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Abstract

Stream temperature is a critical characteristic for aquatic ecosystems. Therefore, it is crucial to
understand the factors that take place in thermodynamic processes in these ecosystems. Regression
models are useful tools that help us comprehend and explain the drivers of these thermal processes
since they can be used for quantifying the magnitude and the type of the relationship between the
independent variables (e.g., air temperature, discharge) and the response variable (e.g., stream
temperature). However, selection of data granularity of data may often be a key decision for modelers.
Although granularity of data is selected based on the ecological relevance of data to the question of
interest in many cases, it may arbitrarily be selected by the researchers in many other cases. However,
data granularity can substantially influence model coefficients, can affect the model predictions, and
influence evaluation of model fitness and interpretation of model outputs. In this article, we adopted
regression models and applied different data granularity scenarios to investigate the consequences of
data granularity selection in modeling approaches. Our findings showed that using different data
granularities resulted in considerable changes in regression coefficients in the models. Our results
also revealed that overall model fitness increased with coarser-scale data granularity and model
selection was influenced by the type of data granularity. This study might be helpful for modelers and
environmental managers since it highlights the significance of selection of data granularity and
proposes a different point of view in model design, evaluation and application from the perspective
of data selection.

Keywords: stream temperature, linear regression models, data granularity, data
aggregation, temporal scale
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Oz

Akarsu sicakliklart sucul ekosistemlerde kritik ©neme sahiptir. Dolayisiyla, akarsulardaki
termodinamik siirecleri etkileyen faktorleri kavramak onem arz etmektedir. Regresyon modelleri
bagimsiz (6rn. havanin sicakligi, aki) ve bagimli (6rn. akarsu su sicakligi) degiskenlerin birbirleriyle
olan nicel ve nitel iligkisini agiklayabildiginden, bu 1s1l siirecleri etkileyen faktorleri kavramamiza ve
aciklamamamiza yardimer olan kullanigh araglardir. Ancak bu modellerde kullanilan verilerin
taneselliginin ya da agregasyonun sec¢imi modellemeciler i¢in zorlayici olabilmektedir. Cogu
durumlarda kullanilacak verinin taneselligi ekolojik uygunluga baglh olarak secilse de diger bir¢ok
durumda keyfi olarak segilebilmektedir. Ancak veri taneselligi se¢imi, model degiskenlerinin
katsayilarini, model tahminlerini, model tahminlerinin degerlendirilmesini ve model sonug¢larmin
yorumlanmasini 6nemli dl¢tiide etkileyebilmektedir. Bu makalede, veri taneselligi se¢iminin etkilerini
arastirmak amaciyla regresyon modelleri farkli veri taneselligi senaryolariyla uygulandi. Bulgular,
veri taneselligi se¢iminin regresyon degisken katsayilarini dnemli diizeyde etkiledigini gosterdi.
Ayrica bulgular veri taneselligindeki artisin ortalama model tahmin giiciini artirdigini ve veri
taneselliginin model se¢imlerinde etkili oldugunu ortaya ¢ikardi. Bu ¢alisma veri taneselligi se¢iminin
onemini vurgulamasi, model tasarimi, degerlendirilmesi ve uygulanmasi konularinda farkli bir bakis
agist sunmast sebebiyle, modellemecilere ve yoneticilere yararli olabilir.

Anahtar sozciikler: akarsu sicakligi, dogrusal regresyon modelleri, veri taneselligi, veri
kiimelenmesi, zamansal dlcek

Introduction

Stream temperature plays a key role in the physical, chemical, and biological
dynamics in freshwater ecosystems. Therefore, it is often considered as one of
critical parameters in evaluation of water quality and ecosystem functioning in the
literature (Neumann et. al., 2003; Ducharne, 2008; Ficklin et. al., 2013; Guo et. al.,
2019; Hamid et. al, 2020). As water temperature influences the survival,
reproduction and distribution of species from different taxa (e.g., primary/secondary
producers, aquatic invertebrates, fish and other aquatic vertebrates), it is crucial to
understand the physical determinants of water temperature in these ecosystems
(Iversen, 1971; Jackson et. al., 2007; Zorn et. al., 2004; Nuhfer et. al., 2017).

In literature, various environmental parameters are used to explain the driving
factors of stream temperatures. Du et. al. (2020), for example, propose that both
meteorological (e.g., air temperature) and hydrological (e.g., precipitation) processes
affect stream temperatures. In other studies, these meteorological and hydrological
processes are diversified into different sub-factors. For example, Cheng and Wiley
(2016) describe the radiative processes such as shortwave and longwave solar
radiation as explanatory meteorological factors in thermal dynamics of streams
(Figure 1). Hydrological characteristics such as water depth, surface area, runoff, and
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groundwater contribution/withdrawal are also included as the key processes that
determine the thermodynamics in a stream (Zorn et. al., 2008; Cheng, & Wiley,
2016; Du et. al., 2020; Andrews, 2019; Dertli, 2021). As the stream ecosystems are
open systems, all these processes interact with each other, which makes
understanding individual roles of these physical processes in stream thermodynamics
hard to comprehend for researchers. At this point, statistical models help researchers
explain these roles in these complex natural systems.

Statistical models are frequently used to understand the thermal dynamics in
freshwater ecosystems. Regression models, for example, are able to quantify the
influence of each parameter in the model on the response variable (Bender, 2009).
Therefore, these models are very useful to evaluate the potential effects of different
stress factors (e.g., climate change, groundwater withdrawal) on these valuable
systems as they can make predictions on the trends of thermal dynamics under
alternating environmental conditions (Mantua et. al., 2010; Andrews, 2019). Once
successfully designed for a certain group of streams (e.g., cold streams), statistical
models can reduce the need for extensive data collection, which can reduce the
financial resources, time and labor that are spent in data collection procedures
(Dertli, 2021). In addition, model predictions can be useful in making future
projections on the population dynamics of various aquatic organisms such as fish
(Chang et. al., 2018; Nuhfer et. al, 2017), and play critical roles in decision-making
processes on environmental issues.

