Research Article

On the singular values of the incomplete Beta function

Norbert Ortner and Peter Wagner*

Abstract

A new definition of the incomplete beta function as a distribution-valued meromorphic function is given and the finite parts of it and of its partial derivatives at the singular values are calculated and compared with formulas in the literature.

Keywords: Beta function, distribution theory, finite parts.
2020 Mathematics Subject Classification: 33B20, 46F10.

1. Introduction and notation

This paper originated when one of the authors (N.O.) came across the article [3]. The explicit formulas in [3] were interesting, but we could not concur with the overall framework in which they had been derived. The calculations in [3] are based on van der Corput's "neutrix calculus", see [1], a way of evaluating divergent integrals, which was inspired by Hadamard's method. This "technique of neglecting appropriately defined infinite quantities", see [12, p. 984] , produces numbers, not distributions. Accordingly, the results in [3] represent the incomplete beta function only on the open interval $(0,1)$ and do not furnish a distribution on \mathbf{R}. So we thought that it might be reasonable to reconsider the calculations in [3] from the nowadays generally adopted viewpoint of distribution theory.

Let us mention that regularizations in Hadamard's sense but employing L. Schwartz' theory of distributions were investigated in [9, pp. 15-19], for three kinds of distributions.

Classically, the incomplete beta function is defined by the integral

$$
B_{\lambda, \mu}(x)=\int_{0}^{x} t^{\lambda-1}(1-t)^{\mu-1} \mathrm{~d} t, \quad 0 \leq x \leq 1, \operatorname{Re} \lambda>0, \operatorname{Re} \mu>0
$$

see [4, Equ. 8.931]. The goal of the article [3] as well as of this paper consists in defining and evaluating $B_{\lambda, \mu}$ and its partial derivatives with respect to λ and μ at the "singular values", i.e., if $\lambda \in-\mathbf{N}_{0}$ or $\mu \in-\mathbf{N}_{0}$.

In Section 2, we define $B_{\lambda, \mu}$ as distributions depending analytically on $(\lambda, \mu) \in \mathbf{C}^{2}$. At the poles, e.g. if $\lambda=-k \in-\mathbf{N}_{0}$, we set $B_{-k, \mu}=\operatorname{Pf}_{\lambda=-k} B_{\lambda, \mu}$, i.e., $B_{-k, \mu}$ is defined as the finite part of the Laurent series of $B_{\lambda, \mu}$ about $\lambda=-k$. The procedure of embedding a function into a family of distributions which depend analytically on a parameter goes back to M. Riesz, see [14, pp. 31, 32], L. Schwartz, see [15, p. 39], and J. Dieudonné, see [2, pp. 260-262]. With respect to distribution-valued analytic or meromorphic functions, we refer the reader also to [10].

[^0]In Section 3, we collect some algebraic reduction formulas, which show that our task can be reduced to evaluating $B, \partial_{\lambda} B, \partial_{\mu} B$ if λ or μ are 1 . This is eventually done for B in Section 4 and for $\partial_{\lambda} B, \partial_{\mu} B$ in Section 5, respectively.

Let us introduce some notation. As usual, an empty series, as, e.g., in $\sum_{j=1}^{0} c_{j}$, sums to zero. \mathbf{N} and \mathbf{N}_{0} denote the sets of positive and of non-negative integers, respectively. We employ the standard notation for the distribution spaces $\mathcal{D}^{\prime}, \mathcal{E}^{\prime}$, the dual spaces of the spaces \mathcal{D}, \mathcal{E} of "test functions" and of C^{∞} functions, respectively, see $[15,6,11]$. For the evaluation of a distribution T on a test function ϕ, we use angle brackets, i.e., $\langle\phi, T\rangle$. In this paper, all distributions are on the real axis \mathbf{R}, i.e., they belong to $\mathcal{D}^{\prime}(\mathbf{R})$, but usually depend meromorphically on the complex variables λ, μ. Differentiation with respect to x is denoted by the apostrophe, differentiation with respect to λ, μ by $\partial_{\lambda}, \partial_{\mu}$ or $\partial / \partial \lambda, \partial / \partial \mu$ or $\partial_{1}, \partial_{2}$.

