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Purpose: This study aims to evaluate the performance of machine learning methods in predicting the subtype 

(clear-cell vs. non-clear-cell) of kidney tumors using clinical patient and radiomics data from CT images. 

Method: CT images of 192 malignant kidney tumor cases (142 clear-cell, 50 other) from TCIA’s KiTS-19 

Challenge were used in the study. There were several different tumor subtypes in the other group, most of 

them being chromophobe or papillary RCC. Patient clinical data were combined with the radiomic features 

extracted from CT images. Features were extracted from 3D images and all of the slices were included in 

the feature extraction process. Initial dataset consisted of 1157 features of which 1130 were radiomics and 

27 were clinical. Features were selected using Kruskal Wallis – ANOVA test followed by Lasso Regression. 

After feature selection, 8 radiomic features remained. None of the clinical features were considered 

important for our model as a result. Training set classes were balanced using SMOTE. Training data with 

the selected features were used to train the Coarse Gaussian SVM and Subspace Discriminant classifiers.  

 

Results: Coarse Gaussian SVM was faster compared to Subspace Discriminant with a training time of 0.47 

sec and ~11000 obs/sec prediction speed. Training duration of Subspace Discriminant was 4.1 sec with 

~960 obs/sec prediction speed. For Coarse Gaussian SVM, the AUC was found to be 0.86, while for 

Subspace Discrimination it was 0.85. 

 

Conclusion: Both models produced promising results on classifying malignant tumors as ccRCC or non-

ccRCC. 
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More than 400 000 patients are diagnosed with kidney cancer each year, more than 90% of them 

being renal cell carcinoma (RCC). RCC is known to be the most common type (75%) of kidney cancer as 

well having the highest mortality rate among genitourinary cancers. It has more than 10 histological and 

molecular subtypes and one of them is clear cell RCC (CCRCC) (Hsieh et al. 2017) .  

Currently, a great effort is being out into the studies concerning how different kidney tumor 

morphology might affect the treatment process. Surgery, chemotherapy and targeted drugs are used for 

treatment and a variety of new, more effective drugs are continued to be developed. There has been a big 

improvement in the median survival of the disease in the past few years, thanks to the targeted drug 

development (Le and Hsieh 2018). 

As for the diagnosis of renal cancer; laboratory tests, radiology and biopsy are used. Presently, 

biopsy is obligatory in order to deduce key information as whether the cancer is invasive, its grade, its stage 

and spread to lymph nodes. In addition to these, biopsy must be performed to identify specific proteins, 

genes and other factors which are unique to the tumor. These factors play an important role in prognosis 

prediction and in the construction of a treatment plan. They can also provide a clearer view on how to design 

a more effective drugs targeting specific intracellular pathways (Ökmen, Guvenis, and Uysal 2019). 

Biopsy is a highly invasive diagnosis tool which carry a small risk of infection and bleeding. 

Moreover, for cancer cases, reaching a result might take several days. For these reasons, there is a need for 

obtaining the necessary information for diagnosis by using better tools.   

Computed Tomography (CT) is widely used for clinical diagnosis, localization of pathology, 

observation of anatomical structure, surveillance of therapy evolution and planning the optimal treatment 

in cancer. CT is generally the first choice for imaging the evolution of renal tumor because it is more 

available than Magnetic Resonance Imaging (MRI) and it more useful than Ultrasound (US) Imaging (van 

Oostenbrugge, Fütterer, and Mulders 2018).  

An emerging field, Radiomics, has the ability to provide many advantages in cancer imaging. It 

focuses on obtaining quantitative information from clinical images, which helps characterize the image 

phenotypes of the tumor in a more detailed way. Radiomics is concerned with reaching useful diagnostic, 

prognostic and predictive information.  

One of the the main objectives of the presented work is to perform a comparison among existing 

machine learning methods for the classification of tumor histologic subtypes of renal cell carcinoma (RCC) 

patients. It also focuses on the question of which radiomic features and patient clinical data provide 

meaningful information about the histologic subtypes. 

