In 
another study by Aidman et al. (2), Using 40 hours of sleep 
deprivation in 13 Australian Army male volunteers aged 20 -
30 years, tested metacognition functions many times. It showed 
that fatigue-inducing states affected metacognition rather than 
cognitive mechanisms.  

The present review highlights the significant causes and 
conditions of sleep problems, cognitive and metacognitive 
dysfunctions, the possible mechanisms, interactions, and the 
potential tools or agents that may improve them. 

The methodology used for the present review involved 
electronic searches on PubMed and googled scholar between 
1985 and 2021 using the keywords; sleep, cognition, 
metacognition, obesity, dietary habits, leaky gut syndrome, 
leaky brain, heavy metals, MSG, exercise, Omega-3, 
magnesium, probiotics, oxidative stress, antioxidants, herbs, 
acupuncture.’. We excluded articles in languages other than 
English and unrelated ones, assessed two hundred eighteen 
articles for eligibility, and included them in the review. 

2. Common causes of impaired sleep and metacognition 
2.1. Obesity and dietary habits 
Cultural dietary habits are essential determinants for weight 
gain, sleep quality, and duration consequences. Moreover, in a 
cross-sectional self–reported questionnaire on African 
American 1837 adults (75% females), with a mean age of 48.2 
+ 13.7 years and a mean BMI of 32 + 7.5 Kg/m2, Wu et al. (22) 
demonstrated that decreasing sleep was related to increasing 
weight and Body Mass Index (BMI). This creates a vicious 
pathological circuit of weight gain and sleep abnormality. 

Ding et al. (23) revealed an association between high 
consumption of sugars and sleep deprivation with modified 
leptin hormone profiles. They explained that shift work 
affected the hypothalamic-pituitary-adrenal axis and triggered 
circadian disturbances causing hyperglycemia and excessive 
fat deposition. Leptin and ghrelin are essential for controlling 
hunger and sleep, and both hormones are reciprocally regulated 
in sleep deprivation with higher production of ghrelin and 
lower production of leptin, resulting in disruption of energy 
balance (24, 25). 

Metacognitive dysfunction is well described with eating 
disorders like anorexia nervosa (26). By evaluating 44 adults, 
Quattropani et al. (2016) illustrated that emotional and 
affective disorders were commonly associated with obesity. 

On the molecular level of the neurons, repeated sleep 
disruption produces oxidative stress, neuronal injury, and loss, 
especially among the neurons involved in arousals like 
hypothalamic orexinergic neurons and the locus ceruleus 
noradrenergic neurons (27).  

Obstructive Sleep Apnea (OSA) interrupts or pauses 
breathing cycles during sleep with airway obstruction. It is a 
common disorder among obese, related to numerous health 
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issues (28). Sleep duration and quality are essential to maintain 
cognitive performance homeostasis (29). It is common in obese 
individuals with decreased sleep duration or sleep quality, 
usually with dysfunction of cognitive processes (14, 30), 
especially consolidation of memories (31) through synaptic 
remodeling (32). Holloway et al. (32) studied 16 male subjects 
randomly assigned in a crossover design. They used a high-fat 
(75%) diet compared to a standard diet (23% fat) for five days. 
After a 2-week washout period, subjects consumed the 
opposite diet. They showed that a seven-day high-fat diet 
reduced attention and reaction time with depression and 
impaired retrieval speed associated with neuroinflammation. 
Besides, after studying 4- year cognitive change in 6183 older 
women, Okereke et al. (33) demonstrated that high intake of 
saturated fats in young adults impaired memory and cognitive 
function, causing neurological disorders like dementia and 
Alzheimer’s disease in mid and later life. 

Fats increase oxidative stress and change apoptosis. Free 
radicals cause the progression and development of cognitive 
dysfunction via interfering with synaptic transmission, 
mitochondrial function, neuroinflammation, and axonal 
transport, with neuronal loss in dementia disease (34).  

2.2. Monosodium glutamate (MSG) 
Monosodium l-glutamate (MSG), a sodium salt of l-glutamate, 
is commonly used as a taste-enhancing additive. Glutamate, an 
excitatory neurotransmitter, is a part of its molecule (35). MSG 
produces excitatory and inhibitory responses according to 
dose, route, and intake duration (36). Onaolapo et al. (36) 
compared the effect of food–added MSG on neurobehavior, 
serum biochemical measures, cerebral cortex, liver, and renal 
morphology in mice fed a standard diet and high-fat diet for 
eight weeks. 

Glutamate transport across the BBB is well-regulated to 
protect against glutamate-induced excitotoxicity (37). 
Prolonged dietary consumption of glutamate in the form of 
MSG in 64 adult male rats increased glutamate levels in the 
brain in the long run and impaired hippocampal function (38). 
This produced forebrain activation in various areas, including 
the insular cortex, basal ganglia, limbic system, and 
hypothalamus (39). In studying ten adult rats, MSG prolonged 
Rapid Eye Movement (REM) sleep duration and its episode 
frequency (40) and was associated with snoring and sleep 
breathing disorders in non-obese subjects (41).  

MSG causes hyperactive and inattentive behavior (35). 
Akataobi. (35) demonstrated that MSG affected neonate and 
adult rats after six weeks of study similarly. Memory 
impairment with MSG is either a result of interference with 
glutamate synthesis in the hippocampus or inhibition of the 
cholinergic system (42). 

The effect of MSG on cognition has also been linked to its 
attenuating effect on the cyclic - AMPK level in the 
hippocampus (43). Hippocampal AMPK protects neurons and 
attenuates the damage by b-amyloid and glutamate 

excitotoxicity (44). 