The Heaviside function is denoted by Y, see [15, p. 36]. We write δ for the delta distribution with support in 0 , i.e., $\delta=Y^{\prime}$, and δ_{1} for the delta distribution with support in 1, i.e., $\delta_{1}=$ $Y(x-1)^{\prime}$. The letter ψ denotes the logarithmic derivative Γ^{\prime} / Γ of the gamma function and \mathcal{L}_{2} denotes the dilogarithm, i.e., $\mathcal{L}_{2}(0)=0$ and

$$
\mathcal{L}_{2}(x)=\oint_{0}^{1} \frac{\log t}{t-x^{-1}} \mathrm{~d} t, \quad x \in \mathbf{R} \backslash\{0\}
$$

see [5, Section 323].

2. Definition of the incomplete beta function

Let us first recall some facts concerning the distribution $x_{+}^{\lambda}=Y(x) x^{\lambda}$, see [6, Section 3.2, p. 68], , [11, Exs. 1.3.9, 1.4.8, pp.32, 49]. If $\lambda \in \mathbf{C}$ with $\operatorname{Re} \lambda>-1$, then x_{+}^{λ} is a locally integrable function on \mathbf{R} and hence belongs to $\mathcal{D}^{\prime}(\mathbf{R})$. The function

$$
\{\lambda \in \mathbf{C} ; \operatorname{Re} \lambda>-1\} \longrightarrow \mathcal{D}^{\prime}(\mathbf{R}): \lambda \longmapsto x_{+}^{\lambda}
$$

is analytic and can analytically be extended to $\mathbf{C} \backslash(-\mathbf{N})$. This extension, which is also denoted by x_{+}^{λ}, is meromorphic on \mathbf{C} and has simple poles on $-\mathbf{N}$ with the residues

$$
\operatorname{Res}_{\lambda=-k-1} x_{+}^{\lambda}=(-1)^{k} \delta^{(k)} / k!
$$

for $k \in \mathbf{N}_{0}$. For abbreviation, we also set

$$
x_{+}^{-k}=\operatorname{Pf}_{\lambda=-k} x_{+}^{\lambda} \text { if } k \in \mathbf{N} .
$$

In [13, pp. 11, 12], the distributions x_{+}^{λ} are called Hadamard kernels.
Note that $x \cdot x_{+}^{\lambda}=x_{+}^{\lambda+1}$ holds for each $\lambda \in \mathbf{C}$. In contrast, the differentiation formula $\left(x_{+}^{\lambda}\right)^{\prime}=$ $\lambda x_{+}^{\lambda-1}$ is valid for $\lambda \in \mathbf{C} \backslash\left(-\mathbf{N}_{0}\right)$ by analytic continuation, but at $\lambda=-k, k \in \mathbf{N}_{0}$, we obtain

$$
\begin{aligned}
\left(x_{+}^{-k}\right)^{\prime}=\operatorname{Pf}_{\lambda=-k}\left(x_{+}^{\lambda}\right)^{\prime} & =\operatorname{Pf}_{\lambda=-k}^{\operatorname{Pr}} \lambda x_{+}^{\lambda-1} \\
& =\operatorname{Pf}_{\lambda=-k}^{\operatorname{Pr}}\left[(\lambda+k) x_{+}^{\lambda-1}-k x_{+}^{\lambda-1}\right] \\
& =\lim _{\lambda \rightarrow-k}(\lambda+k) x_{+}^{\lambda-1}-k x_{+}^{-k-1} \\
& =\operatorname{Res}_{\lambda=-k} x_{+}^{\lambda-1}-k x_{+}^{-k-1} \\
& =\frac{(-1)^{k} \delta^{(k)}}{k!}-k x_{+}^{-k-1},
\end{aligned}
$$

see also [15, Equ. (II, 2; 28), p. 42], [7, p. 151, Remark], [6, Equ. (3.2.2)", p. 69], , [11, p. 50].

By differentiation with respect to λ, we obtain the distribution-valued function $\lambda \mapsto \partial_{\lambda}\left(x_{+}^{\lambda}\right)=$ $x_{+}^{\lambda} \log x$, which is meromorphic in λ with double poles on $-\mathbf{N}$. As above we define $x_{+}^{-k} \log x:=$ $\mathrm{Pf}_{\lambda=-k} x_{+}^{\lambda} \log x$ for $k \in-\mathbf{N}$ and similarly for the higher derivatives with respect to λ. Hence the Laurent series of x_{+}^{λ} about the pole $\lambda=-k, k \in \mathbf{N}$, is given by

$$
\begin{equation*}
x_{+}^{\lambda}=\frac{(-1)^{k-1} \delta^{(k-1)}}{(k-1)!(\lambda+k)}+\sum_{j=0}^{\infty} \frac{x_{+}^{-k} \log ^{j} x}{j!}(\lambda+k)^{j}, \quad 0<|\lambda+k|<1 . \tag{2.1}
\end{equation*}
$$

