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1. INTRODUCTION AND NOTATION

This paper originated when one of the authors (N.O.) came across the article [3]. The explicit
formulas in [3] were interesting, but we could not concur with the overall framework in which
they had been derived. The calculations in [3] are based on van der Corput’s “neutrix calculus”,
see [1], a way of evaluating divergent integrals, which was inspired by Hadamard’s method.
This “technique of neglecting appropriately defined infinite quantities”, see [12, p. 984] , pro-
duces numbers, not distributions. Accordingly, the results in [3] represent the incomplete beta
function only on the open interval (0, 1) and do not furnish a distribution on R. So we thought
that it might be reasonable to reconsider the calculations in [3] from the nowadays generally
adopted viewpoint of distribution theory.

Let us mention that regularizations in Hadamard’s sense but employing L. Schwartz’ theory
of distributions were investigated in [9, pp. 15–19], for three kinds of distributions.

Classically, the incomplete beta function is defined by the integral

Bλ,µ(x) =

∫ x

0

tλ−1(1− t)µ−1 dt, 0 ≤ x ≤ 1, Reλ > 0, Reµ > 0,

see [4, Equ. 8.931]. The goal of the article [3] as well as of this paper consists in defining and
evaluating Bλ,µ and its partial derivatives with respect to λ and µ at the “singular values”, i.e.,
if λ ∈ −N0 or µ ∈ −N0.

In Section 2, we define Bλ,µ as distributions depending analytically on (λ, µ) ∈ C2. At the
poles, e.g. if λ = −k ∈ −N0, we set B−k,µ = Pfλ=−k Bλ,µ, i.e., B−k,µ is defined as the finite
part of the Laurent series of Bλ,µ about λ = −k. The procedure of embedding a function into
a family of distributions which depend analytically on a parameter goes back to M. Riesz, see
[14, pp. 31, 32], L. Schwartz, see [15, p. 39], and J. Dieudonné, see [2, pp. 260–262]. With respect
to distribution-valued analytic or meromorphic functions, we refer the reader also to [10].
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In Section 3, we collect some algebraic reduction formulas, which show that our task can be
reduced to evaluatingB, ∂λB, ∂µB if λ or µ are 1. This is eventually done forB in Section 4 and
for ∂λB, ∂µB in Section 5, respectively.

Let us introduce some notation. As usual, an empty series, as, e.g., in
∑0
j=1 cj , sums to zero.

N and N0 denote the sets of positive and of non-negative integers, respectively. We employ the
standard notation for the distribution spaces D′, E ′, the dual spaces of the spaces D, E of “test
functions” and of C∞ functions, respectively, see [15, 6, 11]. For the evaluation of a distribution
T on a test function φ, we use angle brackets, i.e., 〈φ, T 〉. In this paper, all distributions are on
the real axis R, i.e., they belong toD′(R), but usually depend meromorphically on the complex
variables λ, µ. Differentiation with respect to x is denoted by the apostrophe, differentiation
with respect to λ, µ by ∂λ, ∂µ or ∂/∂λ, ∂/∂µ or ∂1, ∂2.

The Heaviside function is denoted by Y, see [15, p. 36]. We write δ for the delta distribution
with support in 0, i.e., δ = Y ′, and δ1 for the delta distribution with support in 1, i.e., δ1 =
Y (x − 1)′. The letter ψ denotes the logarithmic derivative Γ′/Γ of the gamma function and L2

denotes the dilogarithm, i.e., L2(0) = 0 and

L2(x) =

∫ 1

0

C
log t

t− x−1
dt, x ∈ R \ {0},

see [5, Section 323].

