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Abstract 

Stream temperature is a critical characteristic for aquatic ecosystems. Therefore, it is crucial to 
understand the factors that take place in thermodynamic processes in these ecosystems. Regression 
models are useful tools that help us comprehend and explain the drivers of these thermal processes 
since they can be used for quantifying the magnitude and the type of the relationship between the 
independent variables (e.g., air temperature, discharge) and the response variable (e.g., stream 
temperature). However, selection of data granularity of data may often be a key decision for modelers. 
Although granularity of data is selected based on the ecological relevance of data to the question of 
interest in many cases, it may arbitrarily be selected by the researchers in many other cases. However, 
data granularity can substantially influence model coefficients, can affect the model predictions, and 
influence evaluation of model fitness and interpretation of model outputs. In this article, we adopted 
regression models and applied different data granularity scenarios to investigate the consequences of 
data granularity selection in modeling approaches. Our findings showed that using different data 
granularities resulted in considerable changes in regression coefficients in the models. Our results 
also revealed that overall model fitness increased with coarser-scale data granularity and model 
selection was influenced by the type of data granularity. This study might be helpful for modelers and 
environmental managers since it highlights the significance of selection of data granularity and 
proposes a different point of view in model design, evaluation and application from the perspective 
of data selection. 
 Keywords: stream temperature, linear regression models, data granularity, data 
aggregation, temporal scale 
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Öz 
 

Akarsu sıcaklıkları sucul ekosistemlerde kritik öneme sahiptir. Dolayısıyla, akarsulardaki 
termodinamik süreçleri etkileyen faktörleri kavramak önem arz etmektedir. Regresyon modelleri 
bağımsız (örn. havanın sıcaklığı, akı) ve bağımlı (örn. akarsu su sıcaklığı) değişkenlerin birbirleriyle 
olan nicel ve nitel ilişkisini açıklayabildiğinden, bu ısıl süreçleri etkileyen faktörleri kavramamıza ve 
açıklamamamıza yardımcı olan kullanışlı araçlardır. Ancak bu modellerde kullanılan verilerin 
taneselliğinin ya da agregasyonun seçimi modellemeciler için zorlayıcı olabilmektedir. Çoğu 
durumlarda kullanılacak verinin taneselliği ekolojik uygunluğa bağlı olarak seçilse de diğer birçok 
durumda keyfi olarak seçilebilmektedir. Ancak veri taneselliği seçimi, model değişkenlerinin 
katsayılarını, model tahminlerini, model tahminlerinin değerlendirilmesini ve model sonuçlarının 
yorumlanmasını önemli ölçüde etkileyebilmektedir. Bu makalede, veri taneselliği seçiminin etkilerini 
araştırmak amacıyla regresyon modelleri farklı veri taneselliği senaryolarıyla uygulandı. Bulgular, 
veri taneselliği seçiminin regresyon değişken katsayılarını önemli düzeyde etkilediğini gösterdi. 
Ayrıca bulgular veri taneselliğindeki artışın ortalama model tahmin gücünü artırdığını ve veri 
taneselliğinin model seçimlerinde etkili olduğunu ortaya çıkardı. Bu çalışma veri taneselliği seçiminin 
önemini vurgulaması, model tasarımı, değerlendirilmesi ve uygulanması konularında farklı bir bakış 
açısı sunması sebebiyle, modellemecilere ve yöneticilere yararlı olabilir. 
 Anahtar sözcükler: akarsu VÕFaklÕğÕ, GoğrXVal reJreV\on moGelleri, Yeri taneVelliği, veri 
kümelenmeVi, zamanVal öloek   
 

Introduction 

Stream temperature plays a key role in the physical, chemical, and biological 
dynamics in freshwater ecosystems. Therefore, it is often considered as one of 
critical parameters in evaluation of water quality and ecosystem functioning in the 
literature (Neumann et. al., 2003; Ducharne, 2008; Ficklin et. al., 2013; Guo et. al., 
2019; Hamid et. al., 2020). As water temperature influences the survival, 
reproduction and distribution of species from different taxa (e.g., primary/secondary 
producers, aquatic invertebrates, fish and other aquatic vertebrates), it is crucial to 
understand the physical determinants of water temperature in these ecosystems 
(Iversen, 1971; Jackson et. al., 2007; Zorn et. al., 2004; Nuhfer et. al., 2017).  

In literature, various environmental parameters are used to explain the driving 
factors of stream temperatures. Du et. al. (2020), for example, propose that both 
meteorological (e.g., air temperature) and hydrological (e.g., precipitation) processes 
affect stream temperatures. In other studies, these meteorological and hydrological 
processes are diversified into different sub-factors. For example, Cheng and Wiley 
(2016) describe the radiative processes such as shortwave and longwave solar 
radiation as explanatory meteorological factors in thermal dynamics of streams 
(Figure 1). Hydrological characteristics such as water depth, surface area, runoff, and 
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groundwater contribution/withdrawal are also included as the key processes that 
determine the thermodynamics in a stream (Zorn et. al., 2008; Cheng, & Wiley, 
2016; Du et. al., 2020; Andrews, 2019; Dertli, 2021). As the stream ecosystems are 
open systems, all these processes interact with each other, which makes 
understanding individual roles of these physical processes in stream thermodynamics 
hard to comprehend for researchers. At this point, statistical models help researchers 
explain these roles in these complex natural systems.  

Statistical models are frequently used to understand the thermal dynamics in 
freshwater ecosystems. Regression models, for example, are able to quantify the 
influence of each parameter in the model on the response variable (Bender, 2009). 
Therefore, these models are very useful to evaluate the potential effects of different 
stress factors (e.g., climate change, groundwater withdrawal) on these valuable 
systems as they can make predictions on the trends of thermal dynamics under 
alternating environmental conditions (Mantua et. al., 2010; Andrews, 2019). Once 
successfully designed for a certain group of streams (e.g., cold streams), statistical 
models can reduce the need for extensive data collection, which can reduce the 
financial resources, time and labor that are spent in data collection procedures 
(Dertli, 2021). In addition, model predictions can be useful in making future 
projections on the population dynamics of various aquatic organisms such as fish 
(Chang et. al., 2018; Nuhfer et. al, 2017), and play critical roles in decision-making 
processes on environmental issues.   