Although statistical models are useful tools for understanding the nature of
thermodynamics in streams, the explanatory power of these models may depend on
the structure of input data (Akossou & Palm, 2013). The type of time aggregation,
or data granularity —defined as a new term in environmental studies by Dertli (2021)—
is one of the important structural features of the data, since it directly influences the
number of data points (e.g., sample size) and the collinearity between the model
parameters (Stefan & Preud’homme, 1993; Pilgrim et. al., 1998). Because it can
change the outputs of regression models, data granularity is often important. In
literature, selection of data granularity is generally based on the ecological relevance
of the selected data granularity to the research question of interest, and researchers
often provide strong reasoning for data granularity selected in their studies. For
example, Chen et. al. (1998) adopt hourly data granularity to simulate stream
temperatures based on the shading dynamics of topography and vegetation
throughout the day. In another study, Zorn et. al. (2004) focus on July mean
temperatures as a reference temperature for Michigan streams because of it indexed
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conditions important to fish growth, survival, and abundance. However, in many
other cases, researchers arbitrarily select the type of data granularity used in their
models, even though arbitrary selection may cause misevaluations of model
predictions and biases in model selection processes (Dertli, 2021).

Figure 1

Environmental Processes That are Involved in Stream Thermodynamics (Dertli,
2021)

Heat Energy Budget
Net energy of incoming and outgoing water into water body

So far, different studies adopt different approaches on the issue of data
granularity selection, develop different perspectives and reveal various
consequences of these selections (Stefan, & Preud’homme, 1993; Pilgrim et. al.,
1998; Webb et. al., 2003). However, there are still only a few studies that focus on
this issue, considering the substantial effects of data granularity selection on
evaluation, selection, and interpretation of linear regression models. Therefore, in
this paper, we focus on the response of linear regression models designed by
Andrews (2019) to simulate effects of streamflow on temperature gradient (i.e.,
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change in water temperature between upstream and downstream locations) to
changes in granularity of the data used in models. Our study objectives are:

1. To evaluate and interpret the response of model coefficients to different data
granularity scenarios,

2. To evaluate the fitness of the regression models under different data
granularity scenarios,

3. To evaluate influence of data granularity selection on the selection of the
most parsimonious (i.e., high model fitness with low model complexity)
model.

Since we adopt different approaches and evaluate the models based on
different characteristics (e.g., model fitness and parsimony) to observe the response
of regression models to different granularity scenarios, this paper can give
researchers a broad perspective on possible consequences of their data granularity
selection.

Methods

Study Site, Data Collection and Data Revision

The streams were selected by Andrews (2019) for data collection throughout
State of Michigan. Andrews (2019) collected data from 21 streams with various
periods (e.g., between July and November) in 2015 and 2016 (Table 1). He collected
water temperature and water pressure data by setting HOBO® U20 Water Level
Loggers at both upstream and downstream data collection points. These data were
collected in 15-minute intervals and averaged into hourly interval. Water pressure
data were used to calculate upstream and downstream discharge after obtaining
stream width and stream depth estimations for both upstream and downstream data
collection stations. Stream velocity data were also collected for both stations by
using SonTek® Flowtracker. Methods for discharge calculations are explained in the
study of Andrews (2019) in details. In addition, Andrews (2019) collected air
temperature and barometric pressure data from paired streams that were located in
close range by using Monarch® Track-It data loggers with 15-minute time intervals.
These data were also averaged into hourly interval.

In addition to air temperature, water temperature and discharge values,
Andrews (2019) calculated other environmental variables, such as altitude angle, to
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use them as model parameters. Calculations for these environmental variables are
explained in the study of Andrews (2019) in details. We obtained data for all
environmental variables in hourly time interval from Andrews’s (2019) study to use
in our study.

We revised the data by detecting and eliminating outliers, also by trimming
the data within June-October period for both 2015 and 2016. We selected this period
for our study since it covers summer season, which is important for fish abundance
(Zorn et. al. 2004). Another reason was that this period was the longest range of data
that is found commonly for all streams. Since most of the stream’s data started from
late July in 2015, we only used 2016 data in this study (Dertli 2021). In addition, we
used the data from 16 out of 21 streams in this study to avoid gaps in data that were
detected in some streams (Figure 2).

After data revisions, we aggregated the hourly data by averaging the
observations into 2-hours, 6-hours, 12-hours, daily and weekly time intervals. In the
end, we obtained 1-hour (hourly), 2-hours, 6-hours, 12-hours, 24-hours (daily) and
168-hours (weekly) data granularity scenarios.

Hierarchical Model Development and Model Simulation

Andrews (2019) designed 11 linear regression models to obtain temperature
gradient predictions (the difference between downstream and upstream water
temperatures). He adopted hierarchical model development, in which models were
formed starting from the least complex (i.e., Model 1) to the most complex (i.e.,
Model 10). At each step, a new parameter was included in the model, or an existing
model parameter was replaced with another model parameter (Table 2). Model 11,
however, was adopted from a physical model that was proposed by Magnusson et.
al. (2012). In our study, these models were simulated for each stream and each data
granularity scenario.