2. DEFINITION OF THE INCOMPLETE BETA FUNCTION

Let us first recall some facts concerning the distribution xλ+ = Y (x)xλ, see [6, Section 3.2,
p. 68], , [11, Exs. 1.3.9, 1.4.8, pp. 32, 49]. If λ ∈ C with Reλ > −1, then xλ+ is a locally integrable
function on R and hence belongs to D′(R). The function

{λ ∈ C; Reλ > −1} −→ D′(R) : λ 7−→ xλ+

is analytic and can analytically be extended to C \ (−N). This extension, which is also denoted
by xλ+, is meromorphic on C and has simple poles on −N with the residues

Res
λ=−k−1

xλ+ = (−1)kδ(k)/k!

for k ∈ N0. For abbreviation, we also set

x−k+ = Pf
λ=−k

xλ+ if k ∈ N.

In [13, pp. 11, 12], the distributions xλ+ are called Hadamard kernels.
Note that x ·xλ+ = xλ+1

+ holds for each λ ∈ C. In contrast, the differentiation formula (xλ+)′ =

λxλ−1+ is valid for λ ∈ C \ (−N0) by analytic continuation, but at λ = −k, k ∈ N0, we obtain

(x−k+ )′ = Pf
λ=−k

(xλ+)′ = Pf
λ=−k

λxλ−1+

= Pf
λ=−k

[(λ+ k)xλ−1+ − kxλ−1+ ]

= lim
λ→−k

(λ+ k)xλ−1+ − kx−k−1+

= Res
λ=−k

xλ−1+ − kx−k−1+

=
(−1)kδ(k)

k!
− kx−k−1+ ,

see also [15, Equ. (II, 2; 28), p. 42], [7, p. 151, Remark], [6, Equ. (3.2.2)′′, p. 69], , [11, p. 50].
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By differentiation with respect to λ,we obtain the distribution-valued function λ 7→ ∂λ(xλ+) =

xλ+ log x,which is meromorphic in λwith double poles on−N.As above we define x−k+ log x :=

Pfλ=−k x
λ
+ log x for k ∈ −N and similarly for the higher derivatives with respect to λ. Hence

the Laurent series of xλ+ about the pole λ = −k, k ∈ N, is given by

(2.1) xλ+ =
(−1)k−1δ(k−1)

(k − 1)!(λ+ k)
+

∞∑
j=0

x−k+ logj x

j!
(λ+ k)j , 0 < |λ+ k| < 1.

(In fact, Pfλ=−k ∂
j
λx

λ
+ = Pfλ=−k x

λ
+ logj x = x−k+ logj x for j ∈ N0.)

Now we are prepared for giving a distributional definition of the incomplete beta function.

Definition 2.1. For λ, µ ∈ C, we call Sλ,µ = xλ−1+ · (1 − x)µ−1+ ∈ E ′(R) the M. Riesz kernels of the
incomplete beta function and Bλ,µ = Y ∗ Sλ,µ ∈ D′(R) the incomplete (Eulerian) beta function.

Note that the multiplication of the two distributional factors xλ−1+ and (1 − x)µ−1+ of Sλ,µ is
well-defined since their respective singular supports {0} and {1} are disjoint, see [6, Thm. 8.2.10,
p. 267]. We also observe that Bλ,µ is uniquely determined by the two conditions

(i)B′λ,µ = Sλ,µ and (ii) suppBλ,µ ⊂ [0,∞).

According to the above, the function (λ, µ) 7→ Sλ,µ is analytic for λ, µ ∈ C \ (−N0). There-
fore the same holds true for Bλ,µ and its derivatives (∂1B)λ,µ = ∂Bλ,µ/∂λ and (∂2B)λ,µ =
∂Bλ,µ/∂µ. As before, we abbreviate

(∂1B)−k,µ := Pf
λ=−k

(∂1B)λ,µ

and
(∂1B)−k,−l := Pf

λ=−k
Pf
µ=−l

(∂1B)λ,µ if k, l ∈ N0, µ ∈ C \ (−N0),

and similarly for ∂2B. As related in Section 1, we aim at calculating explicitly Bk,l, (∂1B)k,l,
(∂2B)k,l for the singular values, i.e., if k, l ∈ Z and [k ∈ −N0 or l ∈ −N0].

