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Abstract

In this paper, we state some geometric properties of conformal quasi-hemi-slant Riemannian maps from
almost Hermitian manifolds to Riemannian manifolds. We give necessary and sufficient conditions for certain
distributions to be integrable and get examples. For such distributions, we examine which conditions define
totally geodesic foliations on base manifold. In addition, we apply notion of pluriharmonicity to get some relations
between horizontally homothetic maps and conformal quasi-hemi-slant Riemannian maps.
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1. Introduction

The theory of Riemannian submersions between Riemannian manifolds was initially studied by O’Neill [17] and Gray [10].
Particularly, the concept of Riemannian submersions [7] and isometric immersions [6] were studied by Falcitelli and Chen.
Then, Riemannian submersions were studied in various types as an anti-invariant, a semi-invariant, a slant, a hemi-slant, etc
[13, 25]. Submersions between almost Hermitian manifolds expanded to almost Hermitian submersions [30]. Then, this
concept was generalized to the notion of Riemannian map by Fischer [8]. Riemannian maps between Riemannian manifolds
are generalization of isometric immersions and Riemannian submersions. Riemannian submersions have many application. Let
®: (My,g1) — (M2, g2) be a smooth map between Riemannian manifolds such that 0 < rank® < min{dim(M,),dim(M,)}.
Then the tangent bundle 7M; of M; has the following decomposition:

TM, = ker®, ® (kerdD*)L.

Since rank® < min{dim(M;),dim(M,)}, always we have (range®,)*. In this way, tangent bundle TM, of M, has the
following decomposition:

TM, = (range®,) & (range®d,)™ .

A smooth map ®: (M, g) — (MY, g») is called Riemannian map at p; € M; if the horizontal restriction ®” by (ker®.y, Y —
(range®,) is a linear isometry. Hence, a Riemannian map satisfies the equation

81(Z1,2y) = g2( P+ (Z1),P+(Z2)) (1.1)

for Z1,Z, € T'((ker®,)"). So that isometric immersions and Riemannian submersions are particular Riemannian maps,
respectively, with ker®, = {0} and (range®.)* = {0} [7]. An important application field of Riemannian maps is the eikonal
equation. It acts as a bridge between geometric optics and physical optics. Also, Riemannian maps and their applications
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studied by Garcia-Rio and Kupeli in semi-Riemannian geometry [9]. Recently, some optimal inequalities for Riemannian maps
from Riemannian manifolds onto space forms were established in [12].

Moreover, Sahin introduced any other types of Riemannian maps [20, 21, 22, 23], see also [18, 19]. In further studies,
in particular Akyol, Sahin and Yanan searched this type submersions [1, 2, 3, 4, 31] and Riemannian maps [26, 27, 32, 35]
under conformality case, see also [11]. All these studies have many applications as texture mapping, remeshing and simulation
[14], computer graphics and medical imaging fields [28], brain mapping research [29]. For a comprehensive study in which
these issues are introduced and their applications are given, see [25]. We say that @ : (M™, gy ) —> (N",gn) is a conformal
Riemannian map at p € M if 0 < rank®,, < min{m,n} and ®,,, maps the horizontal space (ker(®,,)") conformally onto
range(®,,), i.e., there exist a number A%(p) # 0 such that

N (@ip(21), Pup(Z2)) = A% (p)gm(Z1,22) (1.2)

for Zy,Z, € T'((ker(®.,)*). Also @ is called conformal Riemannian if @ is conformal Riemannian at each p € M [24].
An even-dimensional Riemannian manifold (M, gy, J) is called an almost Hermitian manifold if there exists a tensor field J
of type (1,1) on M such that J?> = —T where I denotes the identity transformation of 7M and

gm(E,F) =gy(JE,JF),YE,F € T(TM). (1.3)

Let (M, gp,J) is an almost Hermitian manifold and its Levi-Civita connection is V with respect to gy. If J is parallel with
respect to V, i.e.

(VEJ)F =0, (1.4)

we say M is a Kaehler manifold [36].

Therefore, in section 2, we present necessary background concepts to be used in this paper. In section 3, we study
conformal quasi-hemi-slant Riemannian maps from almost Hermitian manifolds to Riemannian manifolds. We introduce some
properties as integrability conditions and totally geodesic foliation defining of distributions. In section 4, we use the concept of
pluriharmonicity to introduce relations between horizontally homothetic maps and conformal quasi-hemi-slant Riemannian
maps.