Model Fitness and Selection

We used adjusted correlation coefficient (R%uq;.) to evaluate the amount of fit
between the trends of observed and predicted temperature gradient (47). Adjusted
correlation coefficient was calculated based on the equation:

2 _ 4 _ SSE/(n-p)
Raaj. =1 SST/(n-1)
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where n stands for the number of observations, p stands for the number of
parameters, SSE and STT stand for sum of squared residuals error and total sum of
squares, respectively. To find the most parsimonious model under given conditions,
we used model weight (@) of models for each stream. To find model weights, we
obtained Akaike’s Information Criterion (AIC) values based on Akaike (1973). AIC
values were obtained by using the equation:

AIC = 2k — 2 InIn (L(data)) ; and L(data) = —(3) - log,(SSE),

where L stands for the likelihood, & stands for the unknown parameters and n
stands for the sample size (Seber, & Wild, 1989). We used AIC values to obtain
model weight as shown in the equation:

N
exp(-3)
Al »

w;, = —=—
bsMexp(-3)

where M is the total number of models, m is the model number, and 4i is the
difference between AIC values of model i and the AIC value of the best-fitting model
(Andrews, 2019). By using model weight, we compared the explanatory power of
models and their model complexity based on the law of parsimony.

Table 1

List of the Streams That Are Used in This Study (Andrews, 2019)

Stream Abbr. Region  Upstream Upstream Downstream Downstream
Latitude Longitude Latitude Longitude
Pokagon Creek PK SLP 41.89517 -86.162632 41.915803 -86.175679
Pigeon River PG SLP 42.932887 -86.081828 42.91636 -86.146075
Nottawa Creek NTW SLP 42.192564 -85.060415 42.195998 -85.104618
Tobacco River TB SLP 43.909194 -84.697312 43.929905 -84.666327
Hasler Creek HS SLP 43.042332 -83.423206 43.083594 -83.442947
Prairie River PR SLP 41.801832 -85.116614 41.832568 -85.165065
Swan Creek SW SLP 41.90477 -85.297885 41.921249 -85.312047
Cedar Creek CcC NLP 44.375846 -85.972647 44.369588 -85.999598
Cedar River CR NLP 44956875 -85.132748 44.968664 -85.138993
Black River BL NLP 45.070651 -84.283728 45.089439 -84.284929
Butterfield Creek BF NLP 44.273249 -85.094087 44.256377 -85.03362
Morgan Creek MG UP 46.519698 -87.504502 46.521351 -87.494782
Spring Creek SP UP 46.512909 -90.156133 46.513418 -90.177011
Carp River CP UP 46.509131 -87.418924 46.510534 -87.388497
Escanaba River ESC UP 46.420206 -87.797962 46.398398 -87.770883
Squaw Creek SQ UP 46.057035 -87.18974 45.985396 -87.140559
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Figure 1

Locations of Streams That Are Used in This Study (Dertli, 2021)

Table 2

List of Multiple Linear Regression Models (Magnusson et. al., 2012; Andrews, 2019)

Model 1 AT = o+ B1(Ta — T
Model2 4T = B+ BT T+ By ()

down
Model 3 AT = Bo+ Bi(Ta— T) + Bs (Qup) + Ba(ATj10w)
Model 4 AT = Bo+ Bi(Ta = Ty) + B (Qup) + Ba(AT1i0w) + Bs (Qaown — Qup)
Model 5 AT = By + Bi(Ta— Ty) + By (Qup) + Bs(ATsi0w) + Bs (Quown — Qup) + Bs(S)
Model 6 AT = By + Bi(To = T) + B3 (Qup) + Ba(ATsi0w) + Bs (Quown — Qup) + B7(@)
Model 7 AT = Bo+ Br(Ta = T) + B3 (Qup) + Ba(ATsi0w) + Bs (Qaown — Qup) + Bs(S) + B (@)
Model 8 AT = By + B1(Ty = T) + B3 (Qup) + Bs(Quown — Qup) + Bs(S) + Bs(ATup) + Bs(ATpase) + Bro(AToper)
Model 9 AT = By + B, (T, — T,) + Bs (Qup) + Bs(Qaown — Qup) + B;(a) + P (ATup) + Bo(ATpase) + Bro(ATover)
Model 10 AT = By + (T, — T,,) + Bs (Qup) + Bs(Qaown — Qup) + B6(S) + B7(a) + B (ATup) + B9 (ATpase) + Bro(AToper)
Model 11

AT = fo + 1Ty — Tyy) + Po(ATpase) + Pro(ATover) + ﬁu(QL * ((T, +273.16)* + (T,, + 273.16)*)]
up

1
Qup

« (e — eTa)] + (e

b =

* )

Note. AT: temperature gradient (°C), Ta: Air Temperature (°C), Tw: Upstream temperature (°C), Qup: Upstream

discharge (m?/s), Qdown: Downstream discharge (m?/s), ATnow: Cumulative temperature gradient (°C), S: Day

length, a: Altitude angle, ATup: Upstream temperature gradient (°C), ATvase: Baseflow temperature gradient (°C),

ATover: Overflow temperature gradient (°C).
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Results
Regression Coefficients

Regression coefficients were obtained after model simulations for each
stream. Only Model 10 coefficient values are shown in Table 3, since previous
studies showed that Model 10 had the highest model fit (Andrews, 2019; Dertli,
2021). Regression coefficients of model parameters varied across streams (Table 3).
For example, the air temperature-upstream temperature gradient (7w — 7w) parameter
coefficient had the value of 28.338 in the Carp River model, but a value of -18.751
in the Prairie River model (Table 3). Likewise, coefficient values of upstream
discharge (Qup) ranged between -9.301 (Carp River) and 5.079 (Pokagon Creek).