3. ALGEBRAIC REDUCTION FORMULAS

The trivial identity

Sλ,µ = 1 · Sλ,µ = (x+ 1− x) · Sλ,µ = Sλ+1,µ + Sλ,µ+1

leads to representations of Sk,l, k, l ∈ Z, by Sj,1 and S1,j , j ∈ Z. By convolution with Y
and by differentiation with respect to λ and µ, we obtain similar representation formulas for
Bk,l, (∂1B)k,l and (∂2B)k,l, respectively.

Lemma 3.1. Let λ, µ ∈ C and k, l ∈ N0. Then the following holds:

(3.2) Sλ,µ+l =

l∑
j=0

(
l

j

)
(−1)jSλ+j,µ;

(3.3) Sλ−k,µ−l =

k∑
j=0

(
k + l − j

l

)
Sλ−j,µ+1 +

l∑
j=0

(
k + l − j

k

)
Sλ+1,µ−j

and for k < l we have

(3.4) Sλ−k,µ+l =

k∑
j=0

(
l − 1

j

)
(−1)jSλ−k+j,µ+1 + (−1)k+1

l−k−1∑
j=1

(
l − j − 1

k

)
Sλ+1,µ+j .
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The corresponding formulas hold likewise if S is replaced throughout by B = Y ∗S, by ∂1B, or by ∂2B,
respectively.

Proof. Equation (3.2) follows directly from the binomial formula:

Sλ,µ+l = xλ−1+ (1− x)µ+l−1+ = Sλ,µ · (1− x)l

= Sλ,µ ·
l∑

j=0

(
l

j

)
(−1)jxj

=

l∑
j=0

(
l

j

)
(−1)jSλ+j,µ.

Formula (3.3) follows similarly by using the polynomial identity

(3.5) 1 =

k∑
j=0

(
k + l − j

l

)
xk−j(1− x)l+1 +

l∑
j=0

(
k + l − j

k

)
xk+1(1− x)l−j .

For completeness, let us indicate shortly how the identity (3.5) is derived from a Mittag-Leffler
expansion. In fact, in the representation

z−k−1(1− z)−l−1 =

k∑
j=0

cjz
−j−1 +

l∑
j=0

dj(1− z)−j−1, z ∈ C \ {0, 1},

the coefficients cj can be determined from the Laurent expansion

z−k−1(1− z)−l−1 =

∞∑
n=0

(
−l − 1

n

)
(−1)nzn−k−1, 0 < |z| < 1,

i.e.,

n = k − j and cj =

(
−l − 1

k − j

)
(−1)k−j =

(
k + l − j

l

)
, j = 0, . . . , k,

and similarly for dj , j = 0, . . . , l.
Equation (3.4) follows in the same way by using the polynomial identity

(1− x)l−1 =

k∑
j=0

(
l − 1

j

)
(−1)jxj + (−1)k+1

l−k−1∑
j=1

(
l − j − 1

k

)
xk+1(1− x)j−1.

This can be shown by first replacing x by 1−x and then employing the Mittag-Leffler expansion
of zl−1(1− z)−k−1 with respect to the poles 0 and∞. �

Remark 3.1. Let us illustrate how the formulas (3.2), (3.3) and (3.4) are applied in order to reduce the
singular values Bk,l to Bj,1 and B1,j , j, k, l ∈ Z. E.g., setting λ = µ = k = l = 0 in formula (3.3)
yields the equation B0,0 = B0,1 + B1,0. Instead, if l ∈ N and if we set λ = 0, µ = 1 and replace l by
l − 1, then formula (3.2) implies

(3.6) B0,l =

l−1∑
j=0

(
l − 1

j

)
(−1)jBj,1, l ∈ N.

Note that formula (3.4) leads to a different representation by setting λ = k = µ = 0 :

(3.7) B0,l = B0,1 −
l−1∑
j=1

B1,j , l ∈ N.