Although statistical models are useful tools for understanding the nature of 
thermodynamics in streams, the explanatory power of these models may depend on 
the structure of input data (Akossou & Palm, 2013). The type of time aggregation, 
or data granularity –defined as a new term in environmental studies by Dertli (2021)– 
is one of the important structural features of the data, since it directly influences the 
number of data points (e.g., sample size) and the collinearity between the model 
parameters (Stefan & Preud’homme, 1993; Pilgrim et. al., 1998). Because it can 
change the outputs of regression models, data granularity is often important. In 
literature, selection of data granularity is generally based on the ecological relevance 
of the selected data granularity to the research question of interest, and researchers 
often provide strong reasoning for data granularity selected in their studies. For 
example, Chen et. al. (1998) adopt hourly data granularity to simulate stream 
temperatures based on the shading dynamics of topography and vegetation 
throughout the day. In another study, Zorn et. al. (2004) focus on July mean 
temperatures as a reference temperature for Michigan streams because of it indexed 
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conditions important to fish growth, survival, and abundance. However, in many 
other cases, researchers arbitrarily select the type of data granularity used in their 
models, even though arbitrary selection may cause misevaluations of model 
predictions and biases in model selection processes (Dertli, 2021).  

Figure 1 

Environmental Processes That are ønYolYeG in Stream Thermodynamics (Dertli, 
2021)  

 

So far, different studies adopt different approaches on the issue of data 
granularity selection, develop different perspectives and reveal various 
consequences of these selections (Stefan, & Preud’homme, 1993; Pilgrim et. al., 
1998; Webb et. al., 2003). However, there are still only a few studies that focus on 
this issue, considering the substantial effects of data granularity selection on 
evaluation, selection, and interpretation of linear regression models. Therefore, in 
this paper, we focus on the response of linear regression models designed by 
Andrews (2019) to simulate effects of streamflow on temperature gradient (i.e., 
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change in water temperature between upstream and downstream locations) to 
changes in granularity of the data used in models. Our study objectives are: 

1. To evaluate and interpret the response of model coefficients to different data 
granularity scenarios, 

2. To evaluate the fitness of the regression models under different data 
granularity scenarios, 

3. To evaluate influence of data granularity selection on the selection of the 
most parsimonious (i.e., high model fitness with low model complexity) 
model.  

Since we adopt different approaches and evaluate the models based on 
different characteristics (e.g., model fitness and parsimony) to observe the response 
of regression models to different granularity scenarios, this paper can give 
researchers a broad perspective on possible consequences of their data granularity 
selection. 

 
Methods 

 
Study Site, Data Collection and Data Revision 

The streams were selected by Andrews (2019) for data collection throughout 
State of Michigan. Andrews (2019) collected data from 21 streams with various 
periods (e.g., between July and November) in 2015 and 2016 (Table 1). He collected 
water temperature and water pressure data by setting HOBO® U20 Water Level 
Loggers at both upstream and downstream data collection points. These data were 
collected in 15-minute intervals and averaged into hourly interval. Water pressure 
data were used to calculate upstream and downstream discharge after obtaining 
stream width and stream depth estimations for both upstream and downstream data 
collection stations. Stream velocity data were also collected for both stations by 
using SonTek® Flowtracker. Methods for discharge calculations are explained in the 
study of Andrews (2019) in details. In addition, Andrews (2019) collected air 
temperature and barometric pressure data from paired streams that were located in 
close range by using Monarch® Track-It data loggers with 15-minute time intervals. 
These data were also averaged into hourly interval. 

 In addition to air temperature, water temperature and discharge values, 
Andrews (2019) calculated other environmental variables, such as altitude angle, to 
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use them as model parameters. Calculations for these environmental variables are 
explained in the study of Andrews (2019) in details. We obtained data for all 
environmental variables in hourly time interval from Andrews’s (2019) study to use 
in our study.  

We revised the data by detecting and eliminating outliers, also by trimming 
the data within June-October period for both 2015 and 2016. We selected this period 
for our study since it covers summer season, which is important for fish abundance 
(Zorn et. al. 2004). Another reason was that this period was the longest range of data 
that is found commonly for all streams. Since most of the stream’s data started from 
late July in 2015, we only used 2016 data in this study (Dertli 2021). In addition, we 
used the data from 16 out of 21 streams in this study to avoid gaps in data that were 
detected in some streams (Figure 2). 

After data revisions, we aggregated the hourly data by averaging the 
observations into 2-hours, 6-hours, 12-hours, daily and weekly time intervals. In the 
end, we obtained 1-hour (hourly), 2-hours, 6-hours, 12-hours, 24-hours (daily) and 
168-hours (weekly) data granularity scenarios. 
 
Hierarchical Model Development and Model Simulation 

Andrews (2019) designed 11 linear regression models to obtain temperature 
gradient predictions (the difference between downstream and upstream water 
temperatures). He adopted hierarchical model development, in which models were 
formed starting from the least complex (i.e., Model 1) to the most complex (i.e., 
Model 10). At each step, a new parameter was included in the model, or an existing 
model parameter was replaced with another model parameter (Table 2). Model 11, 
however, was adopted from a physical model that was proposed by Magnusson et. 
al. (2012). In our study, these models were simulated for each stream and each data 
granularity scenario.  

Model Fitness and Selection 

We used adjusted correlation coefficient (R2adj.) to evaluate the amount of fit 
between the trends of observed and predicted temperature gradient (ǻT). Adjusted 
correlation coefficient was calculated based on the equation: 

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎.
2 = 1 −   𝑆𝑆𝑆𝑆𝑆𝑆/(𝑛𝑛−𝑝𝑝)

𝑆𝑆𝑆𝑆𝑆𝑆/(𝑛𝑛−1)
 , 
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where n stands for the number of observations, p stands for the number of 
parameters, SSE and STT stand for sum of squared residuals error and total sum of 
squares, respectively. To find the most parsimonious model under given conditions, 
we used model weight (Ȧ) of models for each stream. To find model weights, we 
obtained Akaike’s Information Criterion (AIC) values based on Akaike (1973). AIC 
values were obtained by using the equation: 

ܥܫܣ = 2݇ − 2 ݈݊ ݈݊ ൫(ܽݐܽ݀)ܮ൯ ; and (ܽݐܽ݀)ܮ = −(𝑛𝑛
2

) ή  ,(ܧܵܵ)௘݃݋݈

where L stands for the likelihood, k stands for the unknown parameters and n 
stands for the sample size (Seber, & Wild, 1989). We used AIC values to obtain 
model weight as shown in the equation: 

߱௜ =
௘௫𝑝𝑝 (−ο೔మ )

σ ௘௫𝑝𝑝 (−ο೔మ )ಾ
೘

 , 

where M is the total number of models, m is the model number, and ǻi is the 
difference between AIC values of model i and the AIC value of the best-fitting model 
(Andrews, 2019). By using model weight, we compared the explanatory power of 
models and their model complexity based on the law of parsimony.  