 

 
 

In a 2019 study (Han, Hwang, and Lee 2019), Convolutional Neural Networks were used to classify 

the tumor histologic subtypes of RCC cases. The data set included clear-cell, chromophobe and papillary 

subtypes. The model was fed with three-phase CT images and one slice from each phase was used. AUC 

values for differentiating clear-cell from non-clear-cell, papillary from non-papillary and chromophobe 

from non-chromophobe were; 0.93, 0.91 and 0.88 respectively.  

Another paper by Kocak et al. focused on classifying the tumors as ccRCC or Non-ccRCC, as well 

as differentiation of ccRCC, pcRCC and chcRCC from each other. Artificial Neural Networks classifier 

predicted the subtypes as ccRCC or non-ccRCC with an AUC of 0.92, while the AUC of Support Vector 

Machine classifier was 0.79. Both of them performed worse in the three-class models (Kocak et al. 2018). 

Zhnag et al. evaluated several models incorporating SVMs for classifying tumors as ccRCC or non-

ccRCC, and chromophobe or papillary RCC. Slices with the largest cross-sectional area of the lesion from 

3-phase CT images were used. Top 3 features were selected by Mann-Whitney U-tests, ROC curves and 

Pearson’s correlation coefficient methods. An SVM with a nonlinear radial basis function kernel was 
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implemented. Best results were achieved using the corticomedullary phase images. AUC for ccRCC vs. 

non-ccRCC classification was 0.94 (Zhang et al. 2019). 

Hoang et al., conducted a study which used random forest models for three classifications: 

oncocytoma vs. RCC, oncocytoma vs. ccRCC and papillary vs. ccRCC. Three consecutive slices containing 

the largest cross-sectional area from each of the four phases of MR images of 142 lesions from 41 patients 

were included. Pairwise Wilcoxon rank test, modified false discovery rate adjustment, Lasso regression 

were used for feature selection. ccRCC cases were distinguished from oncocytomas with an average 

accuracy of 77,9% (Hoang et al. 2018). 

 

 
 

Data Sets  

 

CT images and patient clinical data from the Climb 4 Kidney Cancer-Kidney Tumor Segmentation 

Challenge (C4KC-KiTS) database  (Clark et al. 2013; Heller et al. 2019) were acquired. 210 patients were 

included in the C4KC-KiTS database. In this study, 192 of the cases which had malignant tumors were 

used. 

 

Image Pre-processing 

 

Resampling, intensity normalization and gray level discretization were applied before starting the 

feature extraction process. Images had different slice thicknesses (0.5 mm to 5 mm) and different pixel sizes 

(0.438 mm to 1.04 mm). After reconstruction and resampling, 1 mm × 1 mm × 1 mm spatial resolution was 

achieved. Python software was used to perform resampling, and the new values of the resampled images 

were obtained by Cubic B-Spline interpolation method (Wang et al. 2011). Z-score normalization was used 

for the normalization of image intensity values. For gray level discretization, bin width was adjusted to be 

0.01 on 3D Slicer software(Fedorov et al. 2012). Gray level discretization lessens the heterogeneity 

influences on the images, resulting from acquisition and reconstruction protocols(Larue et al. 2017). 

 

Feature Extraction 

 

Radiologic images carry relevant and significant clinical information (Tomaszewski et al. 2021). 

Feature extraction is an important step for finding the link between disease and image attributes, on the 

grounds that its enablement to obtain solid, quantitative representations.  

Features were extracted using PyRadiomics extension on 3D Slicer. Three types of images were 

subject to feature extraction: original, Laplacian of Gaussian (LoG) and wavelet-transformed. Laplacian of 

Gaussian filter values were 2 mm, 4 mm, and 6 mm in order to explain patterns with various sizes. 

After all radiomic features were extracted, certain patient clinical data were added to get a combined 

data set. Clinical data included information such as age, sex, body mass index; as well as presence of several 

diseases, alcohol and tobacco use. Afterwards, the combined data were split into training and test sets as 

85% and 15% respectively. As a result, 162 training cases included 128 clear-cell RCC and 34 other 

histologic subtypes (chromophobe, papillary, clear-cell papillary, multilocular cystic, urothelial, wilms). 

Further, 15 of the test cases were clear-cell and the remaining 15 were other (chromophobe, papillary, clear-

cell papillary). 