2. Preliminaries

In this section, we give several definitions and results to be used throughout the study for conformal quasi-hemi-slant Riemannian
maps. Let ®: (M,g,,) — (N, g, ) be a smooth map between Riemannian manifolds. The second fundamental form of ® is
defined by

N M
(V®,)(E,F) =VEd,(F)—®,(VeF) @2.1)

for E,F € I'(TM). The second fundamental form V®, is symmetric [15].
Then we define O’Neill’s tensor fields .7 and .« for Riemannian submersions as

M M
g F hVgvF + vV hF, 2.2)

M M
TeF = hVyevF +vV,ghF 2.3)

M
for E,F € I'(TM) with the Levi-Civita connection V of gy [17]. For any E € I'(TM), 9% and < are skew-symmetric
operators on (I'(TM), g) reversing the horizontal and the vertical distributions. Also, .7 is vertical, g = g, and & is
horizontal, &7 = of,g. Note that the tensor field .7 is symmetric on the vertical distribution [17]. Additionally, from (2.2) and
(2.3) we have

M A

Ve bo = T &+Ve &, (2.4)
M M

Ve Zi = hVgZi+ T 7y, (2.5)
M M

Vz.& = 76 +vVz &, (2.6)
M

M
V2122 = hVZIZQ—‘y-JZfZlZQ 2.7
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R M
for Z,Z, € T((ker ®,)*) and &;,&, € T(ker®,), where Ve & = vV & [71.

If a vector field Z on M is related to a vector field Z on N, we say Z is a projectable vector field. If Z is both a horizontal
and a projectable vector field, we say Z is a basic vector field on M. From now on, when we mention a horizontal vector field,
we always consider a basic vector field [5].

On the other hand, let & : (M™,g,,) — (N", g, ) be a conformal Riemannian map between Riemannian manifolds. Then,
we have

(VCIJ*)(Zl,Zz) |mngeq>*= Z1 (lnl)cb* (Zz) —&-Zz(lnl)q)* (Zl) — gM(Zl,Zz)q)* (grad(lnl)), (2.8)

N
where 71,7, € T'((ker®,)"). Hence from (2.8), we obtain V%)l D.(Z,) as

N M
V‘ZI’1 D, (Z) = Pu(hVzZ)+Z(InA)P.(22) +Zo(InA)D.(Z)

— gu(Z1,2)®.(grad(In L)) + (V®,) (21, 2), (2.9)

where (V®,)*(Z,2,) is the component of (V®,)(Z;,Z,) on (range®.)* for Z|,Z, € T'((ker®,)*) [26, 27].
Lastly, a map @ from a complex manifold (M, gy, J) to a Riemannian manifold (N, gx) is a pluriharmonic map if ® satisfies
the following equation

(V®,)(E,F) + (Vb,)(JE,JF) =0 (2.10)

for E.F €I'(TM) [16].

3. Conformal quasi-hemi-slant Riemannian map

We give definition of conformal quasi-hemi-slant Riemannian maps from almost Hermitian manifolds to Riemannian manifolds.
In the rest of this paper, we take (M, g,,,J) as a Kaehler manifold.

Definition 3.1. Ler®: (M,g,,,J) — (N,g,) be a conformal Riemannian map such that its vertical distribution ker®, admits
three orthogonal distributions D, Dg and D | which are invariant, slant and anti-invariant distributions, respectively, i.e.

ker®, =D®Dg® D, . 3.1

Then, we say ® is a conformal quasi-hemi-slant Riemannian map and the angle 0 is called the quasi-hemi-slant angle of the
map.

Here, we say that;

i) @ is a conformal hemi-slant Riemannian map [33] if D = {0}.

ii) @ is a conformal semi-invariant Riemannian map [27] if Dy = {0}.
iii) @ is a conformal semi-slant Riemannian map [34] if D, = {0}.

Therefore, conformal quasi-hemi-slant Riemannian maps are generalization of conformal hemi-slant Riemannian maps,
conformal semi-invariant Riemannian maps and conformal semi-slant Riemannian maps. Hence, all these maps provide
examples to conformal quasi-hemi-slant Riemannian maps.

We say that conformal quasi-hemi-slant Riemannian map ® is a proper conformal quasi-hemi-slant Riemannian map if the
invariant distribution D # {0}, the anti-invariant distribution D; # {0} and the slant angle 8 # 0, 7. Now, we give an explicit
example to proper condition.

Example 3.2. Define a map by ® : R® — R3 by
CI)()CI,XZ,X3,X4,X5,X6,X7,X8) — (X] +X2,X3 —Xs,\/§X4,b,C)

with b,c € R. We get the horizontal distribution

9 0 9 0
1_ _ 9 , 9 _ 9 9
(ker®.)™ = {2 = o o2 om  oxs’

2z =va(2))

0xy
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and the vertical distribution

0 0 0 d J 0 0
ker®, ={& = (97)61_(97)(2,52: 93 +TXS,§3= Txé,@: (97)67’55 = (97)68}7

respectively. By the complex structure J of R® such that J = (—az,a1,—aa,as,—ag,as,—ag,ay), we have

1 1 1
J&=21,78 = \72234-537 JE = 522—552, JCy =65, 765 =&

Hence, we obtain the distributions as D = sp{&4,&s}, Do = sp{&,,&3} and D, = sp{&,}. Therefore, @ is a proper conformal
quasi-hemi-slant Riemannian map with A = \/2 and the slant angle 6 = z