Table 1  

List of the Streams That Are Used in This Study (Andrews, 2019)  

Stream Abbr. Region Upstream  
Latitude 

Upstream  
Longitude 

Downstream  
Latitude 

Downstream 
Longitude 

Pokagon Creek PK SLP 41.89517 -86.162632 41.915803 -86.175679 
Pigeon River PG SLP 42.932887 -86.081828 42.91636 -86.146075 
Nottawa Creek NTW SLP 42.192564 -85.060415 42.195998 -85.104618 
Tobacco River TB SLP 43.909194 -84.697312 43.929905 -84.666327 
Hasler Creek HS SLP 43.042332 -83.423206 43.083594 -83.442947 
Prairie River PR SLP 41.801832 -85.116614 41.832568 -85.165065 
Swan Creek SW SLP 41.90477 -85.297885 41.921249 -85.312047 
Cedar Creek CC NLP 44.375846 -85.972647 44.369588 -85.999598 
Cedar River CR NLP 44.956875 -85.132748 44.968664 -85.138993 
Black River BL NLP 45.070651 -84.283728 45.089439 -84.284929 
Butterfield Creek BF NLP 44.273249 -85.094087 44.256377 -85.03362 
Morgan Creek MG UP 46.519698 -87.504502 46.521351 -87.494782 
Spring Creek SP UP 46.512909 -90.156133 46.513418 -90.177011 
Carp River CP UP 46.509131 -87.418924 46.510534 -87.388497 
Escanaba River ESC UP 46.420206 -87.797962 46.398398 -87.770883 
Squaw Creek SQ UP 46.057035 -87.18974 45.985396 -87.140559 
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Figure 1  

Locations of Streams That Are Used in This Study (Dertli, 2021) 

 

 
Table 2 

List of Multiple Linear Regression Models (Magnusson et. al., 2012; Andrews, 2019)  
Model 1 ܶ߂ = ଴ߚ  + )1ߚ  �ܶ�𝑎 −  ௪ܶ) 

Model 2 
ܶ߂ = ଴ߚ  + )1ߚ  �ܶ�𝑎 −  ௪ܶ) + 2ߚ  ൬

ܳ௨𝑝𝑝
ܳ𝑎𝑎௢௪𝑛𝑛

൰ 

Model 3 ܶ߂ = ଴ߚ  + )1ߚ  �ܶ�𝑎 −  ௪ܶ) + ଷ ൫ܳ௨𝑝𝑝൯ߚ  + ߂ସ൫ߚ  ௙ܶ௟௢௪൯ 

Model 4 ܶ߂ = ଴ߚ  + )1ߚ  �ܶ�𝑎 −  ௪ܶ) + ଷ ൫ܳ௨𝑝𝑝൯ߚ  + ߂ସ൫ߚ  ௙ܶ௟௢௪൯ + ହ ൫ܳ𝑎𝑎௢௪𝑛𝑛ߚ −  ܳ௨𝑝𝑝൯ 
Model 5 ܶ߂ = ଴ߚ  + )1ߚ  �ܶ�𝑎 −  ௪ܶ) + ଷ ൫ܳ௨𝑝𝑝൯ߚ  + ߂ସ൫ߚ  ௙ܶ௟௢௪൯ + ହ ൫ܳ𝑎𝑎௢௪𝑛𝑛ߚ −  ܳ௨𝑝𝑝൯ +  (ܵ)଺ߚ 
Model 6 ܶ߂ = ଴ߚ  + )1ߚ  �ܶ�𝑎 −  ௪ܶ) + ଷ ൫ܳ௨𝑝𝑝൯ߚ  + ߂ସ൫ߚ  ௙ܶ௟௢௪൯ + ହ ൫ܳ𝑎𝑎௢௪𝑛𝑛ߚ −  ܳ௨𝑝𝑝൯ +  (ߙ)଻ߚ 
Model 7 ܶ߂ = ଴ߚ  + )1ߚ  �ܶ�𝑎 −  ௪ܶ) + ଷ ൫ܳ௨𝑝𝑝൯ߚ  + ߂ସ൫ߚ  ௙ܶ௟௢௪൯ + ହ ൫ܳ𝑎𝑎௢௪𝑛𝑛ߚ −  ܳ௨𝑝𝑝൯ + (ܵ)଺ߚ  +  (ߙ)଻ߚ
Model 8 οܶ = ଴ߚ + )1ߚ �ܶ�𝑎 − ௪ܶ) + ଷ൫ܳ௨𝑝𝑝൯ߚ + ହ൫ܳ𝑎𝑎௢௪𝑛𝑛ߚ − ܳ௨𝑝𝑝൯ + (ܵ)଺ߚ + ൫ο଼ߚ ௨ܶ𝑝𝑝൯ + ଽ(οߚ ௕ܶ𝑎𝑎௦௘) + 1଴(οߚ ௢ܶ௩௘௥) 
Model 9 οܶ = ଴ߚ + )1ߚ �ܶ�𝑎 − ௪ܶ) + ଷ൫ܳ௨𝑝𝑝൯ߚ + ହ൫ܳ𝑎𝑎௢௪𝑛𝑛ߚ − ܳ௨𝑝𝑝൯ + (ߙ)଻ߚ + ൫ο଼ߚ ௨ܶ𝑝𝑝൯ + ଽ(οߚ ௕ܶ𝑎𝑎௦௘) + 1଴(οߚ ௢ܶ௩௘௥) 
Model 10 οܶ = ଴ߚ + )1ߚ �ܶ�𝑎 − ௪ܶ) + ଷ൫ܳ௨𝑝𝑝൯ߚ + ହ൫ܳ𝑎𝑎௢௪𝑛𝑛ߚ − ܳ௨𝑝𝑝൯ + (ܵ)଺ߚ + (ߙ)଻ߚ + ൫ο଼ߚ ௨ܶ𝑝𝑝൯ + ଽ(οߚ ௕ܶ𝑎𝑎௦௘) + 1଴(οߚ ௢ܶ௩௘௥) 