2.3. Leaky gut syndrome and leaky brain 
There is a complex bidirectional interaction between the gut 
microbiome and the brain. This microbiome involves trillions 
of human microorganisms, including bacteria, fungi, viruses, 
and protozoa. It has the most significant and vulnerable surface 
to prevent a leak (penetration) of some food components, 
environmental factors, and others. Disruption of this barrier 
causes leaky gut and brain, resulting in neurological diseases 
such as Alzheimer’s, autism spectrum disease, stress, and 
Parkinsonism (45).  

Leaky gut (intestinal hyperpermeability) triggers include 
physical or psychological stress, nutritional deficiencies, food 
allergy, food irritants such as casein or gluten, food additives, 
intestinal dysbiosis, infections, autoimmune diseases, toxins, 
and NSAIDs. 

When significant bacterial or food particles penetrate the 
intestine, they release inflammatory and immune mediators, 
initiating more inflammatory and allergic responses, with more 
intestinal permeability and changes in CNS functions, 
including mood and behavior (46). In a review by Julio-Pieper 
et al. (46), they reported that about half of clinical and animal 
model studies showed intestinal barrier damage in 
schizophrenia, autism spectrum disorders, and 
neurodegenerative diseases.  

2.4. Oxidative stress 
After intracerebroventricular injection of radiolabeled 
arachidonate into mouse models of Alzheimer's disease, 
Furman et al. (47) revealed increased biomarkers of oxidative 
stress in many neurodegenerative diseases. Redox imbalance 
can cause a leaky gut and leaky brain via immune cells 
modulating oxidative stress. Ischemia may initiate disruption 
of the blood GIT and blood-brain barrier and occurs via 
reperfusion and production of reactive oxygen or free radical 
formation. This is antagonized by antioxidants (48). 

In humans, excessive energy, especially high-fat food, 
causes oxidative stress and impairs cognitive function. 
Oxidative stress is more likely to develop in the brain due to 
the diversity of reactive species to modulate heterogeneous 
signaling pathways (49). Cognitive dysfunction is linked to 
low-grade inflammatory stress, inducing cell-mediated 
immunity and oxidative stress. 

2.5. Heavy metals 
Mercury 
Mercury (Hg) exposure induces aversive memory injury and 
recognition memory deficits (50). A review by Bjørklund et al. 
(50) revealed neurological symptoms in dental workers who 
are occupationally exposed to chronic low levels of metallic 
Hg. In dentists and dental personnel, memory, 
neurobehavioral, cognitive, and attention disturbances are 
more common. Long-standing exposure to HgCl2 impairs 
memory and induces anxiety (51). Mercury accumulation has 
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been shown in the pineal gland, which participates in circadian 
function through melatonin and serotonin (52).  

Hg can cause Alzheimer’s disease (53), and the high 
penetrability of Hg into the brain alters sleep patterns by 
dysregulating the extracellular concentrations of glutamate, 
acetylcholine, and dopamine. These neurotransmission 
changes are reflected in non-REM sleep, REM sleep, 
awakening, and decreased night-time melatonin levels (54). 

After intoxicating 20 rats for 45 days, Teixeira et al. (51) 
showed that HgCl2 accumulates in the hippocampus and cortex 
regions with a higher affinity for the cortex. Furthermore, 
Mercury inhibits serotonin binding to brain receptors (53). The 
5-HTergic system in the prefrontal cortex and basal ganglia 
plays a significant role in neuroprotection and cognitive 
regulation (55). 

Mercury exposure in the prenatal period impairs the 
dopaminergic and glutamatergic system, impairing learning 
and memory (56) with decreased IQ scores and other attention 
and spatial tests memory (57). 

Methyl mercury, which has sufficient permeation to the 
brain, causes Minamata disease, producing damage and 
neurological manifestations of the disease (58).  

Additionally, there is an association between mercury 
toxicity and autistic spectrum disorder (ASD) diagnosis. Of 91 
studies from 1999 to 2016, 74% suggested a direct and indirect 
relationship between Hg and autistic spectrum disorder (59).  

Lead 
Lead (Pb) is another heavy metal that can penetrate the CNS 
and negatively affect metacognition and sleep. Lead 
precipitation in front-hippocampal circuits impairs the 
acquisition, consolidation, and recall of memories, especially 
emotional memories, which causes emotional and behavioral 
dysregulation frequently seen in Pb-exposed children (60). 
Moreover, lowered intellectual scores, learning and memory 
scores, visual memory scores, verbal memory scores, and 
inadequate sleep with inadequate performance during the day 
have been recorded with lead exposure (61). In a cross-
sectional study, Mohammadyan et al. (61) measured the 
occupational exposure of 40 soldering workers to lead fumes 
through their blood lead levels and sleep quality and recording 
of digestive disorders. Impaired sleep quality and 
gastrointestinal disorders were prevalent. 

According to Kalinchuk et al. (62), nitric oxide (NO) 
donors induce sleep through adenosine production. This means 
that reduced NO production causes sleep deprivation. Pb 
changes the activity and expression of neuronal nitric oxide 
synthase (nNOS) and brains endothelial nitric oxide synthase 
(eNOS) as it simulates Ca+2 and blocks its binding sites for 
NOS, reducing cerebral NO levels. 