On the singular values of the incomplete Beta function 97

The formulas (3.6) and (3.7) coincide in the cases l = 1 and l = 2, but yield different representations for
l ≥ 3. E.g.,

B0,3 = B0,1 − 2B1,1 +B2,1 = B0,1 −B1,1 −B1,2.

(The last equation amounts to B2,1 = B1,1 −B1,2.)

Let us finally investigate howBλ,µ andBµ,λ are connected. For this we extend the definition
of the complete beta function or, as it is also called, the Eulerian integral of the first kind

B(λ, µ) =

∫ 1

0

xλ−1(1− x)µ−1 dx, λ, µ ∈ C, Reλ > 0, Reµ > 0,

first, as usual, to [C \ (−N0)]2 by analytic continuation, i.e.,

B(λ, µ) =
Γ(λ)Γ(µ)

Γ(λ+ µ)
, λ, µ ∈ C \ (−N0),

and then to the singular values in −N0 by taking the finite part with respect to λ and µ. This
implies that B(λ, µ) = 〈1, Sλ,µ〉 and Bλ,µ(x) = B(λ, µ) hold for x > 1 and for each (λ, µ) ∈ C2.

Lemma 3.2. For λ, µ ∈ C, we have Bµ,λ(x) = B(λ, µ)−Bλ,µ(1− x).

Proof. If f, g ∈ D(R), then

f(−x) ∗ g(1− x) =

∫
f(−t)g(1− (x− t)) dt

=

∫
f(s)g(1− x− s) ds

= (f ∗ g)(1− x)

and this formula holds by density whenever two distributions are convolvable. Hence

Bµ,λ = Y ∗ Sµ,λ = (1− Y (−x)) ∗ Sµ,λ
= 〈1, Sµ,λ〉 − Y (−x) ∗ Sλ,µ(1− x)

= B(µ, λ)− (Y ∗ Sλ,µ)(1− x)

= B(λ, µ)−Bλ,µ(1− x).

�

Let us yet give formulas for the finite parts of the complete beta function B(λ, µ) at the
singular points.

Lemma 3.3. For k, l ∈ N0 and µ ∈ C \ Z, we have

(3.8) B(−k, µ) = (−1)k
(
µ− 1

k

)[
ψ(k + 1)− ψ(µ− k)

]
;

(3.9) B(−k, l) =


(−1)k

(
l − 1

k

)[ k∑
j=1

1

j
−
l−k−1∑
j=1

1

j

]
: l > k,

(−1)l

l
·
(
k

l

)−1
: 1 ≤ l ≤ k;

(3.10) B(−k,−l) = −
(
k + l

k

)[ k+l∑
j=k+1

1

j
+

k+l∑
j=l+1

1

j

]
.
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Proof. We first calculate

(3.11) Res
λ=−k

Γ(λ) = Res
λ=−k

Γ(λ+ k + 1)

λ(λ+ 1) · · · (λ+ k)
=

(−1)k

k!
,

see [8, Section 13.1.4, p. 156], and

(3.12)

Pf
λ=−k

Γ(λ) = Pf
λ=−k

Γ(λ+ k + 1)

λ(λ+ 1) · · · (λ+ k)

= ∂λ

( Γ(λ+ k + 1)

λ(λ+ 1) · · · (λ+ k − 1)

)∣∣∣∣
λ=−k

=
(−1)k

k!

(
ψ(1) +

k∑
j=1

1

j

)
=

(−1)kψ(k + 1)

k!
,

see [10, p. 65]. This furnishes

B(−k, µ) = Pf
λ=−k

Γ(λ)Γ(µ)

Γ(λ+ µ)

= Pf
λ=−k

Γ(λ) · Γ(µ)

Γ(µ− k)
+ Res
λ=−k

Γ(λ) · ∂λ
( Γ(µ)

Γ(λ+ µ)

)∣∣∣∣
λ=−k

= (−1)k
(
µ− 1

k

)[
ψ(k + 1)− ψ(µ− k)

]
and hence formula (3.8).