Model 11 
οܶ = ଴ߚ + )1ߚ �ܶ�𝑎 − ௪ܶ) + ଽ(οߚ  ௕ܶ𝑎𝑎௦௘) + 1଴(οߚ  ௢ܶ௩௘௥) +  )11ߚ 

1
ܳ௨𝑝𝑝

כ ൫( �ܶ�𝑎 + 273.16)ସ + ( ௪ܶ + 273.16)ସ)൧

+ 12ߚ ቈ
1
ܳ௨𝑝𝑝

כ (݁𝑆𝑆 −  ݁𝑆𝑆 )቉ + )1ଷߚ 
1
ܳ௨𝑝𝑝

כ  (ߙ 

Note. ǻ7� temperature gradient (℃), Ta: Air Temperature (℃), Tw: Upstream temperature (Ԩ), Qup: Upstream 

discharge (m3/s), Qdown: Downstream discharge (m3�s), ǻ7flow: Cumulative temperature gradient (℃), S: Day 

length, Į� Altitude angle, ǻ7up: Upstream temperature gradient (℃), ǻ7base: Baseflow temperature gradient (℃), 

ǻ7over: Overflow temperature gradient (℃). 
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Results 

Regression Coefficients 

Regression coefficients were obtained after model simulations for each 
stream. Only Model 10 coefficient values are shown in Table 3, since previous 
studies showed that Model 10 had the highest model fit (Andrews, 2019; Dertli, 
2021). Regression coefficients of model parameters varied across streams (Table 3). 
For example, the air temperature-upstream temperature gradient (Ta – Tw) parameter 
coefficient had the value of 28.338 in the Carp River model, but a value of -18.751 
in the Prairie River model (Table 3). Likewise, coefficient values of upstream 
discharge (Qup) ranged between -9.301 (Carp River) and 5.079 (Pokagon Creek). 

Table 3  

Intercepts and Regression Coefficients in Model 10 for Each Stream by Using Hourly 
Data Granularity Scenario (Dertli, 2021) 

 Streams Intercept 
(ȕ0) 

Ta-Tw 
(ȕ1) 

Q up 
(ȕ3) 

 

Q down – Q up 
(ȕ5) 

S 
(ȕ6) 

 

Į 
(ȕ7) 

 

ǻ7 up 
(ȕ8) 

 

ǻ7 base 
(ȕ9) 

 

ǻ7 over 
(ȕ10) 

 
BL 0.004 -0.380 -0.872 0.002 0.004 -0.037 -0.060 -0.013 -0.026 
CR 0.982 -0.665 2.810 -0.154 0.005 -0.011 0.097 -0.029 0.015 
CC -3.800 -0.044 0.102 -0.041 -0.001 0.009 0.004 -0.012 0.001 
MG -0.258 7.516 -0.225 0.155 -0.012 -0.015 -0.231 0.186 -0.027 
PK -2.326 -1.105 -1.405 0.072 -0.014 0.027 0.043 -0.105 0.048 
BF 1.690 -0.323 -0.343 0.309 0.053 -0.016 0.020 -0.006 -0.003 
CP 0.500 28.338 -9.301 -0.038 0.018 -5.671 0.133 0.056 -0.004 
PG -3.953 1.841 5.079 0.009 -0.020 0.018 -0.038 0.015 0.013 
SP 1.284 2.412 1.146 0.147 -0.020 0.002 0.060 -0.094 0.038 

ESC -5.148 1.626 -1.804 0.352 -0.066 0.078 -0.130 0.123 -0.033 
NTW -4.156 -0.436 -0.050 0.245 -0.060 -0.017 0.064 -0.120 0.068 
TB 1.092 -1.513 -2.864 0.584 -0.077 -0.018 -0.472 0.370 -0.340 
HS 2.638 0.121 -0.061 -0.037 -0.022 -0.041 0.041 0.004 0.008 
PR -5.764 -18.751 1.618 0.082 -0.038 0.019 0.244 -0.256 0.117 
SQ 0.246 -1.359 -2.618 0.265 0.008 -0.019 0.140 -0.108 0.130 
SW -2.335 -2.630 0.366 0.000 0.001 -0.023 -0.088 0.008 -0.060 

 
In addition, regression coefficients were obtained by simulating models 

under different data granularity scenarios. Regression coefficients of Model 10 for 
Tobacco River were shown (Table 4) because preliminary results showed that the 
predictive power of Model 10 had the highest value (R2adj = 0.778). Using the data 
with different granularities changed the regression coefficient values and signs for 
the same stream (Table 4). For example, regression coefficient of air temperature-
upstream temperature gradient (Ta – Tw) had the value of 0.023 under 1-hour data 
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granularity scenario, whereas the same coefficient had the value of -0.023 under 24-
hour data granularity scenario. As another example, coefficient of discharge gradient 
(Q down – Q up) variable was -0.579 under 1-hour scenario, while the same coefficient 
had the value of 0.366 under 24-hour scenario. 

Table 4  

Regression Coefficient Values of Variables in Model 10 for Tobacco River (Dertli, 
2021) 

Data Granularity ȕ0 ȕ1 ȕ3 ȕ5 ȕ6 ȕ7 ȕ8 ȕ9 ȕ10 

1-hour 0,627 0,023 -1,166 -0,579 -0,006 0,019 -0,223 0,138 -0,144 

2-hour 0,629 0,023 -1,169 -0,583 -0,006 0,019 -0,224 0,139 -0,145 

6-hour 0,868 0,014 -1,43 -0,522 -0,023 0,022 -0,220 0,125 -0,137 

12-hour 1,337 0,001 -2,045 0,242 -0,051 0,023 -0,055 -0,001 -0,031 

24-hour 1,092 -0,023 -2,630 0,366 0,000 0,001 -0,088 0,008 -0,060 

168-hour 0,780 -0,029 -1,383 -0,436 -0,056 0,000 -0,071 -0,016 -0,067 

 
Model Fitness 

Mean R2adj values of all streams for each regression model showed that Model 
10 had the highest model prediction power under all data granularity scenarios (Table 
5; Figure 3). When mean R2adj values of regression under all scenarios were 
averaged, Model 10 had the highest model fit with the average mean R2adj value of 
0.548. In addition, model fitness increased with data granularity in most cases 
(Figure 3). For example, mean R2adj of Model 10 increased from 0.418 to 0.842 from 
1-hour to 168-hour scenarios. Moreover, average mean R2adj of all models under 1-
hour scenario was 0.255, whereas average mean R2adj of models under 168-hour 
scenario was 0.680.    
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Table 5  

Mean Adjusted Correlation (R2adj.) Values of Each Model by Data Granularity 
across All Streams (Dertli, 2021)  