In addition to its effect on sleep, the reduced NO production 
impairs long-term potentiation (LTP), forming the molecular 

base for learning and memory (63). Lead exposure causes 
hippocampal damage by denaturating myelin and neuronal 
nuclear irregularities (64). Allen et al. (65) described memory 
and metacognition dysfunction using a high–resolution multi-
parameter mapping technique in 48 healthy individuals. 
Furthermore, Lead is a non-competitive N-Methyl-D-aspartate 
receptor (NMDAR) antagonist.    NMDA-Rs are ligand-gated 
receptors stimulated by glutamate and are vital players during 
neural development, neuronal plasticity, learning and memory, 
and LTP (66). Rocha et al. (66) summarized clinical and 
preclinical studies with various research techniques. They 
showed that low lead levels decreased cognitive functions and 
produced maladaptive behavior in human and animal models. 

It is worth noting that lead exposure is a risk factor and a 
common association with Attention Deficit Hyperactive 
Disorder (ADHD) (67).  

2.6. Personality trait 
Lack of impulsivity affects sleep behavior, and McGowan and 
Coogan's (68) study showed that individuals with impulsivity 
suffered from shorter sleep duration, less efficient sleep, 
delayed sleep timing, and greater diurnal arousal. Social 
Anxiety Disorder (SAD) is a common finding in modern 
societies. It is believed that the way of thinking may affect the 
severity of this disorder. In clinical and experimental samples 
included in cross-sectional investigations, Gkika et al. (69) 
showed that negative beliefs and the dangerousness of thoughts 
were positively and significantly correlated with SAD.  

Using metacognition models, McEvoy (70) stated that 
Meta-Cognitive Therapy (MCT) was associated with a better 
outcome in the anxiety and depression symptoms than the 
usual treatment. 

Ronfeldt et al. (71) investigated the effects of third-wave 
cognitive constructs (mindfulness, psychological inflexibility, 
and meta-cognitions) on a person's psychological status, 
stating that mindfulness was inversely proportional to anxiety. 

Additionally, after completing an online questionnaire at 
baseline and one year on 76% of 2291 participants from 
universities, Sun et al.  (72) showed that negative meta-
cognitions contributed to developing anxiety and paranoia.  

Anxiety and depression symptoms are common in people 
with physical health conditions, with increased anxiety 
symptoms in cardiac and cancer patients (73) and diabetes (74). 
Sleep deprivation is considered a factor that affects mental 
health; Pires et al. (75) observed that significant anxiogenesis 
resulted from lack of sleep. 

Interestingly, most sleepwalking or talking children also 
had an anxiety disorder (76). Sleep problems have several 
adverse health outcomes.  Gould et al. (77) study on 109 adults 
aged 66-92 years revealed that the Geriatric Anxiety Scale 
(GAS) affective and somatic sub-scales were significantly 
associated with global sleep quality, suggesting that 
personalized treatment improved specific anxiety –symptom 
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domains or vice versa. A study by Nadorff et al. (78) showed 
that Generalized Anxiety Disorder (GAD) was significantly 
correlated with alarming dream frequency. Moreover, sleep 
loss affects brain regions, which are essential for decision-
making, such as the prefrontal cortex. 

 Short and Weber (79) described an association between 
time of sleep and risk-taking, while Benard et al. (80) revealed 
that the proportion of suicides among patients with bipolar 
disorders (BD) was higher than in the general population, with 
more circadian rhythms and sleep disturbances compared to 
healthy control.  

2.7. Autism 
Autism spectrum disorder (ASD) has severe social 
communication impairments and restricted and repetitive 
behavior and interests (81). Grainger et al. (82) suggested that 
the metacognitive ability to express our mindset depended on 
the same processes that we could anticipate others' mindset 
("mindreading"), which was impaired in ASD. They found that 
people with ASD had mindreading problems and could not 
precisely monitor their memory details and components. 
However, they showed that some people with ASD had 
superior metacognitive abilities relative to neurotypical people. 

Furthermore, Griffin et al. (83) reported that adults with 
ASD had high levels of alexithymia, ''a difficulty identifying 
and labeling one's emotional states''. Autism is usually 
associated with a learning disability and lower levels of IQ, 
impacting all learning and severely impairing adaptive 
behavior compared to deficits in overall or general intelligence 
(84).   

Adults with ASD hardly develop independent life with 
moderate mental capabilities (85). The metacognitive 
impairment in an ASD can be explained by understanding the 
representational nature of belief, even their own beliefs. They 
also have more difficulty understanding desire than 
neurotypical individuals (86). Additionally, individuals with 
ASD struggle with 'strategic' aspects of social learning, 
selecting the relevant and be-imitated information during 
imitation tasks (87).   

Sleep problems are common lifelong comorbidity in ASD 
and can increase latency, sleep fragmentation, and circadian 
phase disorders (88, 89). This results from neurotransmitter 
abnormalities or other commonly associated comorbidities like 
epilepsy (90). 

Sleep difficulties lead to negative consequences during the 
daytime, like physical aggression, irritability, inattention, 
hyperactivity (91), impaired cognitive performance, and 
quality of life (88). 

2.8. Dyslexia 
Dyslexic readers' abilities are lower than typically developing 
readers in all forms of self-reported metacognitive knowledge 
and reading motivation, with lower performance than typically 
developing readers. However, dyslexic children have normal 

vocabulary consolidation abilities and can recall novel words 
like normal children (92). Children with dyslexia have slow-
wave sleep with a longer duration and higher frequency of 
sleep spindles, explaining the affected vocabulary 
consolidation (93).  Carotenuto et al. (94) found that children 
with dyslexia showed higher rates of Sleep Disturbances Scale 
for Children (SDSC) pathological scores in the total SDSC 
score, higher rates in the number of times they woke up, 
nocturnal hyperkinesis, and snoring. 