Let®:(M,g,.J) — (N,g,) be a conformal quasi-hemi-slant Riemannian map. Then we have
TM = ker®, @ (ker®,)". (3.2)

A vertical vector field & can be written as

& =PE+0E+RE (3.3)
where P, Q and R are projections to D, Dg and D | , respectively. We get

JE=9E+ vy G4
where ¢& € T'(ker®,) and w& € I'((ker®,)*). We obtain wPE = 0, pRE = 0 and

JE = 9PE +¢0E + yO& + YRS (3.5)

from (3.3) and (3.4). So, we can write

J(ker®,) =D®@Dg d WDy ®J(D,). 3.6)
From (3.6), we have

(ker®,): = yDo®J(D )@ 1 (3.7)

where y is the orthogonal complement distributions of WDy ©J(D, ) in (ker®, )" and y is the invariant with respect to J. At
last, for Z € T'((kerd®,)"), we have

JZ=BZ+CZ (3.3

where BZ € I'(yDo & J(D,)) and CZ € I'(1).
Here that easily we obtain from (3.1) - (3.7);

¢D9 :D67 (PDJ_ = {0}7 BWDG :D97 BWDJ_ :DJ_a WD: {0}7 (39)

¢0>+By=—1I, yo+Cy=0, yB+C>=1, ¢B+BC =0. (3.10)

Following theorem has same proof with hemi-slant submanifolds as hemi-slant Riemannian maps; see Theorem 3.6. of
[23].

Theorem 3.3. Let ® be a conformal Riemannian map from an almost Hermitian manifold (M, gy ,J) to a Riemannian manifold
(N,gn). Then ® is a conformal quasi-hemi-slant Riemannian map if and only if there exists a constant A € [0,1] and a
distribution 9 on ker®, such that

i) 7 ={§ €T(ker®,)|9?E = AL},
ii) for any & € T'(ker®,.) orthogonal to 2, we have ¢& = 0.

Further, we have A = —cos? 0 where 0 is the slant angle of ®.
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Hence, we have followings from Theorem 3.3.

gm(9V1,9V2) = cos® Ogun (V1,V2), (3.11)

gu(WVi, yVa) =sin? Ogy (V1,V5) (3.12)

for any V1,V, € F(Dg).
Recall that always the vertical distribution ker®,, is integrable [25]. Now, we give integrability conditions for certain
distributions on total manifolds.

Theorem 3.4. Letr®: (M,g,,,J) — (N,g,) be a conformal quasi-hemi-slant Riemannian map. Then, the invariant distribution
D is integrable if and only if

Vi, JUs =V, JU e T(D® D),

¢ Tu,-v, ¥ €ET(De®D))
forUp,Upy eT'(D) and § eT'(Dg® D) ).

Proof. Since .7 is skew-symmetric and from equations (1.4), (2.4), (3.4), we get

M ~
gM(VUl U2a§) = gM(VUIJUL(pé) +gM(¢<7U1 W§7U2) (313)
for U, U, € T'(D) and § € I'(Dg ® D ). Now, changing the roles of U; and U,, we obtain
8 ([U1,U2].8) = 8,,(Vu, JU> =V, U1, 08) + 8, (0 Ty, WE.U2) — 8, (9 T, WE, V). (3.14)
The proof is complete from equation (3.14). O

Theorem 3.5. Let ®: (M,g,,,J) — (N,g,) be a conformal quasi-hemi-slant Riemannian map. Then, the slant distribution
Dy is integrable if and only if

A’gy, (hgv. yVa — h/sz WLWRE) = g, (V@) (Vi = V2, PE), @ (W$V2)) + 8, (VL) (V1,9V2), . (WRE))
8y ((V@.)(V2, V1), . (WRE)) + 8, (V) (V2,JPE), . (yV1))
— g ((VO.)(V1,JPE), @.(y12))

JorVi,V, €T(Dg) and &E eT(D® D).
Proof. Now, from equations (2.4), (2.5), (3.3) and (3.5), we have
M M . M _ M ~ _
8u(VviV2,8) = g, (Vv,¢V2,JPS) +g, (Vv,0V2, WRE) + g, (Fn WVa2 + hVy, yV2,JPE + YRE)
M _ _ _ M _
= =8y (VnJoV2,PE) +8,, (T, ¢V2, WRE) + g, (T, YV2,JPE) + g, (hVv, yV2, YRE)
forV|,V, €T(Dg) and £ e (D@D, ). Since .7 is skew-symmetric and from (1.2), (2.1), Theorem 1., we have
M Mo M .
gM(VV|V27§) = 7gM(VV1¢ Vz,Pé) 7gM(VVl W¢V27P§)
1 ~ _ M .
= 28 (VE)(V1,9V2), @u(YRE)) — 8, (T JPE, yV2) +8,, (hVy, V2, YRE)
M ~ ~
= COSZ egM(vV1V27P€)_gM(%| II/(PVZan)