 
Data Granularity (h) 

 

Model 1 2 6 12 24 168 Average 
1 0.139 0.142 0.149 0.198 0.315 0.498 0.240 
2 0.094 0.098 0.108 0.133 0.202 0.415 0.175 
3 0.188 0.209 0.207 0.226 0.311 0.499 0.273 
4 0.205 0.209 0.225 0.253 0.340 0.571 0.301 
5 0.278 0.284 0.309 0.368 0.502 0.732 0.412 
6 0.253 0.257 0.279 0.360 0.485 0.737 0.395 
7 0.329 0.336 0.367 0.502 0.515 0.754 0.467 
8 0.258 0.375 0.391 0.453 0.591 0.812 0.480 
9 0.332 0.336 0.358 0.45 0.587 0.823 0.481 
10 0.418 0.423 0.447 0.563 0.598 0.842 0.548 
11 0.312 0.320 0.342 0.419 0.536 0.793 0.454 

Average 0.255 0.272 0.289 0.357 0.453    0.680 

 
Model Selection 

Results showed that Model 10 had the highest model weight for most of the 
streams (i.e., 62.5% of all streams) under 1-hour and 2-hours scenarios (Table 6; 
Figure 4). Model 10 also had the highest percentage under 6-hours (50.00 %), 12-
hours (43.75 %) and 168-hours (31.25 %) scenarios. However, Model 11 had the 
highest percentage (31.25 %) under 24-hours granularity scenario (Table 6). 
Moreover, as data granularity increased, number of models that had the highest 
model weight for at least one of the streams increased. For example, there were only 
4 models (Model 8, Model 9, Model 10 and Model 11) that appeared to have the 
highest model weight for at least one stream under 1-hour granularity scenario, yet 
we observed 6 models (Model 1, Model 5, Model 7, Model 8, Model 10 and Model 
11) that had the percentage value greater than zero (Figure 4) under 168-hours 
granularity scenario. 
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Figure 2 

Mean Adjusted Correlation (R2adj.) Values of Models across Data Granularity 
Scenarios (Dertli, 2021) 

 

Table 6  

Percentage (%) of Streams Where Each Model Had the Highest Model Weight (Ȧ) 
Across Levels of Data Granularity (Dertli, 2021) 

Models 

Data granularity (hour) 1 2 3 4 5 6 7 8 9 10 11 Total 
1 0 0 0 0 0 0 0 6.25 6.25 62.50 25.00 100 

2 0 0 0 0 0 0 0 6.25 0 62.50 31.25 100 

6 0 0 0 0 0 0 0 12.50 0 50.00 37.50 100 

12 0 0 0 0 0 0 18.75 6.25 6.25 43.75 25.00 100 

24 0 0 0 0 6.25 6.25 0 25.00 12.50 18.75 31.25 100 

168 6.25 0 0 0 6.25 0 6.25 25.00 0 31.25 25.00 100 
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Figure 3 

The Percentage (%) of the Models Having the Highest Model Weight at Least One 
Stream for Each Data Granularity with June-October 2016 Data (Dertli, 2021) 

 

Discussion and Conclusions 

Regression Coefficients across Different Streams and Data Granularity 
Scenarios 

In this study, we used Andrews’ (2019) linear regression models to predict 
temperature gradients in Michigan’s streams. There were two main advantages of 
using these statistical models. First, these statistical models did not require complex 
mathematical calculations and extensive datasets. This is an important feature of 
statistical models because they make complex environmental variables (e.g., 
shortwave solar radiation) simpler to parameterize to be included in models (Cheng 
& Wiley, 2016). Moreover, less need for extensive datasets reduces the time, effort 
and financial resources that must be invested in data collection procedures. Second, 
regression coefficients clearly revealed the magnitude and type of the relationship 
between environmental variables and the response variable. To illustrate, if a 
coefficient had negative sign, then that parameter was conversely related with the 
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response variable. This information was useful for understanding thermal dynamics 
in streams and most effective factors that influence the temperature gradient. 
Furthermore, regression coefficients could be used for testing scenarios that reflect 
various environmental conditions (e.g., groundwater withdrawal, air temperature) 
(Caldwell et. al., 2014; Andrews, 2019). Therefore, observing the response of the 
regression coefficients to different characteristics of streams and data granularity was 
important to have a better perspective on these linear regression models. 

Our results revealed that the coefficient value of the same parameter varied 
across the streams within the same data granularity. This was an expected outcome 
considering different characteristics of each stream. For example, a further analysis 
on stream data revealed that average upstream discharge values varied substantially 
across streams. For example, average upstream discharge (Q up) ranged between 
0.035 m3/s (Hasler Creek) and 1.618 m3/s (Carp River) across streams between June-
October 2016. Likewise, average upstream temperature (T up) varied between 12.873 
°C (Cedar River) and 19.346 °C (Hasler Creek) within the same time period. 
Therefore, we observed wide range of coefficient values across streams. In other 
words, each model (e.g., Model 10) was stream-specific even though all model 
parameters were commonly applied for all streams. Certainly, this also resulted in 
different model performances for each stream. 

Our results also revealed that the model coefficient values in Model 10 
changed across data granularity scenarios for Tobacco River. In other words, the 
weight of some model parameters on model predictions varied between granularity 
scenarios. This was a result of lower number of data points and lower variation across 
these data points that was caused by averaging the observations (Dertli, 2021). 
Consequently, the weight of each parameter changed across the granularity 
scenarios. In addition, the sign changes in model coefficient of the same parameter 
indicated parameter instability, which is an indicator of high levels of 
multicollinearity (Dertli, 2021). This situation has been addressed by many other 
studies in literature. For example, Mason & Perreault (1991) concluded that low 
sample size (e.g., n = 30) exacerbated the influence of multicollinearity in multiple 
regression analysis. Furthermore, Kroll & Song (2013) revealed that the effects of 
multicollinearity in regression models that were developed with ordinary least 
squares (OLS) increased with smaller sample size.    
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The Effect of Data Granularity on Model Fitness 