Table 3

Intercepts and Regression Coefficients in Model 10 for Each Stream by Using Hourly
Data Granularity Scenario (Dertli, 2021)

Streams Intercept Ta-Tw Q up Q down — Q up S o AT up AT base AT over
(Bo) (B (B3) (Bs) (Bo) (B (Bs) B (Bro)
BL 0.004 -0.380  -0.872 0.002 0.004 -0.037 -0.060 -0.013 -0.026
CR 0.982 -0.665 2.810 -0.154 0.005 -0.011 0.097 -0.029 0.015
CcC -3.800 -0.044 0.102 -0.041 -0.001  0.009  0.004 -0.012  0.001
MG -0.258 7.516 -0.225 0.155 -0.012  -0.015 -0.231  0.186  -0.027
PK -2.326 -1.105  -1.405 0.072 -0.014  0.027  0.043 -0.105 0.048
BF 1.690 -0.323  -0.343 0.309 0.053  -0.016 0.020 -0.006 -0.003
CP 0.500 28.338  -9.301 -0.038 0.018 -5.671 0.133  0.056 -0.004
PG -3.953 1.841 5.079 0.009 -0.020 0.018 -0.038 0.015  0.013
SP 1.284 2412 1.146 0.147 -0.020  0.002  0.060 -0.094 0.038
ESC -5.148 1.626 -1.804 0.352 -0.066  0.078  -0.130  0.123  -0.033
NTW -4.156 -0.436  -0.050 0.245 -0.060 -0.017  0.064 -0.120  0.068
TB 1.092 -1.513  -2.864 0.584 -0.077  -0.018 -0.472 0370  -0.340
HS 2.638 0.121 -0.061 -0.037 -0.022  -0.041  0.041 0.004  0.008
PR -5.764 -18.751  1.618 0.082 -0.038  0.019 0244 -0.256  0.117
SQ 0.246 -1.359  -2.618 0.265 0.008 -0.019 0.140 -0.108  0.130
SW -2.335 -2.630 0.366 0.000 0.001  -0.023 -0.088 0.008 -0.060

In addition, regression coefficients were obtained by simulating models
under different data granularity scenarios. Regression coefficients of Model 10 for
Tobacco River were shown (Table 4) because preliminary results showed that the
predictive power of Model 10 had the highest value (R4 = 0.778). Using the data
with different granularities changed the regression coefficient values and signs for
the same stream (Table 4). For example, regression coefficient of air temperature-
upstream temperature gradient (7o — 7w) had the value of 0.023 under 1-hour data
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granularity scenario, whereas the same coefficient had the value of -0.023 under 24-
hour data granularity scenario. As another example, coefficient of discharge gradient
(Q down— Q up) variable was -0.579 under 1-hour scenario, while the same coefficient
had the value of 0.366 under 24-hour scenario.

Table 4

Regression Coefficient Values of Variables in Model 10 for Tobacco River (Dertli,
2021)

Data Granularity Bo B1 B3 Bs Be B7 Bs Bo Bio
1-hour 0,627 0,023 -1,166 -0,579 -0,006 0,019 -0,223 0,138 -0,144
2-hour 0,629 0,023 -1,169 -0,583 -0,006 0,019 -0,224 0,139 -0,145
6-hour 0,868 0,014 -1,43  -0,522  -0,023 0,022 -0,220 0,125 -0,137
12-hour 1,337 0,001 -2,045 0,242 -0,051 0,023 -0,055 -0,001 -0,031
24-hour 1,092 -0,023 -2,630 0,366 0,000 0,001 -0,088 0,008 -0,060
168-hour 0,780 -0,029 -1,383 -0,436 -0,056 0,000 -0,071 -0,016 -0,067
Model Fitness

Mean R’uqj values of all streams for each regression model showed that Model
10 had the highest model prediction power under all data granularity scenarios (Table
5; Figure 3). When mean R’ values of regression under all scenarios were
averaged, Model 10 had the highest model fit with the average mean R’.q; value of
0.548. In addition, model fitness increased with data granularity in most cases
(Figure 3). For example, mean R?.qj of Model 10 increased from 0.418 to 0.842 from
1-hour to 168-hour scenarios. Moreover, average mean R’.q of all models under 1-
hour scenario was 0.255, whereas average mean R’u.i of models under 168-hour
scenario was 0.680.
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Table 5

Mean Adjusted Correlation (Raqj.) Values of Each Model by Data Granularity
across All Streams (Dertli, 2021)

Data Granularity (h)
Model 1 2 6 12 24 168 Average
1 0.139 0.142 0.149 0.198 0.315 0.498 0.240
2 0.094 0.098 0.108 0.133 0.202 0.415 0.175
3 0.188 0.209 0.207 0.226 0.311 0.499 0.273
4 0.205 0.209 0.225 0.253 0.340 0.571 0.301
5 0.278 0.284 0.309 0.368 0.502 0.732 0.412
6 0.253 0.257 0.279 0.360 0.485 0.737 0.395
7 0.329 0.336 0.367 0.502 0.515 0.754 0.467
8 0.258 0.375 0.391 0.453 0.591 0.812 0.480
9 0.332 0.336 0.358 0.45 0.587 0.823 0.481
10 0.418 0.423 0.447 0.563 0.598 0.842 0.548
11 0.312 0.320 0.342 0.419 0.536 0.793 0.454
Average 0.255 0.272 0.289 0.357 0.453 0.680
Model Selection

Results showed that Model 10 had the highest model weight for most of the
streams (i.e., 62.5% of all streams) under 1-hour and 2-hours scenarios (Table 6;
Figure 4). Model 10 also had the highest percentage under 6-hours (50.00 %), 12-
hours (43.75 %) and 168-hours (31.25 %) scenarios. However, Model 11 had the
highest percentage (31.25 %) under 24-hours granularity scenario (Table 6).
Moreover, as data granularity increased, number of models that had the highest
model weight for at least one of the streams increased. For example, there were only
4 models (Model 8, Model 9, Model 10 and Model 11) that appeared to have the
highest model weight for at least one stream under 1-hour granularity scenario, yet
we observed 6 models (Model 1, Model 5, Model 7, Model 8, Model 10 and Model
11) that had the percentage value greater than zero (Figure 4) under 168-hours
granularity scenario.
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Figure 2