8 (VR (Vi,9Va). B (WRE)) 5, (V) (. IPE), b (WV3)) + g, (Vi YV, WRE)

Hence, we obtain
M ) M B . 1 B
gM(VV|V27§)*COS GgM(VV1V27P€) = gM(%J)éde)VZ)*ﬁgN((VCD*)(Vl3¢V2)aq)*(wRé))

1 - M -
+ a8 (VO) (V1 JPE), B (WV2)) + 8, (hVv, W2, WRE). (3.15)



Conformal Quasi-Hemi-Slant Riemannian Maps — 104/113

In equation (3.15), if we change the roles of V| and V, we obtain

gM([VI’V2}7§) _COSZ egM([VUVZ]’pg) = %gN((VCD*)(VLF&)’(D*(W(DVZ)) - %gz\/((vq}*)(vl7P§)7¢*(W¢V2))
+ gM(hAéVl (4% —hgvzlllvl,l[/féé)—}— %gN((VCD*)(V],Jﬁg),q)*(l,l/Vz))
(V) (V2. TPE) (Y1) 5, (V) (V2 0V0). . (RE)

g (TR)(V1,9V2), . (yRE)). (3.16)

Therefore, the proof is clear from (3.16). O

Here, we know that integrability case of the anti-invariant distribution D | is same with Theorem 3.8. in [23]. We have next
theorem for horizontal distribution.

Theorem 3.6. Let & : (M,g,,,J) — (N,g,) be a conformal quasi-hemi-slant Riemannian map. Then, the horizontal
distribution (ker®,)" is integrable if and only if

A2 % BZ, — Avl BZ
gM(v Zy 1—VVZ 27¢5)

+AHCZ(Ind)g,, (Z1, W) — CZi(InA)g, (22, w&) + W& (Ind)g,, (22,CZ1) — wE(nA)g,, (Z1,CZs) }
=gy ((V®.)(Z2, BZ1) = (VO.)(Z1,BZ), P+ (WE)) + 8y (V) (Z1,95), P+(CZ2))

N N
—gy (V®.)(22,08),®.(CZ1)) + 8, (VP2 P (C22) = V¥ 2,8.(CZ1), @:(WE))
for Z\,Z, € T((ker®,)") and & € T'(ker®..).
Proof. To show the horizontal distribution (ker®. )" is integrable, we only search 0 = g,,([Z1, 2], &) for Z1,Z, € T((ker®,)*)

and & € ['(ker®,). Since «f is skew-symmetric and from definitions (1.2), (1.4), equations (2.6), (3.4), (3.7) we get

M M M
gM(V21Z2a é) = 8u (JZ{ZlBZL W&) +gM (hV21C227 Wé) +gM (VV21B227 (bé) —8m (‘szl (Pé,CZz)

g (@ BZ2), B (VE)) o, (0. (V5 C0) @ ()

b8, (V5 B0,08) 28, (@(5,08), 9.(C22)

for Zy,7Z, € T((ker®,)*) and & € I'(kerd®,). Using (2.1), (2.8) and (2.9), we have

@Va208) = g (V0.)(21,B22),0.(y8) + 58, (9. (1V7,C22) . ()
(V2B 08) g, (V0)(21,08),@.(C22))
= 26 (V) (21.B2:). 0. (vE))
1 N

+ ﬁgn{ (V':I)Z] q)*(CZZ)v(D*(Wé)) - CZZ(ln)L)gM (Zl ) W‘g)

WE(InA)g, (24.C22) + g, (W2, BZ2,0€)

%gN((Vq’*)(Zl,¢€),<I>*(CZz))- (3.17)
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Similarly, if we change the roles of Z; and Z, in (3.17) we finally obtain,

gu(lZ1,22,8) = %{gN((V‘D*)(Zz,BZl)—(VCP*)(ZhBZz)@*(Wé))

+ gN((Vq)*)(Zh(bé)ﬂq)*(CZZ)) _gN((V(I)*)(ZZ7 ¢§)’CD*(CZ1>)
N N
+ gy (V02 P:(CZ2) = VP2, @.(CZ1), . (yE))}

- CZz(lnz’)gM(Zlvw5)+W§(lnl)gM(ZI;CZ2)
+ CZi(InA)g,(Z, w&) — w&(Ind)g,, (Z,,CZ1)

M M
+ 8, (Wz,BZ, —vVz,BZ;,9§). (3.18)
Hence, we get the proof from (3.18). O

Note that if (V®,)(E,F) =0 forall E,F € I'(TM) the map ® is said to be totally geodesic map [25]. Using this notion we
have followings.