As Model 10 was the most complex regression model with eight 
environmental parameters, Model 10 had the highest model prediction power in all 
data granularity scenarios (Table 5; Figure 3). Model 8 and Model 9 were other two 
models, which had the highest mean adjusted correlation coefficient values. One 
common feature of all these models was that they had day length (S) (i.e., Model 8) 
or altitude angle (Į) (i.e., Model 9) or both (i.e., Model 10) as predictor variables. 
Another common feature was that they all had separated heat transfer variables (i.e., 
ǻTup, ǻTbase, and ǻTbase) rather than cumulative heat transfer variable (i.e., ǻTflow). 
Separating cumulative heat transfer variable into three different predictor variables 
increased the explanatory power of models since each these variables reflects 
different environmental processes separately. Model 1, Model 2, Model 3 and Model 
4 were diverged from the rest of the models as they had significantly lower prediction 
power compared to other models (Figure 3). None of these models included neither 
day length (S) nor altitude angle (Į). In other words, including at least one of these 
predictor variables substantially increased model fit. Therefore, we concluded that 
these variables were very important in temperature gradient predictions. This 
conclusion was reasonable because these variables were included in the models to 
reflect the influence of exposure time of streams to the solar radiation, and to 
illustrate the importance of solar radiation in temperature dynamics in riverine 
systems, which was addressed in various studies in literature (Dingman, 1972; 
Sinokrot & Stefan, 1993; Sridhar et. al., 2004; Dugdale et. al., 2018).    

In our study, it was clearly shown that higher data granularity resulted in 
higher overall model fit (Table 5; Figure 3). As stated in Dertli (2021), this might be 
a consequence of reduced sample size (i.e., number of observations) with the 
aggregation of observations by taking their average. However, further observations 
in the same study showed that higher data granularity reduced the model fit for some 
streams. In other words, higher data granularity does not always result in high model 
fit. More legitimate reason was unique characteristics of streams that resulted in 
different outcomes under each data granularity scenarios. For example, the value of 
R2adj. of Model 10 for Tobacco River under 12-hours granularity scenario was lower 
when compared to the same value under 6-hours data granularity scenario (Dertli, 
2021). However, in the same study, it was shown that the value of R2adj. of Model 10 
for Carp River under 12-hours data granularity was higher than the same value under 
daily data granularity. To draw a better picture of the variations between stream 
characteristics, we obtained average downstream stream temperature and average 
downstream discharge values of each stream as provided in Table A1. 
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As mentioned before, the unique characteristics of streams were already 
reflected in the responses of model coefficients to changing data granularities. In 
addition to our findings, Dertli (2021) showed that parameter coefficients for ǻTup, 
ǻTbase, and ǻTbase had different responses to data granularity change from hourly to 
weekly for each stream. This implied that different responses of model parameters 
caused the variations between increase or decrease patterns of model fit (i.e., R2adj.) 

across data granularity scenarios for each stream.  

All these results showed that the unique characteristics of streams are 
determining factor of the model fit and they influence response of the model 
coefficients to different data granularity scenarios. Although overall model fit 
increased with higher data granularity in overall, it is not possible to propose a 
universal rule, such as “high data granularity should be used to achieve high model 
performances”. Moreover, selected data granularity may not be useful for answering 
particular research or environmental management questions, even though the models 
yield robust predictions. For example, using hourly stream temperature estimates to 
predict seasonal fish distributions would not be appropriate (due to the temporal scale 
mismatch) even if model fit is higher with hourly data granularity. Therefore, it is 
not possible to suggest the “best” data granularity for all modeling approaches in 
environmental management practices. However, arbitrary selection of data 
granularity should be avoided because it can have consequences in model-based 
decision-making processes in environmental sciences. Since the ecological relevance 
of data granularity should be as important as the model prediction power, regression 
models should be designed to have the highest model fit with the most ecologically-
relevant data granularity.  

The Effect of Data Granularity on Model Selection 

Model weight was a useful indicator of the level of model complexity-model 
fit balance. High model weight (i.e., maximum value of 1) of a model was an 
indicator of high model fit with the minimal number of explanatory variables 
compared to the other models that were included in the model weight analysis. The 
percentages that are shown in the results (Figure 4) indicated the proportion of the 
total number of streams (n = 16) for which a model had the highest model weight. 
For example, Model 10 had the highest model weight for 62.5% of all streams, while 
Model 11 had the highest model weight for 25% of all streams. This revealed the 
best possible model selection for each data granularity scenario by taking all streams 
into account. No model had the highest model weight for all streams in all data 
granularity scenarios. For example, Model 8, which did not include altitude angle 
(Į), had the highest model weight for 6.25% of streams (n = 1) with hourly data 
granularity. On the other hand, Model 9, lacking day length (S) parameter, had the 
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highest model weight for another stream within the same data granularity scenario 
(Table 6). In other words, a particular environmental variable (e.g., day length) may 
be an important determinant of model predictions for some streams, while it may not 
be for the other streams. This, again, highlighted the importance of the stream 
characteristics on model evaluation.  

Despite the fact that Model 10 had the highest model weight for the majority 
of streams in general, increasing data granularity resulted to some changes in model 
selection results, such that, less complex models (e.g., Model 1, Model 5, Model 6, 
Model 7) appeared to have highest model weight for more streams with higher data 
granularity scenarios (i.e., daily and weekly). In other words, the influence of model 
complexity on model fit may have decreased with higher data granularity. This 
conclusion was congruent with the relationship between model predictive power and 
data granularity. Since model predictive power generally increased with higher data 
granularity, higher model predictive powers were achieved with a smaller number of 
model parameters. This conclusion implied that less complex models may be more 
useful and efficient to predict response variables for higher data granularities. For 
example, Arismendi et. al. (2014) evaluated stream temperature predictions simple 
linear regression model that only included regional air temperature. They averaged 
daily air temperatures into weekly air temperatures, and they found that their model 
had an average Nash–Sutcliffe efficiency (NSE) value of 0.86. Although NSE and 
adjusted correlation coefficient (R2adj.) use slightly different methods to evaluate 
model fit, explaining 86% of the variation between observed and predicted values 
can be considered a significantly high model performance for such simple model. 
Therefore, selection of high data granularities in data may be advantageous since it 
may allow modelers to adopt simple models for environmental predictions. By using 
such simple models, researchers may avoid dealing with complicated models, 
extensive data collection requirements, and possible effects of multicollinearity. 

Conclusions 

1. Selection of data granularity can affect the model coefficients (both 
magnitude and sign). This may result in biases in interpretation of 
environmental variables, and consequently can lead to a mismanagement of 
ecosystems. In addition, the chance of having multicollinearity in models can 
increase with higher data granularity. Multicollinearity can also cause 
misinterpretations of environmental variables especially when parameter 
instability in the model coefficients occur. 
 