A recent study by Huang et al. (2020) (95) revealed that 
salivary melatonin in dyslexic children was less than the 
average children, and the rhythm of day low/night high 
disappeared. 

2.9. Attention Deficit Hyperactivity Disorder (ADHD) 
Attention deficit hyperactivity disorder (ADHD) is associated 
with academic retardation, the dysfunctional social interaction 
that results in a poor quality of life.   ADHD in adulthood 
suffers from inattention, hyperactivity, impulsivity, and low 
academic achievement (96). ADHD management includes 
cognitive-behavioral therapy (CBT) and stimulant drug 
treatment with methylphenidate (97). 

ADHD negatively impacts different aspects of cognition, 
including attention, executive functioning, memory, and 
learning. Objective psychometric tests may provide 
information about the individual's cognitive efficiency, 
whereas subjective self-reports might indicate success in 
individual goal achievement (98)  

Gregory et al. (99) study on 2232 twin children associated 
ADHD with low sleep quality. Caregivers of children with 
ADHD develop sleeping problems due to their effort to care 
for them (100). Their children also develop sleep abnormalities 
resulting in dysfunction (101). Fortunately, poor sleep remits 
over time in ADHD, which may reassure parents and children 
with ADHD (99).  

2.10. Neurodegenerative diseases 
Alzheimer's disease (AD), the commonest dementia 
worldwide, is associated with sleep deprivation. In 18 
longitudinal studies that included 246.786 subjects at baseline 
and 25.847 dementia cases after an average of 9.49 years of 
follow-up, patients with insomnia, sleep-disordered breathing, 
or other sleep disturbances were found to have higher risks of 
developing AD (102).  

A post-mortem study by Lim et al. (103) on 45 older adults 
with a mean age at death of 89.2 years demonstrated that 
repeated sleep interruption caused a decreased number of 
hippocampal neurons in AD than normal controls. 

Sleep abnormalities in Parkinson's Disease (PD) are 
common non-motor symptoms significantly impacting 
patients' quality of life (104) and precede any motor or 
cognitive manifestations (105). Abbott and Videnovic (106) 
hypnotized that circadian and sleep changes may strike the 
neurodegenerative process in PD that increases the sleep and 
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circadian abnormalities in a vicious circle pattern with more 
neurodegeneration and sleep disorders (107) 

Sleep problem management may be a potential means to 
slow disease progression from the early stages of PD (108). 
Moreover, in PD, there is a dysfunction of circadian rhythm 
markers such as cortisol, melatonin, C-type natriuretic peptide 
amino-terminal (NT-proCNP), and Tumor necrosis factor-
alpha (TNF-α), and assessment of these markers can be 
considered as markers for onset and stage of PD (109). 

3. Management of dysfunctional metacognition and sleep 
disorders 
3.1. Physical Exercise 
A healthy diet and lifestyle play a crucial role in delaying aging 
health issues and maintaining an acceptable cognitive function 
level, especially in vulnerable seniors (110). A higher level of 
total daily physical activity is associated with a reduced risk for 
neurodegenerative diseases (111). 

Regular exercise may play an essential role in the 
upregulation of brain-derived neurotrophic factor (BDNF) and 
upregulates the production of several neurotransmitters, like 
serotonin, associated with mood enhancement and reduced 
depressive symptoms (112). 

Physical exercise positively impacts sleep in both normal 
conditions and the presence of sleep disorders; it enhances 
sleep quality and decreases the time to fall asleep (113). 
Moreover, physical exercise has a restorative property on the 
brain's prefrontal lobe, positively impacting sleep quality 
(114). 

These exercise-induced actions may indirectly affect 
cognition as sleep improves neurotransmitters and 
neurotrophic systems such as; norepinephrine, serotonin, 
endorphins, BNDF (113), and melatonin (115). The systematic 
review and meta-analysis reported by Banno et al. (115) 
included nine studies with a total of 557 participants. 

There is a positive correlation between physical exercise 
and academic performance with higher cognitive and 
metacognitive skills (116), and this is linked to the remapping 
of the brain as a part of brain plasticity that is improved and 
upgraded by physical exercise(117). Physical exercise 
performance may affect the brain through factors released into 
circulation with physical exercise. 

The bone hormone Osteocalcin level is upregulated by 
physical exercise, and it is essential in the construction of 
bones and the regulation of blood sugar (118). Moreover, 
Osteocalcin affects sleep length, diurnal rhythm, brain 
signaling, and metacognition. It stimulates the secretion of 
serotonin, which influences mood and cognition. 

The Osteocalcin is composed of a protein gel matrix made 
from Vitamin D repositories in the body. Therefore, 
individuals with Vitamin D deficiency are obese and have 
sleep problems because it is correlated to Osteocalcin's 

function and its impacts on sleep and body mass(119). 

3.2. Omega-3 
Omega-3 polyunsaturated fatty acids (PUFA n3) are 
neuroprotective agents because of their anti-inflammatory and 
anti-apoptotic actions. Furthermore, Omega-3 regulates the 
function of growth factors that influence synaptic plasticity and 
function (120). Omega-3 regulates membrane fluidity and gene 
expression (121). Low dietary Omega-3 causes impaired 
glutamate and monoamine synaptic function (122), 
contributing to depression, cognitive decline, or dementia, 
especially for AD. These effects of Omega-3 deficiency are 
related to manipulating the endocannabinoid and inflammatory 
molecules that result in microglia engulfment of hippocampal 
synapses. That explains the neuroprotective effect of Omega-3 
and its attenuating action for cognitive decline in the elderly 
(119). 