Theorem 3.7. Letr®: (M,g,,,J) — (N,g,) be a conformal quasi-hemi-slant Riemannian map. Then, the invariant distribution
D defines a totally geodesic foliation on M if and only if

CTi,9Us + WVy, 9Us = 0
forU,Up € F(D).
Proof. Since D is an invariant distribution we have yU, = 0. From (2.1), (2.4), (3.4) and (3.8) we get

M
(V@) (U1,U2) = —2.(Vyla)
= D.(CTy,9Ur+ yVy, 0U2) (3.19)
for Uy,U, € T'(D). The proof can be seen from (3.19). O

Theorem 3.8. Let ®: (M,g,,,J) — (N,g,) be a conformal quasi-hemi-slant Riemannian map. Then, the slant distribution
Dg defines totally geodesic foliation on M if and only if

%IBI[/V2 =0
forVi,V, € F(De).
Proof. From definition of second fundamental form, (3.4) and (3.8), we have
M
(V®,)(V1,Va) = CD*(JVVIJVQ)
M M
= O, (Vy,JoV2)+ D.(Vy, JyV2)
Mo M M M
= D.(Vy, 0" Va+ Vy, V) + . (Vy, ByVa + Vy, CyVy)
for Vi,V, € I'(Dg). From (3.9), (3.10) and Theorem 3.3., we obtain
, M M M
= &, (— cos GVVI Vz) + D, (hVVl l[l(sz) + CIJ*(%I ByV, + hVVl Cl[le)
M
cos’ 00, (Vy,V2) = @,(F,ByVs). (3.20)
The proof is clear from (3.20). ]

In a similar way, we have easily the next theorems.

Theorem 3.9. Let ®: (M,g,,,J) — (N,g,) be a conformal quasi-hemi-slant Riemannian map. Then, the anti-invariant
distribution D | defines a totally geodesic foliation on M if and only if

M
Y Ty, YWo + ChVy, yWsr =0

for Wi, W, € F(Dl).
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Proof. From (1.4), (2.5), (3.4) and (3.8), we obtain

(V) (W), Wa) = CID*(JAVJWIJWZ)
= . (VT yW, —i—Jthl W)
= D (YT, yWr+ Chgwl yiw) (3.21)
for W;,W, € I'(D ). We have the proof from (3.21). O

Theorem 3.10. Letr®: (M,g,,,J) — (N,g,) be a conformal quasi-hemi-slant Riemannian map. Then, the vertical distribution
ker®, defines a totally geodesic foliation on M if and only if
. M
V{ T, W& + Vg 08} +C{hVe wé + Tg 082} =0
for 51 , 52 S F(kerCD*).
Recall that if h(grad(InA)) = 0, the map P is said to be horizontally homothetic map [5].

Theorem 3.11. Let ®: (M,g,,,J) — (N,g,) be a conformal quasi-hemi-slant Riemannian map. Then, any two conditions
below imply the third condition;

i) The horizontal distribution (ker®, )" defines a totally geodesic foliation on M,
it) The map ® is a horizontally homothetic map,
iii)

N
V®,2,®.(CZy) = ®.(J[JZ1,22]) + (V.) ' (CZ1,C2Za) + P (2, BZ1 + ez, BZs + Tz, BZ,)

for Zy,Z; € T((ker®,)").

Proof. Firstly, from (2.1) and (2.9) we have

N

M
D, (Vg JZp) = Vq’JZ, ®,.(CZ))— (VD,)(BZ,BZ) — (VD,)(CZy,BZ) — (V®,.)(CZ,,BZ,)
— (V(I)*)L<CZI 5 CZQ) — CZ] (lnk)dJ* (CZZ) — CZZ(]H}L)(D* (CZI) + 8u (CZl ,CZZ>¢* (grad(ln),))
N

= V?,®.(CZ) — (V®.)(CZ1,CZy) — @ (Hcz,BZ1 + ez,BZs + Tpz,BZ)
CZ] (lnk)cb* (CZQ) - C22 (ll’ll)q)* (CZ[)
+  g,(CZ1,CZy)®,(grad(In 1)) (3.22)

for Zy,Z, € T'((ker®,)"). On the other hand, we have

M M
Viz,JZ, ZJ[le,Zz]—I—JVZZJZl. (3.23)
Putting equation (3.23) in (3.22), we obtain

M N
@,(Vz,Z)) = ®.(JJZ1,2)) —V®7,®.(CZ))

P, (JMCZZBZI + JZ/CZI BZ, + ‘%Zl BZ;)
(VD) (CZ1,CZ) +CZi (In L) D, (CZ,)
CZ,(InA)®.(CZ) — g,,(CZ,CZy) P (grad(InA)). (3.24)

- -t

M
Now, suppose that (i) and (ii) are satisfied in (3.24). We have ®,(Vz,Z;) =0 and
0 = CZ (lnl)@;,; (CZZ) + CZQ(]I]A)CD* (CZl) — 8y (CZ] 7CZ2)¢* (grad(ln?t)) (3.25)
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for Z1,7Z, € T((ker®,)™), respectively. So, we obtain (iii) clearly. If (ii) and (iii) are provided in (3.24), we have (3.25) and

N
VE2,9.(C2) = @,.(J[JZ1,2))+ (V) (CZ1,C2) + P (Hcz,BZy + ez, BZo + Tz, BZ), (3.26)