2. Model fitness may be affected by data granularity selection, which may lead 
to misevaluation of models. Moreover, characteristics of the streams 
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determine the influence of higher data granularity on model prediction 
power. For some streams, higher data granularity increases the model fitness 
while it reduces model fitness for other streams. Therefore, it is not possible 
to conclude that higher data granularity certainly results in higher model 
fitness. Although we did not address the issue in our study, selection of time 
period (e.g., July data) may also potentially influence the relationship 
between data granularity and model prediction power (Dertli, 2021). 
 

3. Selection of best models based on the rule of parsimony may be influenced 
by the selection of data granularity. Since higher data granularity decreases 
the number of data points, it can make simpler models better predictors. In 
addition, selection of data granularity may change the significance of 
environmental variables in model parsimony. Therefore, data granularity 
selection is important for model designing processes. 
 

4. Certainly, our study did not propose such data granularity type that should be 
used to obtain high model robustness in general sense. However, we have 
shown that evaluation of model fit, model selection and interpretation of the 
model results and environmental variables can substantially vary with data 
granularity selection. Therefore, we highly recommend researchers avoid 
arbitrary choice of data granularity and make data granularity selections 
based upon their relevance to their research and management purposes.  
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Appendix 

Table A1 

Observed Average Stream Temperature and Average Discharge Values of Streams 
between June-October in 2016 

Stream T୵തതതത Tୢ ୭୵୬തതതതതതതത Q୳୮തതതതത Qୢ୭୵୬തതതതതതതത 

BL 15.148 15.412 0.830 0.727 
CR 17.286 17.269 1.618 1.510 
CC 14.371 14.408 0.562 0.443 
MG 18.232 17.780 0.136 0.150 
PK 17.107 17.481 0.477 0.551 
BF 16.147 15.300 0.127 0.221 
CP 17.286 17.269 1.618 1.510 
PG 17.223 16.837 0.503 0.667 
SP 17.550 17.452 0.190 0.287 

ESC 17.476 17.424 0.986 1.268 
NTW 21.190 20.355 0.790 0.259 

TB 16.350 16.905 0.518 0.526 
HS 19.286 17.835 0.035 0.089 
PR 17.477 17.813 0.287 0.323 
SQ 16.247 17.207 0.036 0.122 
SW 19.234 19.511 0.453 0.093 

Note. ௪ܶതതത: average upstream temperature (℃), �ܶ�𝑎௢௪𝑛𝑛തതതതതതത: average downstream temperature (℃), ܳ௨𝑝𝑝തതതതത : 

average upstream discharge (m3/s), ܳ𝑎𝑎௢௪𝑛𝑛തതതതതതതത : average downstream discharge (m3/s). 
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Extended Turkish Abstract 
�GeniúleWilPiú T�rkoe g]eW� 

 

Veri Taneselliğinin 0ichigan Akarsularının Sıcaklık Gradyan 0RdellePesi h]erindeki (Wkisi 

Akarsu sıcaklıklarının tatlı su ekosistemlerindeki fiziksel, kimyasal ve biyolojik süreçlerde 
önemli bir rolü bulunmaktadır. Bu sebeple akarsu sıcaklığının, su kalitesi ve ekosistem işlevselliğinin 
önemli parametrelerinden birisi olduğu düşünülmektedir (Guo ve ark., 2019; Hamid ve ark., 2020). Su 
sıcaklığı, birçok farklı türün (ör. birincil üreticiler, sucuk omurgalı ve omurgasızlar) hayatta kalma, üreme 
ve yayılma süreçlerini etkilediği için, su sıcaklıklarını belirleyen faktörlerin anlaşılması kritik bir önem 
arz etmektedir (Iversen, 1971; Jackson ve ark., 2007; Zorn ve ark., 2004; Nuhfer ve ark., 2017). 
/iteratürde akarsu sıcaklıklarını belirleyen farklı meteorolojik (örn. hava sıcaklığı) ve hidrolojik (örn. 
yağış) süreçler ele alınmıştır (Du ve ark., ����). Ancak bu ekosistemlerin açık sistemler olması, 
dolayısıyla bu süreçlerin birbiriyle de etkileşmesi akarsu sıcaklıklarına etki eden faktörlerin anlaşılmasını 
zorlaştırmaktadır. Bu noktada, istatistiksel modeller araştırmacılara karmaşık sistemlerin açıklanmasında 
yardımcı olmaktadır. 

østatiksel modeller literatürde doğal süreçlerin açıklanmasında sıkça kullanılmaktadır. grneğin, 
regresyon modellerinin değişken katsayıları sayesinde bu süreçlerin birbirleriyle etkileşimi matematiksel 
olarak açıklanabilmektedir (Bender, ����). Ayrıca bu sayede çevresel değişimlerin (örn. iklim değişikliği, 
yeraltı sularının çekilmesi) akarsu termodinamiğine etkileri tahmin edilebilmektedir (0antua, 	 7ohver, 
2010; Andrews, 2019). Ancak istatistiksel modeller çevresel araştırmalar için çok önemli olsa da bu 
modellerden alınacak çıktılar kullanılan verinin yapısına oldukça bağlı olabilmektedir (Akossou, 	 3alm, 
����). grneğin, veri taneselliği verideki gözlem sayısını, çoklu doğrusal bağlantı (multicollinearity) 
miktarını ve model çıktılarını etkileyebildiğinden verinin önemli yapısal özelliklerinden sayılmaktadır 
(Dertli, ����). Ancak birçok çalışmada, modellerde kullanılan veri taneselliği verinin ekolojik anlamına 
uygun olarak seçilmesine rağmen, diğer birçok çalışmada kullanılan veri taneselliği keyfi olarak 
seçilmektedir ya da bu seçimin sebebi açıklanmamaktadır. Bu keyfi seçim, kullanılan modellerin 
başarısının değerlendirilmesinde ve model çıktılarının yorumlanmasında yanılgılara sebep olabilmektedir 
(6tefan, 	 3reud¶homme, ����� 3ilgrim ve ark., 1998; Webb ve ark. 2003). 

Bu çalışmada, kullanılan veri taneselliğinin doğrusal regresyon modelleri ve bu modellerin 
yorumlanmasındaki etkisi ele alınmıştır. Bu çalışmada amaçlanan hedefler� 

1. 5egresyon değişken katsayılarının farklı veri taneselliği senaryolarında değerlendirilmesi 
ve yorumlanması, 

2. 5egresyon model uyumunun (fitness) değişiminin farklı veri taneselliği senaryolarında 
değerlendirilmesi ve yorumlanması, 

3. 3arsimoni ilkesine bağlı olarak model seçiminin farklı veri taneselliği senaryolarında 
değerlendirilmesi ve yorumlanması, 

olarak belirlenmiştir. Bu hedefler doğrultusunda, veri taneselliğinin regresyon modelleri ve çıktıları 
üzerine ki etkilerinin ayrıntılı bir şekilde analiz edilmesi amaçlanmıştır.  