Oily fish is necessary for normal serotonin production and 
sleep control. Additionally, in 395 healthy children aged 7-9 
years, 16 weeks of Omega-3 supplementation elevated the 
Omega-3 concentration of red blood cells and decreased the 
severity of obstructive sleep apnea with better sleep patterns 
(123). Oily fish also provide vitamin D that regulates the sleep-
wake cycle. In a trial involving 677 people consuming oily fish, 
Del Brutto et al. (124) showed a link between dietary fish 
consumption and sleeping in a population where caught fish 
formed the primary dietary protein source. 

Another study by Komori (125) treating depressed 
individuals with phosphatidylserine and O3PUFAs showed 
normalized salivary cortisol (circadian and basal secretion) in 
responders compared to non-responders. Chronic insomnia is 
associated with spikes in the release of cortisol (126). In 
support of the previous studies; Alzoubi et al.’s (127) eight 
weeks study on rats demonstrated the protective and 
antioxidant effects of Omega-3 on long and short memory in 
sleep deprivation. 

3.3. Melatonin and light therapy 
Dysfunction of the timekeeping system causes Circadian 
rhythm sleep-wake disorder (CRSWD), leading to the loss of 
synchrony and harmony between endogenous components of 
the circadian system and the external ques (128). It may be a 
primary disorder like circadian phase disorder or secondary to 
abnormal melatonin secretion in psychiatric or neurological 
diseases (129). 

Various drugs are introduced for sleep disorders, like 
chloral hydrate, barbiturates, benzodiazepines, modafinil, 
antidepressants, and anxiolytics. However, these medications 
have unavoidable side effects, like daytime sleepiness, 
cognitive dysfunction, and dependency.  

It is crucial to consider synchronizing the circadian 
components with the given therapy, for example, considering 
the time of melatonin or light therapy for circadian rhythm 
sleep disorders (128). 
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The wavelength determines the light therapy efficiency, the 
strength of the applied light, the time of application, and 
whether the person was previously exposed to light or not 
(130). The same light intensity may delay the sleep phase of 
the circadian cycle if administered before the core body 
temperature minimum or advance it if administered after it. For 
the same reasons, exogenous melatonin administration should 
also be timed by circadian phase for non-24 hours sleep-wake 
phase disorder. In blind individuals, Tasimelteon (a selective 
dual melatonin receptor agonist) showed promising results 
(128). 

The pineal gland secretes melatonin into the blood 
exclusively in the dark following biological time. It is tolerated 
and has a lower risk of dependence than other sleep 
medications (131). Melatonin therapy for chronic insomnia is 
a safe and effective method to improve sleep onset, latency, 
duration, and quality. Exogenous melatonin stimulates the 
naturally secreted melatonin, binds to melatonin receptors, and 
triggers the target signaling pathways; hence, it treats insomnia 
(132). The pineal gland secretes melatonin into the blood 
exclusively in the dark following biological time. It is tolerated 
and has a lower risk of dependence than other sleep 
medications (131). Melatonin therapy in chronic insomnia is a 
safe and effective method to improve sleep onset, latency, 
duration, and quality (133); (134). Exogenous melatonin 
stimulates the naturally secreted melatonin, binds to melatonin 
receptors, and triggers the target signaling pathways; hence it 
treats insomnia (132). 

Furthermore, melatonin ameliorates the complications 
caused by sleep-breathing disorders. The hypoxia-induced 
hyperglycemia in experimental studies for sleep apnea 
included 36 mice injected with IP melatonin for 21 days (135). 
It inhibits the expression of inflammatory cytokines (Tumor 
necrosis factor-alpha, Interleukin-6, and Cyclooxygenase-2) 
and fibrotic markers (PC1 and TGF-beta) (136). 

On the other hand, melatonin may improve 
hypersomnolence's central disorder as it alters sleep 
architecture in narcolepsy, a disorder of circadian rhythm and 
REM sleep deficit. Changes in REM patterns in narcolepsy 
patients are like those seen in patients and animal models with 
the pineal gland removed. Additionally, melatonin's exogenous 
doses significantly increase REM sleep time in normal cohorts 
and patients with a central hypersomnolence disorder (132). 
Melatonin also relieves shift workers' sleepiness (137). 

3.4. Tryptophan 
A diet rich in Tryptophan and antioxidants improves affective 
and cognitive domains (138). Tryptophan plays a crucial role 
in protein synthesis. It is a precursor of biologically active 
compounds like serotonin, melatonin, quinolinic acid, 
kynurenic acid, tryptamine, and also coenzymes essential for 
electron transfer reaction (redox balance of metabolism), such 
as nicotinamide adenine dinucleotide (NAD+) (139). 

A deficiency in Tryptophan, caused by malnutrition, may 

affect the central and peripheral serotoninergic pathways, 
although different nutrition-derived hormonal molecules may 
rescue some of this deficiency (140). Serotonergic dysfunction 
has been related to panic, depression, aggression, and 
suicidality symptoms. Because the serotonin system is 
involved in various psychiatric disorders and is also involved 
in the regulation of satiety, it can be important in the 
pathophysiology of eating disorders such as anorexia nervosa. 