M
respectively. Easily, we obtain ®,(Vz,Z;) = 0. Hence, we say that the horizontal distribution (ker®,)* defines totally geodesic

foliation on M. At last, if (i) and (iii) are provided in (3.24), we obtain (3.25). For CZ; € I'(1) in (3.25), we get
0=22CZ(In1)g,, (CZ,CZ). (3.27)

Hence, we obtain 0 = CZ,(InA). It means A is a constant on p. Then, for & € I'(ker®,.) and y& € T'(yDy ®J(D,)) in (3.25)
with CZ| = CZ,, we get

0=2A2y&(In)g,, (CZ,,CZ). (3.28)

Hence, we obtain 0 = w&(InA). It means A is a constant on yDg @&J (D, ). Hence, A is a constant on horizontal distribution.
We obtain (iii) from (3.27) and (3.28). The proof is complete. O

Here, we have conditions for the map ® which defines a totally geodesic foliations on M.

Theorem 3.12. Let ®: (M,g,,.J) — (N,g,) be a conformal quasi-hemi-slant Riemannian map. Then, the map ® defines a
totally geodesic foliations on M if and only if

i) The map ® is a horizontally homothetic map,
ii)

N N . M .
V@, (F) — VP ®.(F) = @(TpF +hViF + gF)

holds for E,F € T(TM) where E,F and E . F show horizontal and vertical parts of E, F, respectively.
Proof. Using definition of second fundamental form of a map, (2.4), (2.5) and (2.6) we have

N M
(V®,)(E,F) = VP&, (F)—®,(VpF)
Nq) _ M M _ M _ M _
= VOp®,(F) =@ (VpF +VpF +VgF +ViF)
N _ .M . M
= VP®.(F)— O (TpF +hViF + tpF) — @, (VEF) (3.29)

for E,F € I'(TM). Here, from equation (2.9) in (3.29), we obtain
N oM .
(V®,)(E,F) = VP®,(F)—®.(TpF +hViF + otipF)

- VNCDECID*(F) + (V@) (E,F) + E(InA)®,(F)
+ F(lnAd)®.(E)—g, (E,F)®,.(grad(Inl)). (3.30)

Because of @ defines a totally geodesic foliations on M, we have (3.30). Suppose that ® is a horizontally homothetic map, we
have from (3.30)

0=E(InA)®.(F)F(InA)®.(E) —g,, (E,F)®.(grad(Inl)). (3.31)
We obtain from (3.31)
0=A%F(Ind)g,, (E,E) (3.32)

for E € T'((ker®,)"). We have 0 = F(InA) from (3.32). It means 2 is a constant on horizontal distribution. So, ® is a
horizontally homothetic map and (i) is satisfied. If (i) satisfies in (3.30), we obtain

N M N
0=VP®,(F) —®.(TpF +hViF + AgF) —V* @, (F) + (VO.)*(E,F). (3.33)

From (3.33), we obtain (ii). The proof is complete. O
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4. Pluriharmonic conformal quasi-hemi-slant Riemannian map

In this section, we examine some geometric properties of certain distributions with respect to notion of pluriharmonicity, see
equation (2.10) or [16]. We present D-pluriharmonicity in the following.

Theorem 4.1. Let®: (M,g,,,J) — (N,g,) be a conformal quasi-hemi-slant Riemannian map. If ® is a D—pluriharmonic
map, then one of the below assertions imply the second assertion,

i) D defines a totally geodesic foliation on M,
ii) CTu, Uz + Vg, Uy =0
SJorU;, U, e I'(D).
Proof. Initially, using definition of pluriharmonic map, we have

0= (V®,)(Uy,U2) + (VD,)(JU,,JU,) 4.1

for Uy,U, € T(D). By some calculations, we obtain from (4.1)

M .
O,(Vy,Un) = —@.(J(Ju, Uz + Viu, U2))

M .
D, (Vy,Un) = —P(CTy, U+ yVyy,Ua). 4.2)

M
If (i) is satisfied in (4.2) we have @, (Vy, Uz) = 0. So, we obtain
C T, Us +yVu,Us = 0.

(ii) is provided. In a similar way, if (ii) is satisfied in (4.2), easily one can get (i). O

Theorem 4.2. Let ®: (M,g,,.J) — (N,g,) be a conformal quasi-hemi-slant Riemannian map. If ® is a Dg—pluriharmonic
map, then two of the below assertions imply the third assertion,

i) Dg defines a totally geodesic foliation on M,
ii) A is a constant on YDy and (V®.,)*(yV;, yV,) =0,

iii)
2 C M
cos G(C%V] Vo + WV¢V1 Vz) = l[/%vl voV, + ChV¢V1 yoV, — wavzqﬂ/] — DQ{WVI oVs.

forVi,V, € Iﬂ(l:)e ).