(In fact, $\operatorname{Pf}_{\lambda=-k} \partial_{\lambda}^{j} x_{+}^{\lambda}=\operatorname{Pf}_{\lambda=-k} x_{+}^{\lambda} \log ^{j} x=x_{+}^{-k} \log ^{j} x$ for $j \in \mathbf{N}_{0}$.)
Now we are prepared for giving a distributional definition of the incomplete beta function.
Definition 2.1. For $\lambda, \mu \in \mathbf{C}$, we call $S_{\lambda, \mu}=x_{+}^{\lambda-1} \cdot(1-x)_{+}^{\mu-1} \in \mathcal{E}^{\prime}(\mathbf{R})$ the M. Riesz kernels of the incomplete beta function and $B_{\lambda, \mu}=Y * S_{\lambda, \mu} \in \mathcal{D}^{\prime}(\mathbf{R})$ the incomplete (Eulerian) beta function.

Note that the multiplication of the two distributional factors $x_{+}^{\lambda-1}$ and $(1-x)_{+}^{\mu-1}$ of $S_{\lambda, \mu}$ is well-defined since their respective singular supports $\{0\}$ and $\{1\}$ are disjoint, see [6, Thm. 8.2.10, p. 267]. We also observe that $B_{\lambda, \mu}$ is uniquely determined by the two conditions

$$
\text { (i) } B_{\lambda, \mu}^{\prime}=S_{\lambda, \mu} \quad \text { and } \quad \text { (ii) } \operatorname{supp} B_{\lambda, \mu} \subset[0, \infty)
$$

According to the above, the function $(\lambda, \mu) \mapsto S_{\lambda, \mu}$ is analytic for $\lambda, \mu \in \mathbf{C} \backslash\left(-\mathbf{N}_{0}\right)$. Therefore the same holds true for $B_{\lambda, \mu}$ and its derivatives $\left(\partial_{1} B\right)_{\lambda, \mu}=\partial B_{\lambda, \mu} / \partial \lambda$ and $\left(\partial_{2} B\right)_{\lambda, \mu}=$ $\partial B_{\lambda, \mu} / \partial \mu$. As before, we abbreviate

$$
\left(\partial_{1} B\right)_{-k, \mu}:=\operatorname{Pf}_{\lambda=-k}\left(\partial_{1} B\right)_{\lambda, \mu}
$$

and

$$
\left(\partial_{1} B\right)_{-k,-l}:=\operatorname{Pf}_{\lambda=-k} \operatorname{Pf}_{\mu=-l}\left(\partial_{1} B\right)_{\lambda, \mu} \text { if } k, l \in \mathbf{N}_{0}, \mu \in \mathbf{C} \backslash\left(-\mathbf{N}_{0}\right),
$$

and similarly for $\partial_{2} B$. As related in Section 1, we aim at calculating explicitly $B_{k, l},\left(\partial_{1} B\right)_{k, l}$, $\left(\partial_{2} B\right)_{k, l}$ for the singular values, i.e., if $k, l \in \mathbf{Z}$ and $\left[k \in-\mathbf{N}_{0}\right.$ or $\left.l \in-\mathbf{N}_{0}\right]$.

3. Algebraic reduction formulas

The trivial identity

$$
S_{\lambda, \mu}=1 \cdot S_{\lambda, \mu}=(x+1-x) \cdot S_{\lambda, \mu}=S_{\lambda+1, \mu}+S_{\lambda, \mu+1}
$$

leads to representations of $S_{k, l}, k, l \in \mathbf{Z}$, by $S_{j, 1}$ and $S_{1, j}, j \in \mathbf{Z}$. By convolution with Y and by differentiation with respect to λ and μ, we obtain similar representation formulas for $B_{k, l},\left(\partial_{1} B\right)_{k, l}$ and $\left(\partial_{2} B\right)_{k, l}$, respectively.
Lemma 3.1. Let $\lambda, \mu \in \mathbf{C}$ and $k, l \in \mathbf{N}_{0}$. Then the following holds:

$$
\begin{gather*}
S_{\lambda, \mu+l}=\sum_{j=0}^{l}\binom{l}{j}(-1)^{j} S_{\lambda+j, \mu} ; \tag{3.2}\\
S_{\lambda-k, \mu-l}=\sum_{j=0}^{k}\binom{k+l-j}{l} S_{\lambda-j, \mu+1}+\sum_{j=0}^{l}\binom{k+l-j}{k} S_{\lambda+1, \mu-j} \tag{3.3}
\end{gather*}
$$

and for $k<l$ we have

$$
\begin{equation*}
S_{\lambda-k, \mu+l}=\sum_{j=0}^{k}\binom{l-1}{j}(-1)^{j} S_{\lambda-k+j, \mu+1}+(-1)^{k+1} \sum_{j=1}^{l-k-1}\binom{l-j-1}{k} S_{\lambda+1, \mu+j} \tag{3.4}
\end{equation*}
$$