If l > k and if we set µ = l in formula (3.8), then we immediately obtain the first equation in
(3.9) due to ψ(n+ 1) = ψ(1) +

∑n
j=1 j

−1 for n ∈ N0, see [4, Equ. 8.365.3]. On the other hand, if
1 ≤ l ≤ k, then

ψ(µ− k) = ψ(µ− l + 1)−
k∑
j=l

1

µ− j
,

see [4, Equ. 8.365.3], and this implies

B(−k, l) = lim
µ→l

(−1)k
(
µ− 1

k

)[
ψ(k + 1)− ψ(µ− k)

]
= (−1)l

(l − 1)!(k − l)!
k!

=
(−1)l

l

(
k

l

)−1
,

i.e., the second equation in formula (3.9).
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Finally, we obtain

B(−k,−l) = (−1)k Pf
µ=−l

(
µ− 1

k

)[
ψ(k + 1)− ψ(µ+ l + 1) +

k+l∑
j=0

1

µ− k + j

]

= (−1)k
(
−l − 1

k

)[
ψ(k + 1)− ψ(1) +

k+l−1∑
j=0

1

−k − l + j

]
+ (−1)k∂µ

(
µ− 1

k

)∣∣∣∣
µ=−l

= −
(
k + l

k

)[ k+l∑
j=k+1

1

j
+

k+l∑
j=l+1

1

j

]
.

�

4. THE SINGULAR VALUES OF THE INCOMPLETE BETA FUNCTION

As explained in Section 3, we can reduce the general case of calculating Bk,l, k, l ∈ Z, to the
particular cases of Bj,1 and B1,j , j ∈ Z.

Proposition 4.1. For λ, µ ∈ C \ (−N0) and j ∈ N, the following holds:

(4.13) Bλ,1 =
1

λ

[
Y (1− x)xλ+ + Y (x− 1)

]
, B1,µ =

Y (x)

µ

[
1− (1− x)µ+

]
;

(4.14) B0,1 = Y (x)Y (1− x) log x, B1,0 = −Y (x)Y (1− x) log(1− x);

(4.15) B−j,1 = −1

j

[
Y (1− x)x−j+ + Y (x− 1)

]
+

(−1)jδ(j−1)

j · j!
;

(4.16) B1,−j =
Y (x)

j

[
(1− x)−j+ − 1

]
+
δ
(j−1)
1

j · j!
.

Proof. For λ ∈ C with Reλ > 0, we have

Bλ,1(x) = Y (x)

∫ x

0

Y (1− t)tλ−1 dt =
1

λ

[
Y (1− x)xλ+ + Y (x− 1)

]
.

By analytic continuation, the last expression represents Bλ,1 for all λ ∈ C \ (−N0).
For the remaining cases, we use the following formula, which is familiar in the context of

complex analysis:

(4.17) Pf
λ=λ0

(fλ · Tλ) = Res
λ=λ0

fλ · Pf
λ=λ0

∂λTλ + Pf
λ=λ0

fλ · Pf
λ=λ0

Tλ + Pf
λ=λ0

∂λfλ · Res
λ=λ0

Tλ.

Here fλ is an analytic C∞(R)-valued function for 0 < |λ− λ0| < ε and Tλ is an analytic D′(R)-
valued function for 0 < |λ − λ0| < ε, ε > 0, and both fλ and Tλ have at most a simple pole in
λ0, see [10, Prop. 1.6.3, p. 28].