Bu çalışmada, 0ichigan¶da farklı bölgelerde bulunan 16 akarsudan elde edilen veriler, Andrews 
(����) tarafından geliştirilen regresyon modelleri üzerinde, su sıcaklığı değişiminin (sıcaklık gradyan, 
ǻT) (Ԩ) tahmin edilmesi amacıyla seçilmiş ve kullanılmıştır. AndreZs (����) tarafından geliştirilen bu 
�� model, hiyerarşik model geliştirme yöntemi ile her adımda modele yeni parametreler eklenerek dizayn 
edilmiştir. Bu akarsulara ait verilerde bulunan gözlemlerin ortalaması farklı zaman dilimlerine göre alınıp, 
1-saat, 2-saat, 6-saat, 12-saat, 24 saat, 168-saat olmak üzere, � farklı veri taneselliği senaryosu elde 
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edilmiştir. Bu farklı senaryolara sahip veriler regresyon modellerinde yürütülerek model çıktıları elde 
edilmiştir. 5egresyon katsayıları bu simülasyonlar neticesinde elde edilmiştir. 0odel uyumu modellerin 
çıktılarının gözlemlerle olan korelasyon miktarına bağlı olarak değerlendirilmiştir. )arklı veri taneselliği 
senaryolarının model seçimde neden olduğu değişiklikler Akaike Bilgi Kriteri (Akaike¶s ,nformation 
Criterion-AIC) değerleri kullanılarak elde edilen model ağırlıklarına bağlı olarak değerlendirilmiştir 
(Akaike, 1973). 

5egresyon katsayı analizi iki önemli bulguyu ortaya çıkarmıştır. Birincisi, 0odel �� �-saat veri 
taneselliği senaryosunda bütün akarsular için yürütüldüğünde aynı model parametre katsayılarının 
değerlerinin (örn. hava-su sıcaklık farkı (Ta – Tw)) akarsular arasında nicelik ve nitelik olarak değişmiştir. 
økincisi, aynı akarsuya ait veride farklı veri taneselliği senaryoları kullanıldığında, 0odel ��¶a ait 
parameter katsayılarının nicelik ve nitelik olarak değiştigi gözlenmiştir. grneğin, hava-su sıcaklık farkı 
(Ta – Tw) parametre katsayısının değeri �–saat senaryosunda �.��� olarak ölçülürken, ��-saat 
senaryosunda -�.��� olarak ölçülmüştür. 0odel uyumluluk analizleri de önemli bulgular ortaya 
koymuştur. grneğin, 0odel ��¶a hava korelasyon değerlerinin (ya da uyumluluğunun) diğer modellerden 
daha yüksek olduğu gözlenmiştir. 0odel uyumluluğu analizi ayrıca veri taneselliğinin artışının (�-saat¶lik 
senaryodan 168-saat¶lik senaryoya) genel olarak model uyumluluğunu (fitness) artırdığını göstermiştir. 
3arsimoni ilkesine bağlı olarak model seçimi analizleri, 0odel ��¶un diğer modellere kıyasla daha fazla 
sayıda akarsu (akarsuların ���,�¶i) için daha iyi çalıştığı gözlemlenmiştir. Bununla beraber, veri 
taneselliği bu seçimlerde değişikliğe neden olmuştur. grneğin, ���-saat senaryosunda Model 10 sadece 
akarsuların ���.��¶i için diğer modellere kıyasla daha iyi çalıştığı gözlemlenmiştir. 

6onuç olarak bu çalışma regresyon modelleri ve kullanılan veri yapısı açısından bazı önemli 
sonuçlar ortaya koymuştur. grneğin, regresyon modellerdeki parametre katsayılarının nicelik ve 
niteliğinin kullanılan veri taneselliğine bağlı olarak değişebileceğinin gösterilmesi, bu modellerde 
bulunan parametrelerin model çıktıları üzerindeki etkisinin de taneselliğe bağlı olarak değişebileceği 
gösterilmiştir. Bu sonuç, modellerde kullanılan parametrelerin (ör. Ta – Tw) veri taneselliğine bağlı olarak 
akarsu sıcaklığı tahminlerine olumlu ya da olumsuz olarak etki edebileceğini göstermiştir. Bu durum, 
modellerde uygun olmayan bir veri taneselliği kullanıldığında akarsu sıcaklığına etki eden faktörlerin 
yanlış yorumlanmasına sebep olabileceğini göstermiştir. Ayrıca kullanılan veri taneselliğinin model 
uyumluluğuna doğrudan etki etmesi, bu modellerin uyumluluklarının değerlendirilmesinde yanlış 
yorumlamalara sebebiyet verebileceği ortaya koyulmuştur. Bu durum aslında uyumluluğu yüksek olan bir 
modelin, modele uygun olmayan bir veri taneselliği kullanıldığında uyumluluğunun düşük 
ölçülebileceğini göstermiştir. Bununla birlikte, kullanılan veri taneselliği, bir akarsu için kullanılması en 
uygun olan modelin seçimini etkileyebileceğinden, veri taneselliği seçiminin model seçimlerinde yanlış 
kararlara yol açabileceği sonucu ortaya çıkmıştır. 

 ùuna dikkat çekmek gerekir ki bu çalışma hangi veri taneselliğinin daha iyi olduğunu ortaya 
koymayı amaçlamamıştır. Çünkü veri taneselliğinin artması ya da azalması her model veya her durum 
için farklı sonuçlar ortaya çıkarmaktadır. Bu çalışmanın asıl amacı, keyfi olarak seçilen veri taneselliğinin 
modeller ve model yorumlamaları üzerindeki muhtemel etkilerine dikkat çekmek ve modellemecilere 
daha geniş bir bakış açısı sunmaktır. 0odellerde kullanılan veri taneselliğinin keyfi olarak değil, 
araştırmanın cevap bulmaya çalıştığı sorulara uygun olarak seçilmesi, bu modellerin uygunluğunun ve 
başarısının objektif bir biçimde değerlendirilmesinde büyük önem teşkil edecektir. 
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