Mean Adjusted Correlation (Ra4i) Values of Models across Data Granularity
Scenarios (Dertli, 2021)
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Table 6

Percentage (%) of Streams Where Each Model Had the Highest Model Weight (w)
Across Levels of Data Granularity (Dertli, 2021)

Models

Data granularity (hour) 1 2 3 4 5 6 7 8 9 10 11 Total
1 0 0 0 0 0 0 0 625 625 6250 25.00 100

2 0 0 0 0 0 0 0 6.25 0 62.50 31.25 100

6 0 0 0 0 0 0 0 12.50 0 50.00 37.50 100

12 0 0 0 0 0 0 1875 6.25 625 4375 25.00 100

24 0 0 0 0 6.25 6.25 0 25.00 12.50 1875 31.25 100

168 6.25 0 0 0 6.25 0 6.25  25.00 0 31.25 25.00 100
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Figure 3

The Percentage (%) of the Models Having the Highest Model Weight at Least One
Stream for Each Data Granularity with June-October 2016 Data (Dertli, 2021)
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Discussion and Conclusions

Regression Coefficients across Different Streams and Data Granularity
Scenarios

In this study, we used Andrews’ (2019) linear regression models to predict
temperature gradients in Michigan’s streams. There were two main advantages of
using these statistical models. First, these statistical models did not require complex
mathematical calculations and extensive datasets. This is an important feature of
statistical models because they make complex environmental variables (e.g.,
shortwave solar radiation) simpler to parameterize to be included in models (Cheng
& Wiley, 2016). Moreover, less need for extensive datasets reduces the time, effort
and financial resources that must be invested in data collection procedures. Second,
regression coefficients clearly revealed the magnitude and type of the relationship
between environmental variables and the response variable. To illustrate, if a
coefficient had negative sign, then that parameter was conversely related with the
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response variable. This information was useful for understanding thermal dynamics
in streams and most effective factors that influence the temperature gradient.
Furthermore, regression coefficients could be used for testing scenarios that reflect
various environmental conditions (e.g., groundwater withdrawal, air temperature)
(Caldwell et. al., 2014; Andrews, 2019). Therefore, observing the response of the
regression coefficients to different characteristics of streams and data granularity was
important to have a better perspective on these linear regression models.

Our results revealed that the coefficient value of the same parameter varied
across the streams within the same data granularity. This was an expected outcome
considering different characteristics of each stream. For example, a further analysis
on stream data revealed that average upstream discharge values varied substantially
across streams. For example, average upstream discharge (Q .») ranged between
0.035 m®/s (Hasler Creek) and 1.618 m>/s (Carp River) across streams between June-
October 2016. Likewise, average upstream temperature (7 .») varied between 12.873
°C (Cedar River) and 19.346 °C (Hasler Creek) within the same time period.
Therefore, we observed wide range of coefficient values across streams. In other
words, each model (e.g., Model 10) was stream-specific even though all model
parameters were commonly applied for all streams. Certainly, this also resulted in
different model performances for each stream.

Our results also revealed that the model coefficient values in Model 10
changed across data granularity scenarios for Tobacco River. In other words, the
weight of some model parameters on model predictions varied between granularity
scenarios. This was a result of lower number of data points and lower variation across
these data points that was caused by averaging the observations (Dertli, 2021).
Consequently, the weight of each parameter changed across the granularity
scenarios. In addition, the sign changes in model coefficient of the same parameter
indicated parameter instability, which is an indicator of high levels of
multicollinearity (Dertli, 2021). This situation has been addressed by many other
studies in literature. For example, Mason & Perreault (1991) concluded that low
sample size (e.g., n = 30) exacerbated the influence of multicollinearity in multiple
regression analysis. Furthermore, Kroll & Song (2013) revealed that the effects of
multicollinearity in regression models that were developed with ordinary least
squares (OLS) increased with smaller sample size.
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The Effect of Data Granularity on Model Fitness

As Model 10 was the most complex regression model with eight
environmental parameters, Model 10 had the highest model prediction power in all
data granularity scenarios (Table 5; Figure 3). Model 8 and Model 9 were other two
models, which had the highest mean adjusted correlation coefficient values. One
common feature of all these models was that they had day length (S) (i.e., Model 8)
or altitude angle («) (i.e., Model 9) or both (i.e., Model 10) as predictor variables.
Another common feature was that they all had separated heat transfer variables (i.e.,
ATup, ATbase, and ATrase) rather than cumulative heat transfer variable (i.e., 4T7ow).
Separating cumulative heat transfer variable into three different predictor variables
increased the explanatory power of models since each these variables reflects
different environmental processes separately. Model 1, Model 2, Model 3 and Model
4 were diverged from the rest of the models as they had significantly lower prediction
power compared to other models (Figure 3). None of these models included neither
day length (S) nor altitude angle («). In other words, including at least one of these
predictor variables substantially increased model fit. Therefore, we concluded that
these variables were very important in temperature gradient predictions. This
conclusion was reasonable because these variables were included in the models to
reflect the influence of exposure time of streams to the solar radiation, and to
illustrate the importance of solar radiation in temperature dynamics in riverine
systems, which was addressed in various studies in literature (Dingman, 1972;
Sinokrot & Stefan, 1993; Sridhar et. al., 2004; Dugdale et. al., 2018).