 

Feature Selection  

 

Feature selection process was executed on Matlab (R2021b) software. Kruskal-Wallis (KW) test 

was conducted as the first step of feature selection. KW compares the medians of the groups of data to 

3. MATERIALS AND METHODS 
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determine if the samples come from the same population. In this case, each feature was tested for its ability 

to differentiate between the data classified as clear-cell and other with p = 0.05. Only 111 features among 

the 1157 were decided to be relevant. Moreover, none of the patient clinical features were selected. 

Secondly, least absolute shrinkage and selection Operator (LASSO) was used at the next phase for 

selecting features. Lasso is an improved version of ordinary least squares estimates in regression analysis 

combining subset selection and ridge regression (Tibshiranit 1996). It causes some regression coefficients 

to shrink and set some of them to zero. At the end, coefficients belonging to the less important features 

become zero. Lambda with the minimum standard error was chosen to obtain the optimal set of coefficients. 

Subsequently, 8 features were selected as the most relevant for our model. 

 

Model Training and Evaluation 

 

Coarse Gaussian Support Vector Machine and Subspace Discriminant classifiers were trained with 

the selected features in the Classification Learner App of Matlab. SVM classifier aims to find the optimal 

hyperplane in the N-dimensional space that distinctly classifies the data points. The optimal hyperplane can 

be described as the most distant of all possible ones to both classes. The data points closest to this hyperplane 

are defined as support vectors. In case simple hyperplanes do not show sufficient separation performance. 

Hence, kernels are reproduced which use several functions. In this study, the SVM classifier with a Gaussian 

(radial basis fuction) kernel was used. Box constraint level was 1 and kernel scale was chosen as 11 for the 

classifier. 5-fold cross validation was used in the training process. 

Discriminant classifiers assume that different classes have different Gaussian distributions. Their 

objective is to classify the data points while minimizing the classification cost. Ensemble learning combines 

several classifiers to improve the prediction performance. Each learner, discriminant classifier, is trained 

using a random subset of features among the selected ones. At the end, the best model is introduced. The 

model included 30 learners with 4 subspaces and the training was performed using 5-fold cross validation. 

Previously reserved test data set was used to test the model performances. Accuracy and area under the 

curve (AUC) for both models were calculated for evaluation. 

 

 
 

Feature Extraction and Selection 

 

Radiologic images carry relevant and significant clinical information (Tomaszewski et al. 2021). 

Feature extraction is an important step for finding the link between disease and image attributes, on the 

grounds that its enablement to obtain solid, quantitative representations.  

Features were extracted using PyRadiomics extension on 3D Slicer. Three types of images were 

subject to feature extraction: original, Laplacian of Gaussian (LoG) and wavelet-transformed. Laplacian of 

Gaussian filter values were 2 mm, 4 mm, and 6 mm in order to explain patterns with various sizes. 

After all radiomic features were extracted, certain patient clinical data were added to get a combined 

data set. Clinical data included information such as age, sex, body mass index; as well as presence of several 

diseases, alcohol and tobacco use. Afterwards, the combined data were split into training and test sets as 

85% and 15% respectively. As a result, 162 training cases included 128 clear-cell RCC and 34 other 

histologic subtypes (chromophobe, papillary, clear-cell papillary, multilocular cystic, urothelial, wilms). 

Further, 15 of the test cases were clear-cell and the remaining 15 were other (chromophobe, papillary, clear-

cell papillary). 

 

In addition to the 27 clinical features which can be seen on Table 1, 1130 radiomic features were 

extracted from the CT images, adding up to 1157 features in total. Among the radiomic features; 744 were 

from wavelet-transformed images with 8 distinct filters and 6 classes of features (first-order, gray level 

4. RESULTS 
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dependence matrix (gldm), gray level co-occurrence matrix (glcm), gray level run-length matrix (glrlm), 

gray level size zone matrix (glszm) and neighboring gray tone difference matrix (ngtdm)). Laplacian of 

Gaussian (LoG) filtered images produced 279 features, while 107 features were extracted from original 

images. 