Tryptophan is used to treat various disorders but has been 
withdrawn in most countries. During the treatment of 
tryptophan preparations, undesirable symptoms include 
various pulmonary, cutaneous, and neurologic symptoms, 
eosinophilia-myalgia syndrome, and disease-related muscle 
pain. Various diseases and disorders are linked with 
Tryptophan and its metabolites. Increased metabolism of 
Tryptophan, or undesirable effects of low Tryptophan, such as 
decreased absorption or intake and signs of depression and 
neurovegetative complaints, has been observed in different 
pathology types (141,142). 

Murr et al. (143) measured serum concentrations of free 
Tryptophan and CRP in 1196 patients with coronary artery 
disease. Lower serum tryptophan levels in patients undergoing 
coronary angiography were predictive for higher total, 
cardiovascular, and non-cardiovascular mortalities. Thus, the 
increased risk in patients with major depression for developing 
cardiovascular disease, the inadequate response to treatment, 
and increased morbidity and mortality could relate to more 
significant disturbances of tryptophan metabolism (144). 

The biosynthesis of the most important neurotransmitters 
for mood stability is serotonin, dopamine, epinephrine, 
norepinephrine, and nitric oxide (NO), which is achieved by 
enzymes tryptophan 5-hydroxylase, phenylalanine 4-
hydroxylase, tyrosine 3- hydroxylase, nitric oxide synthase, 
and all these enzymes require BH4 as a cofactor (145). 

  BH4 is a strong reductant and therefore undergoes 
oxidation readily (146). Consequently, antioxidants prolong 
the life span of BH4 and contribute to increasing the activity of 
the BH4-dependent enzymes (147), and the biosynthesis of the 
mentioned neurotransmitters increases; this may explain why 
foods rich in antioxidants are considered as mood enhancers 
and improve cognitive abilities. 

Tryptophan can be used for the management of sleep 
problems. It is interesting to note that dietary Tryptophan 
produces therapeutic effects through melatonin. Tryptophan 
treatment's crucial feature is that it does not directly reduce 
cognitive ability (148). 

Mood and cognition are closely related in older persons 
(149) and linked to serotonin's biochemistry (150). Classical 
antidepressants like selective serotonin reuptake inhibitors 
(SSRIs) increase serotonin levels in the brain leading to 
enhanced postsynaptic neuronal activity (138). 

A meta-analysis of several clinical trials observed a 
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precognitive effect of antidepressants in patients with major 
depressive disorder. Accordingly, antidepressants significantly 
affect psychomotor speed and delayed recall (150). A potential 
role of tryptophan depletion in cognitive ability has already 
been suggested and is further strengthened in patients with 
Alzheimer's dementia and Huntington's disease (151). 

3.5. 5-hydroxytryptophan (5-HTP) 
The density of serotonergic fibers increases in the 
hippocampus and decreases in the thalamic paraventricular 
nucleus (PVN) due to brain serotonin depletion. In contrast, the 
serotonin precursor 5-hydroxytryptophan (5-HTP) 
administration could rescue these defects following the 
reestablishment of brain 5-HT signaling (152). 

A study that included 4-week-old mice considered that 
serotonergic systems affected sleep, and the combined GABA 
and 5-HTP had synergistic effects on sleep duration and quality 
(153). 

Meloni et al. (154) revealed that scores of the Beck 
Depression Inventory (BDI-II) and the Hamilton Depression 
Rating Scale (HDRS21) showed substantially more significant 
improvement with 5- HTP. Supplementation for night terrors 
examined the influence of L-5-hydroxytryptophan on sleep 
terrors. More than half-night terror episodes have been 
observed in over 93% of children within a month. These results 
confirm that arousal levels might be positively influenced by 
treatment with L-5-hydroxytryptophan, resulting in reduced 
sleep terror behaviors in children (155). The trial of these 
authors included 45 children aged 3.2-10.6 years. 

3.6. Magnesium and magnesium l-threonate (MgT) 
Magnesium (Mg+2) is a cofactor for many enzymes, and many 
organs need it to maintain proper function (156). Furthermore, 
Mg+2 is critical for numerous cellular processes, including 
enzymatic reactions, ion channel functions, metabolic cycles, 
cellular signaling, and biomolecules' stability, such as RNA, 
DNA, and proteins (157). 

Mg+2 is essential for regulating the structural and functional 
synapses and synaptic plasticity (158). The intracellular 
concentration of Mg+2 positively correlates to synaptic 
branches' arborization (156). 

Besides, Mg+2 regulates NMDA receptors (NMDAR) 
block, which is essential in controlling long-term potentiation 
and synaptic plasticity (156). 

Several studies indicated that synaptic connections in the 
hippocampus decline during aging, with the degree of loss of 
synapses correlating with memory function impairment. The 
reduction seems to be specific to certain hippocampal 
subregions. Furthermore, in aging rodents, the dentate gyrus 
(DG) is the most affected area in the loss of synapses (159). 
Altering the hippocampus's synaptic efficacy is an initial event 
in cognitive disorders such as AD (160). 

Magnesium deficiency and depression are linked in 

experimental and clinical studies (161, 162). However, 
prospective cohort studies failed to find an association between 
magnesium status and later risk of depression (163). Some 
intervention studies suggested a beneficial role of magnesium 
supplementation in treating depression (164), while others 
have not (165).  

Moreover, Lai et al. (166) investigated children's cognitive 
functions and correlated the results to maternal blood zinc and 
magnesium levels during pregnancy. They revealed that 
deficiency of minerals during pregnancy was linked to the 
cognitive dysfunction of their children. A low Mg+2 intake has 
been associated with poor-quality sleep and inflammatory 
stress (161). 