In our study, it was clearly shown that higher data granularity resulted in
higher overall model fit (Table 5; Figure 3). As stated in Dertli (2021), this might be
a consequence of reduced sample size (i.e., number of observations) with the
aggregation of observations by taking their average. However, further observations
in the same study showed that higher data granularity reduced the model fit for some
streams. In other words, higher data granularity does not always result in high model
fit. More legitimate reason was unique characteristics of streams that resulted in
different outcomes under each data granularity scenarios. For example, the value of
R?aqj. of Model 10 for Tobacco River under 12-hours granularity scenario was lower
when compared to the same value under 6-hours data granularity scenario (Dertli,
2021). However, in the same study, it was shown that the value of R%uq;. of Model 10
for Carp River under 12-hours data granularity was higher than the same value under
daily data granularity. To draw a better picture of the variations between stream
characteristics, we obtained average downstream stream temperature and average
downstream discharge values of each stream as provided in Table Al.
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As mentioned before, the unique characteristics of streams were already
reflected in the responses of model coefficients to changing data granularities. In
addition to our findings, Dertli (2021) showed that parameter coefficients for 47y,
ATpase, and ATpase had different responses to data granularity change from hourly to
weekly for each stream. This implied that different responses of model parameters
caused the variations between increase or decrease patterns of model fit (i.e., R%ad;.)
across data granularity scenarios for each stream.

All these results showed that the unique characteristics of streams are
determining factor of the model fit and they influence response of the model
coefficients to different data granularity scenarios. Although overall model fit
increased with higher data granularity in overall, it is not possible to propose a
universal rule, such as “high data granularity should be used to achieve high model
performances”. Moreover, selected data granularity may not be useful for answering
particular research or environmental management questions, even though the models
yield robust predictions. For example, using hourly stream temperature estimates to
predict seasonal fish distributions would not be appropriate (due to the temporal scale
mismatch) even if model fit is higher with hourly data granularity. Therefore, it is
not possible to suggest the “best” data granularity for all modeling approaches in
environmental management practices. However, arbitrary selection of data
granularity should be avoided because it can have consequences in model-based
decision-making processes in environmental sciences. Since the ecological relevance
of data granularity should be as important as the model prediction power, regression
models should be designed to have the highest model fit with the most ecologically-
relevant data granularity.

The Effect of Data Granularity on Model Selection

Model weight was a useful indicator of the level of model complexity-model
fit balance. High model weight (i.e., maximum value of 1) of a model was an
indicator of high model fit with the minimal number of explanatory variables
compared to the other models that were included in the model weight analysis. The
percentages that are shown in the results (Figure 4) indicated the proportion of the
total number of streams (n = 16) for which a model had the highest model weight.
For example, Model 10 had the highest model weight for 62.5% of all streams, while
Model 11 had the highest model weight for 25% of all streams. This revealed the
best possible model selection for each data granularity scenario by taking all streams
into account. No model had the highest model weight for all streams in all data
granularity scenarios. For example, Model 8, which did not include altitude angle
(a), had the highest model weight for 6.25% of streams (n = 1) with hourly data
granularity. On the other hand, Model 9, lacking day length (S) parameter, had the
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highest model weight for another stream within the same data granularity scenario
(Table 6). In other words, a particular environmental variable (e.g., day length) may
be an important determinant of model predictions for some streams, while it may not
be for the other streams. This, again, highlighted the importance of the stream
characteristics on model evaluation.

Despite the fact that Model 10 had the highest model weight for the majority
of streams in general, increasing data granularity resulted to some changes in model
selection results, such that, less complex models (e.g., Model 1, Model 5, Model 6,
Model 7) appeared to have highest model weight for more streams with higher data
granularity scenarios (i.e., daily and weekly). In other words, the influence of model
complexity on model fit may have decreased with higher data granularity. This
conclusion was congruent with the relationship between model predictive power and
data granularity. Since model predictive power generally increased with higher data
granularity, higher model predictive powers were achieved with a smaller number of
model parameters. This conclusion implied that less complex models may be more
useful and efficient to predict response variables for higher data granularities. For
example, Arismendi et. al. (2014) evaluated stream temperature predictions simple
linear regression model that only included regional air temperature. They averaged
daily air temperatures into weekly air temperatures, and they found that their model
had an average Nash—Sutcliffe efficiency (NSE) value of 0.86. Although NSE and
adjusted correlation coefficient (R%q.) use slightly different methods to evaluate
model fit, explaining 86% of the variation between observed and predicted values
can be considered a significantly high model performance for such simple model.
Therefore, selection of high data granularities in data may be advantageous since it
may allow modelers to adopt simple models for environmental predictions. By using
such simple models, researchers may avoid dealing with complicated models,
extensive data collection requirements, and possible effects of multicollinearity.

Conclusions

1. Selection of data granularity can affect the model coefficients (both
magnitude and sign). This may result in biases in interpretation of
environmental variables, and consequently can lead to a mismanagement of
ecosystems. In addition, the chance of having multicollinearity in models can
increase with higher data granularity. Multicollinearity can also cause
misinterpretations of environmental variables especially when parameter
instability in the model coefficients occur.

2. Model fitness may be affected by data granularity selection, which may lead
to misevaluation of models. Moreover, characteristics of the streams
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determine the influence of higher data granularity on model prediction
power. For some streams, higher data granularity increases the model fitness
while it reduces model fitness for other streams. Therefore, it is not possible
to conclude that higher data granularity certainly results in higher model
fitness. Although we did not address the issue in our study, selection of time
period (e.g., July data) may also potentially influence the relationship
between data granularity and model prediction power (Dertli, 2021).

3. Selection of best models based on the rule of parsimony may be influenced
by the selection of data granularity. Since higher data granularity decreases
the number of data points, it can make simpler models better predictors. In
addition, selection of data granularity may change the significance of
environmental variables in model parsimony. Therefore, data granularity
selection is important for model designing processes.