Proof. If ® is a Dg—pluriharmonic map, we have
0= (V®,)(Vi,Va) + (VD) (IV1,JV2) (4.3)

for V|,V, € T'(Dg). Using symmetry property of second fundamental form and from equations (2.4), (2.5), (2.6) and (2.9), we
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get
M M M
0 = —®u(VyV2) = Pu(Vyy, ¢V2) = P (Vy1,0V1)

M
— @ (Vyy, 0Va) + (VO,) - (WV1, yVa) + yVi (InA) D, (WVs)
+  yVa(Ind)®.(yV1) — g, (WVi, yV2)P.(grad(Ind))
M M
(I)* (VVI VZ) = (I)* (JV¢V1 J¢V2) - (I)* (leu/v2¢V1 + %WVI (PVZ)
(VO,) " (yVi, yVa) + yVi (In )@, (wV2)
yV2(In )@, (yV1) — g, (WV1, yV2)®.(grad(Ind))

M .
D, (VVI V2) = —cos? 0D, (C%Vl Vo + l]/V(PV] V2)

+ o+

+ (YT, V2 +ChAV4¢V1 %))

— DAy, V1 + Sy 9V2) + (V) (yVi, ya)

+ YWi(Ind)P.(yV2) + yVa(In )P, (yW1)

= &y (W1, yV2)®,(grad(Inl)). (4.4)

M
Now, if (i) and (ii) are satisfied in (4.4), we have ®,(Vy, V) = 0 and

0 = yVi(nd)®.(yV2) + yVao(Ind)@.(YV1) — g, (WV1, YV2)P.(grad(Inl)), 4.5)
0 = (Vo) (yVi,yVa), (4.6)
respectively. Then, we get from (4.4)
R M
0 = —cos? 0D, (CTpv,Va+ WV, Vo) + Pu(W Tyy, WV + ChV sy, W V)
- D ( Ay, OV1 + Ay, $V2). 4.7

So, (iii) is satisfied at (4.7). If (ii) and (iii) are satisfied in (4.4), we clearly have equations (4.5), (4.6) and (4.7) in (4.4).
Therefore, we obtain (i). Lastly, suppose that (i) and (iii) are satisfied in (4.4). Then, we get (4.5) and (4.6). In (4.5), we obtain
from (1.2)

0 = A’yVi(Ind)g, (WVa, yVi) + A yVa(Ind)g,, (WVi, yVi) — A%g,, (WVi, yVa)yVi(Ind)

0 = A*yVa(ind)g, (wVi,yVi) (4.8)
for yV; € I'(Dg). At (4.8), we have 0 = yV,(Inl). It means 0 = yDg(InA) which implies that A is a constant on yDy.
Hence, (ii) is satisfied. The proof is completed. O

Similarly, we have the following theorem.

Theorem 4.3. Let ®: (M,g,,.J) — (N,g,) be a conformal quasi-hemi-slant Riemannian map. If ® is a D | —pluriharmonic
map, then one of the below assertions imply the second assertion,

i) D, defines a totally geodesic foliation on M,
ii) A is a constant on JD | and (V®,)*(JW;,JW,) =0
SJor Wi, Wo € T'(D).
Now, we search properties of horizontal and vertical pluriharmonic maps, respectively.

Theorem4.4. Let®: (M, g,,,J) — (N, g, ) be a conformal quasi-hemi-slant Riemannian map. If ® is a (ker®..)* —pluriharmonic
map, then any two of the below assertions imply the third assertion,

i) (ker®,)™ defines a totally geodesic foliation on M,

ii) A is a constant on |,

N
iii) V7, ®,(2,) = ®.(Tpz,BZs + Hcz,BZ1 + cz,BZ2) — (VD) (CZ1,C2Z)
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for Zy,Z;, € T'((ker®,)").
Proof. From definition of pluriharmonic map, we have
0= (VD) (Z1,22) + (VD) (JZ1,IZ,) 4.9)

for Z1,7Z, € T'((ker®,)"). By some calculations from (2.8) and (2.9) in (4.9), we get

N

0 = Vq’z,cp*(zz)wp*(gzlzz)+(Vc1>*)i(czl,czz)
—  ®.(Tpz,BZs + Hez,BZ + Hez,BZ2) + CZ (InA) D (CZy)
+ CZ(InA)®.(CZ)—g,,(CZ,CZ)P.(grad(Inl)). (4.10)
If (i) and (ii) are satisfied in (4.10), we have
M
0 = @,(Vz2), (4.11)
0 = CZi(InA)®.(CZ)+CZ(InA)D.(CZ) —g,,(CZ,CZy) D, (grad(Inh)). (4.12)

So, we get (iii) from (4.10) such that

N
V®,, ®.(2y) = ®.(Tpz,BZa + Hcz,BZ1 + ez, BZy) — (V@) (CZ1,CZy). (4.13)