Hence

B0,1 = Pf
λ=0

1

λ

[
Y (1− x)xλ+ + Y (x− 1)

]
=

∂

∂λ

[
Y (1− x)xλ+ + Y (x− 1)

]∣∣
λ=0

= Y (x)Y (1− x) log x
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and

B−j,1 = −1

j
Pf
λ=−j

[
Y (1− x)xλ+ + Y (x− 1)

]
− 1

j2
Y (1− x) Res

λ=−j
xλ+

= −1

j

[
Y (1− x)x−j+ + Y (x− 1)

]
+

(−1)jδ(j−1)

j · j!
.

The formulas for B1,µ, B1,0 and B1,−j then follow from Lemma 3.2. �

Example 4.1. Let us calculate here B0,n for n ∈ Z. If n = l ∈ N, then we use formula (3.7) and obtain
from Proposition 4.1 that

B0,l = B0,1 −
l−1∑
j=1

B1,j = Y (x)Y (1− x) log x−
l−1∑
j=1

Y (x)

j

[
1− (1− x)j+

]
.

If n = −l ∈ −N0, we set λ = k = µ = 0 in formula (3.3) and conclude from Equations (4.14) and
(4.16) in Proposition 4.1 that

(4.18)

B0,−l = B0,1 +

l∑
j=0

B1,−j

= Y (x)Y (1− x) log
( x

1− x

)
+

l∑
j=1

{Y (x)

j

[
(1− x)−j+ − 1

]
+
δ
(j−1)
1

j · j!

}
, l ∈ N0.

In the open interval (0, 1), Equation (4.18) coincides with the expression given in Thm. 2.1 in [3,
p. 5]. Note that the calculation in this paper is based on van der Corput’s neutrix method, which
does not produce a distribution but rather represents B0,−l as a function outside its singular support.
Similarly, formulas (1), (2), (3) in [3, pp. 4, 5], also follow from Lemma 3.1 and Proposition 4.1 or from
the above by Lemma 3.2.

More generally, formula (3.3) yields a representation of B−k,−l, k, l ∈ N0, which, on the basis of van
der Corput’s method, is considered in [12, p. 990].

5. ON THE SINGULAR VALUES OF THE PARTIAL DERIVATIVES OF THE INCOMPLETE BETA
FUNCTION

As indicated above, we denote ∂Bλ,µ/∂λ by ∂1B and similarly for ∂2B. Motivated by the
calculations in [3], let us derive formulas for (∂1B)1,j and (∂1B)j,1, j ∈ Z. Lemma 3.1 then
immediately yields representations of ∂1B at the singular values (k, l) ∈ Z2, k ≤ 0 or l ≤ 0.
Furthermore, we conclude from Lemma 3.2 that

(5.19)

(∂2B)λ,µ =
∂Bλ,µ
∂µ

=
∂B(λ, µ)

∂µ
− ∂Bµ,λ(1− x)

∂µ

=
∂B(λ, µ)

∂µ
− (∂1B)µ,λ(1− x),

and hence the derivative ∂2B can be expressed by ∂1B.

Proposition 5.2. For λ, µ ∈ C \ (−N0) and k, l ∈ N, the following holds:

(5.20) (∂1B)λ,1 = λ−1Y (1− x)xλ+ log x− λ−2
[
Y (1− x)xλ+ + Y (x− 1)

]
;

(5.21) (∂1B)0,1 = 1
2Y (x)Y (1− x) log2 x;
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(5.22) (∂1B)−k,1 = −Y (1−x)
k x−k+ log x− x−k

+ Y (1−x)+Y (x−1)
k2 + (−1)kδ(k−1)

k2·k! ;

(5.23) (∂1B)1,µ = −µ−1Y (x) log x · (1− x)µ+ + µ−1B0,µ+1;

(5.24)
(∂1B)1,0 = −Y (x)Y (1− x)

[
log x log(1− x) + L2(x)

]
− Y (x− 1)

π2

6

= Y (x)
[
Y (1− x)L2(1− x)− π2

6

]
.