4. Certainly, our study did not propose such data granularity type that should be
used to obtain high model robustness in general sense. However, we have
shown that evaluation of model fit, model selection and interpretation of the
model results and environmental variables can substantially vary with data
granularity selection. Therefore, we highly recommend researchers avoid
arbitrary choice of data granularity and make data granularity selections
based upon their relevance to their research and management purposes.
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Appendix
Table A1

Observed Average Stream Temperature and Average Discharge Values of Streams
between June-October in 2016

Stream ﬁ Tdown Qup Qdown
BL 15.148 15.412 0.830 0.727
CR 17.286 17.269 1.618 1.510
CC 14.371 14.408 0.562 0.443
MG 18.232 17.780 0.136 0.150
PK 17.107 17.481 0.477 0.551
BF 16.147 15.300 0.127 0.221
CP 17.286 17.269 1.618 1.510
PG 17.223 16.837 0.503 0.667
Sp 17.550 17.452 0.190 0.287
ESC 17.476 17.424 0.986 1.268

NTW 21.190 20.355 0.790 0.259
TB 16.350 16.905 0.518 0.526
HS 19.286 17.835 0.035 0.089
PR 17.477 17.813 0.287 0.323
SQ 16.247 17.207 0.036 0.122
SW 19.234 19.511 0.453 0.093

Note. T,,: average upstream temperature (°C), Tyoun: average downstream temperature (°C), Qup :

average upstream discharge (m®/s), Q owr : average downstream discharge (m*/s).
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Extended Turkish Abstract
(Genigsletilmis Tiirkce Ozet)

Veri Taneselliginin Michigan Akarsularimin Sicakhk Gradyan Modellemesi Uzerindeki Etkisi

Akarsu sicakliklarinin tatlt su ekosistemlerindeki fiziksel, kimyasal ve biyolojik siireclerde
onemli bir rolii bulunmaktadir. Bu sebeple akarsu sicakliginin, su kalitesi ve ekosistem islevselliginin
onemli parametrelerinden birisi oldugu diisiiniilmektedir (Guo ve ark., 2019; Hamid ve ark., 2020). Su
sicakligi, bir¢ok farkli tiiriin (6r. birincil iireticiler, sucuk omurgali ve omurgasizlar) hayatta kalma, tireme
ve yayilma siireglerini etkiledigi i¢in, su sicakliklarini belirleyen faktorlerin anlasilmasi kritik bir 6nem
arz etmektedir (Iversen, 1971; Jackson ve ark., 2007; Zorn ve ark., 2004; Nuhfer ve ark., 2017).
Literatiirde akarsu sicakliklarini belirleyen farkli meteorolojik (6rn. hava sicakligt) ve hidrolojik (6rn.
yagis) siiregler ele alinmistir (Du ve ark., 2020). Ancak bu ekosistemlerin agik sistemler olmasi,
dolayistyla bu siireglerin birbiriyle de etkilesmesi akarsu sicakliklarina etki eden faktorlerin anlagiimasini
zorlagtirmaktadir. Bu noktada, istatistiksel modeller arastirmacilara karmasik sistemlerin agiklanmasinda
yardimci olmaktadir.

Istatiksel modeller literatiirde dogal siireglerin aciklanmasinda sik¢a kullanilmaktadir. Ornegin,
regresyon modellerinin degisken katsayilart sayesinde bu siireglerin birbirleriyle etkilesimi matematiksel
olarak aciklanabilmektedir (Bender, 2009). Ayrica bu sayede ¢evresel degisimlerin (6rn. iklim degisikligi,
yeralt1 sularinin ¢ekilmesi) akarsu termodinamigine etkileri tahmin edilebilmektedir (Mantua, & Tohver,
2010; Andrews, 2019). Ancak istatistiksel modeller ¢evresel arastirmalar i¢in ¢ok dnemli olsa da bu
modellerden alinacak ¢iktilar kullanilan verinin yapisina oldukg¢a bagli olabilmektedir (Akossou, & Palm,
2013). Ornegin, veri taneselligi verideki gdzlem sayisini, ¢oklu dogrusal baglanti (multicollinearity)
miktarini ve model ¢iktilarini etkileyebildiginden verinin 6nemli yapisal 6zelliklerinden sayilmaktadir
(Dertli, 2021). Ancak bir¢ok ¢alismada, modellerde kullanilan veri taneselligi verinin ekolojik anlamina
uygun olarak secilmesine ragmen, diger birgok calismada kullanilan veri taneselligi keyfi olarak
secilmektedir ya da bu seg¢imin sebebi agiklanmamaktadir. Bu keyfi se¢im, kullanilan modellerin
basarisinin degerlendirilmesinde ve model ¢iktilarinin yorumlanmasinda yanilgilara sebep olabilmektedir
(Stefan, & Preud’homme, 1993; Pilgrim ve ark., 1998; Webb ve ark. 2003).

Bu ¢alismada, kullanilan veri taneselliginin dogrusal regresyon modelleri ve bu modellerin
yorumlanmasindaki etkisi ele alinmistir. Bu ¢aligmada amaglanan hedefler:

1. Regresyon degisken katsayilarinin farkli veri taneselligi senaryolarinda degerlendirilmesi
ve yorumlanmasi,

2. Regresyon model uyumunun (fitness) degisiminin farkli veri taneselligi senaryolarinda
degerlendirilmesi ve yorumlanmasi,

3. Parsimoni ilkesine bagli olarak model se¢iminin farkli veri taneselligi senaryolarinda
degerlendirilmesi ve yorumlanmasi,

olarak belirlenmistir. Bu hedefler dogrultusunda, veri taneselliginin regresyon modelleri ve ¢iktilart
iizerine ki etkilerinin ayrintilt bir sekilde analiz edilmesi amaglanmustir.