Magnesium l-threonate (MgT) consists of a magnesium ion 
and threonate, which exists physiologically within the brain. 
MgT significantly increases magnesium ion levels within the 
CSF (156) and improves memory recall and spatial memory 
(156). 

Besides, MgT prevented reducing glutamatergic synaptic 
transmission under    AD-like pathological conditions 
characterized by excitotoxicity (167). A study of the hypoxic 
zebrafish model assessed the effects of magnesium on 
cognitive functions. It showed that pre-treatment with MgT 
upregulated glutamate transporter EAAT4, improved neuronal 
survival, and maintained learning following hypoxia induction 
(168). 

3.7. Probiotics, prebiotics, and synbiotics 
The gut microbiome helps digestion, the immune system, and 
mental health (169). Enteroendocrine cells transmit signals 
from GIT to the brain via bacterial metabolites, hormones such 
as serotonin, and vagal afferent fibers (170). Roberts et al. 
(171) explained the role of the gut microbiome as a dynamic 
factor in the etiology of Alzheimer's disease by demonstrating 
metabolites from microbiota in the cerebrospinal fluid of 
Alzheimer's patients. 

Chong et al. (172) did a randomized, double-blind, and 
placebo-controlled multicenter trial on 63 healthy elders over 
65 years to study the effects of 12 weeks of probiotics on 
cognitive functions and mood. They demonstrated that 
probiotics promote mental flexibility and relieve stress in 
healthy older adults. This can encourage probiotic use in a 
healthy diet in adults. 

Probiotics supply billions of beneficial bacteria directly and 
are derived from fermented food. Prebiotics are mainly fibers 
derived from vegetables, fruits, and cereals. They help the 
growth and multiplication of beneficial bacteria. Synbiotics are 
combinations of probiotics and prebiotics. These act by 
producing neurotransmitters such as gamma-aminobutyric acid 
(GABA), dopamine, acetylcholine, serotonin, and 
neurochemicals such as BDNF. All these modulate cognition 
and mood (173).  

In addition, intestinal dysbiosis causes inflammation via the 
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microbiota-gut-brain axis. Five studies with an aggregated 
sample of 297 individuals (174) showed that probiotics benefit 
cognitive function in Alzheimer’s disease and mild cognitive 
impairment subjects by decreasing inflammatory and oxidative 
markers. 

Li et al. (175) clarified that probiotics, prebiotics, and 
synbiotics are very beneficial therapeutically in improving 
cognitive function and behavioral and psychological 
symptoms in patients with dementia. 

3.8. Antioxidants 
Although oxidative stress is critical in the pathogenesis of 
many cognitive diseases, some studies revealed that 
antioxidant therapy is clinically ineffective in these disorders. 

Certain precautions are required to be effective clinically. 
Firstly, dose adjustment is required. Higher doses of 
antioxidants may be harmful (176). Secondly, some 
antioxidants have low solubility and absorption with rapid 
metabolism, so they require new delivery systems. Thirdly, 
advanced delayed damage cannot be reversed by antioxidants 
(177); thus, they should be given at earlier stages of the disease.  

3.9. Herbs 
Lavender 
Aromatherapy is a method based on plant-derived essential 
oils. In 39 elders, a week's daily smell of lavender oil improved 
cognition and sleep disorders (178). Rafii et al. (179) showed 
the anxiolytic and sleep-promoting effects in burn patients with 
lavender and chamomile oil during massage. 

Lavender (Lavandula angustifolia) essential oil (EO) is 
used in emotional disorders and consists primarily of linalool 
and linalyl acetate (180) and belongs to Lamiaceae's family 
(181). Linalool is a monoterpene with antioxidant, anti-
inflammatory, and anti-convulsant activities, protects neurons 
from toxicity, and attenuates cognitive and affective disorders 
in the transgenic model of AD (182) 

The anxiolytic action of lavender essential oil depends on 
its serotonin and glutamate-like characteristics (180) involved 
in the mechanisms for anxiety, learning, and reconsolidation of 
memory (183). However, lavender, coriander, and linalool's 
neuroprotective effects against Aβ- induced neurotoxicity in 
vitro cellular models are still unknown (7). 

Coelho et al.’s (184) study demonstrated the inhibitory 
effect of vaporized lavender on the conditioned contextual fear 
memory without affecting the consolidation of tone fear 
memory, indicating lavender's potential use to manipulate the 
cognitive aspect of anxiety. Although memory updating 
depends on reconsolidation, the former process is a 
consequence of the latter, and the inhibition of memory 
updating does not necessarily imply impairment of the primary 
memory (185). 

On the other hand, lavender oil reduces daytime sleepiness 
by improving sleep quality, thus improving mental functions 

(186), as shown in EEG changes in response to its antianxiety 
action (181). The Power Spectral Density of alpha and theta 
waves in EEG showed an increase in response to lavender 
inhalation, thus is associated with mood enhancement and 
calming effect (181, 187). 

Chamomile 
Chamomile is a common anxiolytic, sleep-inducing herb (188). 
Chang and Chen (189) studied the chamomile effect in 
postnatal women and showed that consumption of chamomile 
tea attenuated depression and sleep problems. However, these 
effects were noticed only for two weeks. On the other hand, 
Moss et al. (190) demonstrated that chamomile aroma impaired 
alertness and cognitive performance. 

Ginseng 
Ginseng has a therapeutic effect on improving cognitive 
function as learning and memory in neuroinflammatory 
diseases such as cerebral ischemia, stroke, traumatic brain 
injury, Parkinsonism, and Alzheimer's disease. It has anti-
inflammatory and regenerative effects and improves cell-cell 
communication via the induction of neurogenesis and 
angiogenesis (191). 