(5.25)

l(∂1B)1,−l = Y (x) log x · (1− x)−l+ − Y (x)Y (1− x) log
( x

1− x

)
− 1

l
Y (x− 1)−

l−1∑
j=1

Y (x)

j

{[
(1− x)−j+ − 1

]
+

l δ
(j−1)
1

(l − j) · j!

}
.

Proof. Formula (5.20) follows immediately from the first equation in formula (4.13) by differ-
entiation with respect to λ.

By taking the finite part at λ = 0, we infer

(∂1B)0,1 = Pf
λ=0

1

λ
Y (1− x)xλ+ log x− Pf

λ=0

1

λ2
Y (1− x)xλ+

=
∂

∂λ

[
Y (1− x)xλ+ log x

]∣∣
λ=0
− 1

2

∂2

∂λ2
[
Y (1− x)xλ+

]∣∣
λ=0

=
1

2
Y (x)Y (1− x) log2 x

and hence we obtain formula (5.21).
In order to calculate the finite part of (∂1B)λ,1 at λ = −k ∈ −N, let us first derive the Laurent

series of xλ+ log x about λ = −k from that of xλ+, i.e. formula (2.1), by differentiation with respect
to λ :

xλ+ log x =
(−1)kδ(k−1)

(k − 1)!(λ+ k)2
+

∞∑
j=0

x−k+ logj+1 x

j!
(λ+ k)j , 0 < |λ+ k| < 1.

Hence Resλ=−k x
λ
+ log x = 0 and we conclude that

(∂1B)−k,1 = Pf
λ=−k

{ 1

λ
Y (1− x)xλ+ log x− 1

λ2
[
Y (1− x)xλ+ + Y (x− 1)

]}
= −1

k
Y (1− x)x−k+ log x− 1

k2
[
Y (1− x)x−k+ + Y (x− 1)

]
+

1

2

∂2λ−1

∂λ2

∣∣∣
λ=−k

· (−1)kδ(k−1)

(k − 1)!
− ∂λ−2

∂λ

∣∣∣
λ=−k

· Res
λ=−k

Y (1− x)xλ+

= −1

k
Y (1− x)x−k+ log x− 1

k2
[
Y (1− x)x−k+ + Y (x− 1)

]
+

(−1)kδ(k−1)

k2 · k!
.

This furnishes formula (5.22).
Since µ ∈ C \ (−N0), we have

− 1

µ

d
dx

(1− x)µ+ = (1− x)µ−1+

and hence
d

dx

[
− 1

µ
Y (x) log x · (1− x)µ+

]
= Y (x) log x · (1− x)µ−1+ − 1

µ
x−1+ (1− x)µ+.
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Thus (∂1S)1,µ = Y (x) log x · (1 − x)µ−1 is the derivative of the distribution −µ−1Y (x) log x ·
(1 − x)µ+ + µ−1B0,µ+1 and this distribution has its support in the positive half-axis [0,∞) and
coincides therefore with (∂1B)1,µ. This implies formula (5.23).

Evaluating the finite part of (∂1B)1,µ at µ = 0 in formula (5.23) yields

(∂1B)1,0 = Pf
µ=0

(∂1B)1,µ = − ∂

∂µ
Y (x) log x · (1− x)µ+

∣∣
µ=0

+
∂B0,µ+1

∂µ

∣∣∣∣
µ=0

= −Y (x)Y (1− x) log x log(1− x) + Y (x)

∫ x

0

Y (1− t) log(1− t)dt
t

= −Y (x)Y (1− x)
[
log x log(1− x) + L2(x)

]
− Y (x− 1)L2(1),

see [5, Equ. 323.3a]. Due to L2(1) = π2

6 , this gives the first equation in formula (5.24). On the
other hand, a direct calculation yields the following:

(∂1B)1,0 = Y (x)

∫ x

0

Y (1− t)(1− t)−1 log tdt

= Y (x)

∫ 1

1−x
Y (t) log(1− t)dt

t

= Y (x)
[
Y (1− x)L2(1− x)− L2(1)

]
.