M
If (ii) and (iii) are satisfied in (4.10), we have equations (4.12) and (4.13). Clearly, we obtain 0 = ®,(Vz Z,) which implies
that (kerCID*)L defines a totally geodesic foliation on M. Lastly, if (i) and (iii) are satisfied in (4.10), we obtain (4.12). From
(1.2) in (4.12) we get
0 A22CZ,(InQ)g,, (CZ2,CZy) + A*CZy(In)g,, (CZ1,CZy) — A%g,,(CZ1,CZ,)CZ; (In L)
0 = A2CZ(InA)g, (CZ,CZy) (4.14)

for CZ,,CZ, € T'(u). Here, we have CZ,(InA) = 0 which implies that A is a constant on g. (ii) is provided. The proof is
completed. O

Theorem4.5. Let®: (M,g,,,J) — (N, gy ) be a conformal quasi-hemi-slant Riemannian map. If ® is a ker®, —pluriharmonic
map, then any two of the below assertions imply the third assertion,

i) ker®, defines a totally geodesic foliation on M,
it) @ is a horizontally homothetic map and (V®,)*(w&, w&) =0,
iii) Ty, 08+ Dye, 981 + Ayg, 052 =0
Jor &1,& € T'(kerd,).
Proof. From equations (2.5), (2.6), (2.9), (2.10) and (3.4), we get

0 = (V&,)(&1,8)+ (VD) (JE1,7E)
M

0 = —Du(Vg )+ (VP.)(061,08) + (VO.)(¥E2,081)
T (VO)(WE1,08) + (VE.)(WE1, &)

M
(D*(Véjl‘§2) = _q)*(%§1¢é2+£{v/<§2¢§1+d‘l’5l¢§2)

+ (VO (WE, y&) + wéi (In2)D(wd)
+ yo(nA)2(ys)) — g, (WE1, y&2)P.(grad(Ind)) (4.15)

for &;,&; € T'(ker®,). The proof of (i) and (iii) are clear to see. So, we only give proof for (ii). Suppose that (i) and (iii) are
provided in (4.15). One can see easily that (V®,)*(wé&;, w&) = 0 and we get

0 = y&(nA)P(ys)+ vy (Ind)P(yér) — g, (Wi, wé)®P.(grad(Inl)). (4.16)

Since P is a conformal map, we obtain from (4.16)

0=Ay&(InA)g, (Wé1, wé) 4.17)



Conformal Quasi-Hemi-Slant Riemannian Maps — 111/113

for y& € I(yDg ®JD) ). It means 0 = w&,(InA) which implies that A is a constant on yDg ©JD . On the other hand, we
obtain from (4.16)

0=—A*CX(InA)g,, (W&, wé) (4.18)
for CX € I'(1t) with w&; = w&,. It means 0 = CX (InA) which implies that A is a constant on f1. Hence, equations (4.17) and
(4.18) give us that ® is a horizontally homothetic map. (ii) is provided. The proof is completed. 0

Lastly, we examine mixed pluriharmonicity on conformal quasi-hemi-slant Riemannian maps such that
0= (V®.)(Z,8)+ (V®.)(JZ,JG)
for & € ['(ker®,) and Z € T'((ker®,)").

Theorem 4.6. Ler®: (M, g,,.J) — (N, gy) be a conformal quasi-hemi-slant Riemannian map. If ® is a mixed—pluriharmonic
map, then any of the below assertions imply the second assertion,

i- ® is a horizontally homothetic map and (V(ID*)L(CZ7 wé) =0,
ii- o7& = Tpz0& +ﬂW§BZ+Mcz¢€
for & € T(ker®,) and Z € T'((ker®,)™").

Proof. From definition of mixed pluriharmonic map, we get

0 = () +P(Tpz98E + AyeBZ+ cz98)
b (VD)L (CZ, WE) +CZ(n A) D, (yE) + W (In4) D, (CZ) 4.19)
for & € T'(ker®,) and Z € T'((ker®,)™"). If (i) is satisfied in (4.19) we have (V®,)*(CZ,y&) =0 and
0= CZ(In ) D, (WE) + & (In 1), (CZ). (4.20)

So, one can obtain (ii) easily. Now, if (ii) is satisfied in (4.19) we obtain easily (V®.,)*(CZ, w&) = 0. Then, from (4.20) we
obtain

0=2A2y&(In)g,, (CZ,CZ) 4.21)

for CZ € T'(ut). It means 0 = w& (InA) which implies that A is a constant on WDy & JD . On the other hand, from (4.20) we
obtain

0=2A*CZ(InA)g,, (V& y&) (4.22)
for y& e T(yDg ®JD ). It means 0 = CZ(InA) which implies that A is a constant on . Hence, (4.21) and (4.22) give us that
@ is a horizontally homothetic map. (i) is provided. The proof is completed. O

5. Conclusion

In this paper, integrability conditions and conditions for defining a totally geodesic foliation by certain distributions were found.
Then, by applying the notion of pluriharmonicity onto conformal quasi-hemi-slant Riemannian maps we obtained relations
among pluriharmonicity, horizontally homotheticness and totally geodesicness.
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