Bu ¢aligmada, Michigan’da farkli bélgelerde bulunan 16 akarsudan elde edilen veriler, Andrews
(2019) tarafindan gelistirilen regresyon modelleri iizerinde, su sicakligi degisiminin (sicaklik gradyan,
AT) (°C) tahmin edilmesi amaciyla secilmis ve kullanilmigtir. Andrews (2019) tarafindan gelistirilen bu
11 model, hiyerarsik model gelistirme yontemi ile her adimda modele yeni parametreler eklenerek dizayn
edilmistir. Bu akarsulara ait verilerde bulunan gézlemlerin ortalamasi farkli zaman dilimlerine gére alinip,
1-saat, 2-saat, 6-saat, 12-saat, 24 saat, 168-saat olmak iizere, 6 farkli veri taneselligi senaryosu elde
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edilmistir. Bu farkli senaryolara sahip veriler regresyon modellerinde yiiriitiilerek model ¢iktilart elde
edilmistir. Regresyon katsayilar1 bu simiilasyonlar neticesinde elde edilmistir. Model uyumu modellerin
ciktilariin gozlemlerle olan korelasyon miktarina bagl olarak degerlendirilmistir. Farkli veri taneselligi
senaryolarinin model se¢gimde neden oldugu degisiklikler Akaike Bilgi Kriteri (Akaike’s Information
Criterion-AIC) degerleri kullanilarak elde edilen model agirliklarina bagli olarak degerlendirilmistir
(Akaike, 1973).

Regresyon katsay1 analizi iki 6nemli bulguyu ortaya ¢ikarmistir. Birincisi, Model 10 1-saat veri
taneselligi senaryosunda biitiin akarsular i¢in yiriitiildiiglinde ayni model parametre katsayilarinin
degerlerinin (6rn. hava-su sicaklik farki (7, — 7',)) akarsular arasinda nicelik ve nitelik olarak degismistir.
Ikincisi, aym akarsuya ait veride farkli veri taneselligi senaryolar1 kullanildiginda, Model 10’a ait
parameter katsayilarmin nicelik ve nitelik olarak degistigi gdzlenmistir. Ornegin, hava-su sicaklik farki
(T, — T,) parametre katsayisinin degeri l-saat senaryosunda 0.023 olarak oOl¢iiliirken, 24-saat
senaryosunda -0.023 olarak ol¢iilmiistir. Model uyumluluk analizleri de Onemli bulgular ortaya
koymustur. Ornegin, Model 10°a hava korelasyon degerlerinin (ya da uyumlulugunun) diger modellerden
daha yiiksek oldugu gozlenmistir. Model uyumlulugu analizi ayrica veri taneselliginin artiginin (1-saat’lik
senaryodan 168-saat’lik senaryoya) genel olarak model uyumlulugunu (fitness) artirdigini gostermistir.
Parsimoni ilkesine bagli olarak model secimi analizleri, Model 10’un diger modellere kiyasla daha fazla
sayida akarsu (akarsularin %62,5°1) i¢in daha iyi calistigi gozlemlenmistir. Bununla beraber, veri
taneselligi bu segimlerde degisiklige neden olmustur. Ornegin, 168-saat senaryosunda Model 10 sadece
akarsularin %31.25°1 i¢in diger modellere kiyasla daha iyi ¢alistig1 gozlemlenmistir.

Sonug olarak bu ¢aligma regresyon modelleri ve kullanilan veri yapisi a¢isindan bazi dnemli
sonuclar ortaya koymustur. Ornegdin, regresyon modellerdeki parametre katsayilarimin nicelik ve
niteliginin kullanilan veri taneselligine bagli olarak degisebileceginin gosterilmesi, bu modellerde
bulunan parametrelerin model ¢iktilar1 iizerindeki etkisinin de tanesellige bagli olarak degisebilecegi
gosterilmistir. Bu sonug, modellerde kullanilan parametrelerin (6r. 7, — 7,,) veri taneselligine bagl olarak
akarsu sicakligi tahminlerine olumlu ya da olumsuz olarak etki edebilecegini gdstermistir. Bu durum,
modellerde uygun olmayan bir veri taneselligi kullanildiginda akarsu sicakligina etki eden faktorlerin
yanlis yorumlanmasina sebep olabilecegini gostermistir. Ayrica kullanilan veri taneselliginin model
uyumluluguna dogrudan etki etmesi, bu modellerin uyumluluklarinin degerlendirilmesinde yanlis
yorumlamalara sebebiyet verebilecegi ortaya koyulmustur. Bu durum aslinda uyumlulugu yiiksek olan bir
modelin, modele uygun olmayan bir veri taneselligi kullanildiginda uyumlulugunun diisiik
olciilebilecegini gostermistir. Bununla birlikte, kullanilan veri taneselligi, bir akarsu i¢in kullanilmasi en
uygun olan modelin se¢imini etkileyebileceginden, veri taneselligi se¢ciminin model se¢cimlerinde yanlis
kararlara yol agabilecegi sonucu ortaya ¢ikmigtir.

Suna dikkat ¢ekmek gerekir ki bu calisma hangi veri taneselliginin daha iyi oldugunu ortaya
koymay1 amaglamamistir. Clinkii veri taneselliginin artmasi ya da azalmasi her model veya her durum
icin farkli sonuglar ortaya ¢ikarmaktadir. Bu ¢alismanin asil amaci, keyfi olarak segilen veri taneselliginin
modeller ve model yorumlamalari tizerindeki muhtemel etkilerine dikkat cekmek ve modellemecilere
daha genig bir bakis acist sunmaktir. Modellerde kullanilan veri taneselliginin keyfi olarak degil,
arastirmanin cevap bulmaya calistig1 sorulara uygun olarak se¢ilmesi, bu modellerin uygunlugunun ve
basarisinin objektif bir bigimde degerlendirilmesinde bilyiik onem teskil edecektir.
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