Of course, these two representations of (∂1B)1,0 must and do coincide as can be seen from [5,
Equ. 323.3g].

Let us finally calculate (∂1B)1,−l for l ∈ N. From formula (5.23), we obtain

(∂1B)1,−l = Pf
µ=−l

(∂1B)1,µ

= Y (x)l−1 log x · (1− x)−l+ + Y (x)l−2 log x · Res
µ=−l

(1− x)µ+ − l−1B0,1−l − l−2 Res
µ=−l

B0,µ+1.

Furthermore,

Res
µ=−l

(1− x)µ+ =
(

Res
µ=−l

xµ+

)
(1− x) =

(−1)l−1δ(l−1)(1− x)

(l − 1)!
=

δ
(l−1)
1

(l − 1)!
,

and, for a function f which is differentiable at 1 and m ∈ N0, we have

f · δ(m)
1 =

m∑
j=0

(
m

j

)
(−1)m−jf (m−j)(1) δ

(j)
1

and hence

(log x) · Res
µ=−l

(1− x)µ+ = −
l−2∑
j=0

δ
(j)
1

(l − j − 1) · j!
.

From formula (4.18), we infer that

B0,1−l = Y (x)Y (1− x) log
( x

1− x

)
+

l−1∑
j=1

{Y (x)

j

[
(1− x)−j+ − 1

]
+
δ
(j−1)
1

j · j!

}
.

In order to evaluate the residue Resµ=−lB0,µ+1, we note that

Res
µ=−l

S0,µ+1 = Res
µ=−l

x−1+ (1− x)µ+ = x−1 · δ
(l−1)
1

(l − 1)!
=

l−1∑
j=0

δ
(j)
1

j!



On the singular values of the incomplete Beta function 103

and thus

Res
µ=−l

B0,µ+1 = Y ∗ Res
µ=−l

S0,µ+1 = Y (x− 1) +

l−2∑
j=0

δ
(j)
1

(j + 1)!
.

Collecting terms we arrive at formula (5.25). The proof is complete. �

Remark 5.2. From formula (5.25) in Proposition 5.2, we conclude that

(5.26) (∂1B)1,−l(x) = − 1

l2
+

1

l

l−1∑
j=1

1

j
, l ∈ N, x > 1.

Let us check this equation by replacing log x by its Taylor series about 1. If l ∈ N and x > 1, then

(5.27)

(∂1B)1,−l(x) = 〈1, (∂1S)1,−l〉

= 〈1, Y (x) log x · (1− x)−l−1+ 〉

= 〈1,−
∞∑
j=1

j−1Y (x)(1− x)j−l−1+ 〉

= −〈1,
∞∑
j=1

j−1S1,j−l〉.

(In fact, these series converge in E ′(R).) For Reµ > 0, we have

〈1, S1,µ〉 = 〈1, Sµ,1〉 =

∫ 1

0

xµ−1 dx =
1

µ

and hence
〈1, S1,0〉 = 0 and 〈1, S1,l〉 = l−1 for l ∈ Z \ {0}

by analytic continuation and taking finite parts. Therefore Equation (5.27) implies

(∂1B)1,−l(x) = −
∞∑

j=1, j 6=l

1

j(j − l)

= −1

l

∞∑
j=1, j 6=l

( 1

j − l
− 1

j

)

= −1

l

(1

l
−

l−1∑
j=1

1

j

)
, l ∈ N, x > 1.

in accordance with the result in formula (5.26).

Remark 5.3. In the open interval (0, 1), the representation of (∂1B)1,−l in formula (5.25) coincides
with [3, Thm. 2.2, p. 6]. Similarly, the formulas for (∂2B)−k,1 and for (∂2B)−k,l, k, l ∈ N, in [3,
Thms. 2.3, 2.4, pp. 6, 7], follow from Equation (5.19), Lemma 3.1 and Proposition 5.2.
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