Curcumin  
Preparations of curcumin with high bioavailability improve 
working cognitive function, memory, learning, and mood in 
healthy older individuals (192). Clinical results of Katherine et 
al. (193) showed improvement in hippocampal function, 
suggesting relief of cognitive decline in some populations. 

Multiple systemic and central mechanisms are involved via 
various nutrients, including flavonoids (194).  

3.10. Behavioral therapy 
Cognitive Behavioral Therapy for insomnia (CBT-i) improved 
multiple aspects of sleep, like sleep latency, efficiency, and 
insomnia severity (195, 196). 

Sweetman et al.’s (197) trial included 145 participants 
treated for six months and compared the clinical data 
(symptoms, signs, investigations, outcome) using Continuous 
Positive Airway Pressure (CPAP)-which is considered a 
treatment for sleep apnea- with or without Cognitive and 
Behavioral Therapy for insomnia (CBT-i) before initiating 
CPAP treatment. They showed better compliance with CPAP 
use in the CBT-i group and developed attenuated global 
insomnia, cognitive enhancement, and a positive effect on 
sleep impairment six months later. 

Despite the supportive data on the benefits of CBT on sleep 
disorders, the effect on metacognition and cognition is still 
unclear; meta-cognition and cognition decrease in Meta-
Cognitive Therapy (MCT) and Cognitive-Behavioral Therapy 
(CBT). Specifically, in a study on 74 patients, meta-cognition 
was more affected in MCT than CBT, but cognition did not 
show marked alternation (198). 



Amin et al. / J Exp Clin Med  

 140 

3.11. Meditation 
Yoga promotes the mind and self-regulation's meta-cognitive 
capacity, such as potentiating attention and memory, 
improving cognitive functioning scores, and sensory 
awareness. In mild cognitive impairment, patients who 
received the mindfulness-based stress reduction program 
showed better neuronal circuits of the cingulate cortex, medial 
prefrontal cortex, and left hippocampus (199). 

Aging is linked with neural structure, function, and 
cognitive performance; they naturally decline over time. The 
study by Gard et al. (200) found that Yoga and meditation 
decreased the fall-off rate for fluid intelligence. 

Afonso et al. (201) revealed that 21 elderly women yoga 
practitioners showed a significantly greater     Cortical 
Thickness (CT) in a left prefrontal lobe cluster. The brain's 
Default Mode Network (DMN) has three operational modules: 
two occipital-parietal-temporal subnets and one frontal subnet. 
Moreover, Fingelkurts et al. (202) showed an enhancement of 
the frontal DMN module via body scan with repeated yoga 
meditation, focus on breath, and mantra repetition. 

Gard et al. (200) stated that Yoga improved memory, 
concentration, attention, speed, and accuracy in math 
computations with less emotional lability, excitability, and 
aggressiveness. Furthermore, Yoga increased students' self-
compassion, emotion regulation skills, and non-judgmental 
self-reflection. Additionally, Pozuelos et al. (203) showed that 
a relatively short mindfulness practice period significantly 
changed brain dynamics related to the internal monitoring of 
response conflicts and errors. 

Furthermore, Xiao et al. (204) showed that 121 
perimenopausal women involved in meditation training 
showed significant improvement in their scores on the Self-
Rating Anxiety Scale (SAS) and Pittsburgh Sleep 
Questionnaire (PSQ). Varghese et al. (205) studied 
meditation's effect on patients with Type 2 Diabetes Mellitus 
(T2DM) and revealed a significant improvement in the PSQ 
score, sleep quality, duration, and function during daytime 
activities. 

Another study on the impacts of Integrated Yoga (IY) 
Intervention on Sleep Quality among professional caregivers 
of older adults with AD showed significant sleep quality 
improvement after one month than baseline (206). 

3.12. Acupuncture 
Acupuncture is considered complementary medicine, usually 
used as an additional treatment. It has been reported to improve 
performance in several tests (Insomnia Severity Index, Sleep 
Efficiency, Total Sleep Time) (207) and the Hamilton 
Depression Scale (HAMD) (208). 

Acupuncture also improved persistent sleep disturbance in 
mild Traumatic Brain Injury (mTBI) and Posttraumatic Stress 
Disorder (PTSD) (209) and reduced insomnia after stroke 
(210). Wang et al. (211) studied the effect of acupuncture with 

nimodipine versus nimodipine alone and presented the best 
scores in the Montreal Cognitive Assessment (MoCA) score in 
the acupuncture and the drug combination compared to 
acupuncture or drug alone. 

Moreover, electro-acupuncture and body acupuncture 
combined with cognitive function training increased patients' 
Mini-Mental State Examination (MMSE) scores compared to 
the cognitive function training alone (212). Patients had better 
scores in the Mini-Mental State Examination (MMSE) and 
Montreal Cognitive Assessment (MoCA) compared to western 
medications (213). 

The present review presented the common cause and 
comorbidities associated with sleep, cognition, and 
metacognition dysfunction. Some of these conditions are 
initiated by affecting either sleep or cognitive functions; others 
simultaneously hit both domains (sleep and cognition). 
Primary therapeutic tools to restore sleep and cognitive 
function have been presented as investigated by previous 
studies. We recommend further clinical and experimental 
studies to clarify more data on the missing parts of the 
molecular mechanism of action for some of the presented drugs 
and procedures, to evaluate the combination of these factors to 
assess if there is any synergistic effect, and to check these 
factors concerning broader and diverse populations (age or sex-
based). 
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