 

              Table 1. List of clinical features 

Feature Name Feature Name 

gender malignant_lymphoma 

body_mass_index localized_solid_tumor 

myocardial_infarction metastatic_solid_tumor 

congestive_heart_failure moderate_to_severe_liver_disease 

peripheral_vascular_disease smoking_history_never_smoked 

cerebrovascular_disease smoking_history_previous_smoker 

copd smoking_history_current_smoker 

connective_tissue_disease chewing_tobacco_use_never_or_not_in_last_3mo 

peptic_ulcer_disease chewing_tobacco_use_quit_in_last_3mo 

uncomplicated_diabetes_mellitus alcohol_use_two_or_less_daily 

diabetes_mellitus_with_end_organ_damage alcohol_use_never_or_not_in_last_3mo 

chronic_kidney_disease alcohol_use_more_than_two_daily 

hemiplegia_from_stroke radiographic_size 

leukemia  

 

                                      Table 2. Selected features for the models 

Image Type Feature Name 

Original First Order - Interquartile Range 

Original GLCM - IDN 

Log filtered (sigma: 2 mm) 3D GLRLM – Long Run Emphasis 

Log filtered (sigma: 2 mm) 3D GLRLM – Run Variance 

Log filtered (sigma: 2 mm) 3D GLDM - Dependence Variance 

Log filtered (sigma: 4 mm) 3D First Order -  Kurtosis 

Log filtered (sigma: 6 mm) 3D First Order -  90th Percentile 

Log filtered (sigma: 6 mm) 3D First Order -  Maximum 
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As a result of the Kruskal-Wallis test, 111 features were eliminated as they were not significant for 

the problem in question. The process was followed by Lasso regression to detect the most useful features, 

which left 8 of them (see Table 2) to be used in the classification models. These included: First Order 

Interquartile Range, GLCM Inverse Difference Normalized and GLRLM Run Variance. Prior to model 

training, new instances belonging to the minority class were created synthetic minority oversampling 

technique (SMOTE) to balance the training set. Ultimately, both classes consisted of 128 cases and the 

models were trained with a total number of 256 cases. 

 

Performance Evaluation 

 

Coarse Gaussian SVM was faster compared to Subspace Discriminant with a training time of 0.47 

sec and ~11000 obs/sec (observations per second) prediction speed. Training duration of Subspace 

Discriminant was 4.1 sec with ~960 obs/sec prediction speed. For Coarse Gaussian SVM; validation 

accuracy was 67,6% while the accuracy of test was 80%, with and AUC of 0.86. Similarly, Subspace 

Discriminant had 68,8% validation accuracy and 80% test accuracy; AUC was 0.85. Fig. 1 shows the 

confusion matrices of the two models. The recieving operatör characteristic (ROC) curves can be seen on 

Fig. 2. 

 
Figure 1. Confusion matrices for Coarse Gaussian SVM and Subspace Discriminant on test data set. 

 

Figure 2. ROC curves of classification models on the test dataset. 
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This study investigates the usefulness of machine learning algorithms for malignant kidney tumor 

histologic subtype classification. In consideration of the performance evaluation, both models demonstrated 

promising results when classifying the tumors as clear-cell RCC or non-clear-cell RCC. Nonetheless, 

Coarse Gaussian SVM might be slightly more preferable because of its training and prediction speed. 

Our methodology produced similar results as other studies focusing on the similar questions. 

Therefore, we can deduce that machine learning in radiomics is a viable method for determining the 

histologic tumor subtype of renal tumors. However, our study differs from others with the data source which 

was used, as well as other dimensions such as having a high number of cases. Dissimilar to the studies of 

Kocak B.et al., Zhang G. et al., Hoang et al. and Han et al., this study used all slices of the CT images as an 

input to the models. Furthermore, we tested if the inclusion of patient clinical data would be useful. Our 

study found that the specific clinical data included did not have an impact on the classification.  

In the future, improved models might be constructed by the addition of blood and urine biomarkers 

as clinical features. Increasing the size of the data set to achieve better representation of other histologic 

subtypes can also be considered in order to answer different classification problems. 

 

 
 

We proposed two different models bases on machine learning algorithms to label the malignant 

tumor cases as ccRCC or non-ccRCC using relevant radiomic features extracted from renal CT images. 

Both models produced similar results which can be considered as encouraging. These types of classifiers 

were considered for the first time. This work supports the objective of having a fast and non-invasive 

technique in the diagnosis process of RCC patients; specifically for deciding the tumor histologic subtype. 
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