The corresponding formulas hold likewise if S is replaced throughout by $B=Y * S$, by $\partial_{1} B$, or by $\partial_{2} B$, respectively.
Proof. Equation (3.2) follows directly from the binomial formula:

$$
\begin{aligned}
S_{\lambda, \mu+l}=x_{+}^{\lambda-1}(1-x)_{+}^{\mu+l-1} & =S_{\lambda, \mu} \cdot(1-x)^{l} \\
& =S_{\lambda, \mu} \cdot \sum_{j=0}^{l}\binom{l}{j}(-1)^{j} x^{j} \\
& =\sum_{j=0}^{l}\binom{l}{j}(-1)^{j} S_{\lambda+j, \mu}
\end{aligned}
$$

Formula (3.3) follows similarly by using the polynomial identity

$$
\begin{equation*}
1=\sum_{j=0}^{k}\binom{k+l-j}{l} x^{k-j}(1-x)^{l+1}+\sum_{j=0}^{l}\binom{k+l-j}{k} x^{k+1}(1-x)^{l-j} . \tag{3.5}
\end{equation*}
$$

For completeness, let us indicate shortly how the identity (3.5) is derived from a Mittag-Leffler expansion. In fact, in the representation

$$
z^{-k-1}(1-z)^{-l-1}=\sum_{j=0}^{k} c_{j} z^{-j-1}+\sum_{j=0}^{l} d_{j}(1-z)^{-j-1}, \quad z \in \mathbf{C} \backslash\{0,1\},
$$

the coefficients c_{j} can be determined from the Laurent expansion

$$
z^{-k-1}(1-z)^{-l-1}=\sum_{n=0}^{\infty}\binom{-l-1}{n}(-1)^{n} z^{n-k-1}, \quad 0<|z|<1
$$

i.e.,

$$
n=k-j \quad \text { and } \quad c_{j}=\binom{-l-1}{k-j}(-1)^{k-j}=\binom{k+l-j}{l}, \quad j=0, \ldots, k
$$

and similarly for $d_{j}, j=0, \ldots, l$.
Equation (3.4) follows in the same way by using the polynomial identity

$$
(1-x)^{l-1}=\sum_{j=0}^{k}\binom{l-1}{j}(-1)^{j} x^{j}+(-1)^{k+1} \sum_{j=1}^{l-k-1}\binom{l-j-1}{k} x^{k+1}(1-x)^{j-1}
$$

This can be shown by first replacing x by $1-x$ and then employing the Mittag-Leffler expansion of $z^{l-1}(1-z)^{-k-1}$ with respect to the poles 0 and ∞.

Remark 3.1. Let us illustrate how the formulas (3.2), (3.3) and (3.4) are applied in order to reduce the singular values $B_{k, l}$ to $B_{j, 1}$ and $B_{1, j}, j, k, l \in \mathbf{Z}$. E.g., setting $\lambda=\mu=k=l=0$ in formula (3.3) yields the equation $B_{0,0}=B_{0,1}+B_{1,0}$. Instead, if $l \in \mathbf{N}$ and if we set $\lambda=0, \mu=1$ and replace l by $l-1$, then formula (3.2) implies

$$
\begin{equation*}
B_{0, l}=\sum_{j=0}^{l-1}\binom{l-1}{j}(-1)^{j} B_{j, 1}, \quad l \in \mathbf{N} . \tag{3.6}
\end{equation*}
$$

Note that formula (3.4) leads to a different representation by setting $\lambda=k=\mu=0$:

$$
\begin{equation*}
B_{0, l}=B_{0,1}-\sum_{j=1}^{l-1} B_{1, j}, \quad l \in \mathbf{N} . \tag{3.7}
\end{equation*}
$$

The formulas (3.6) and (3.7) coincide in the cases $l=1$ and $l=2$, but yield different representations for $l \geq 3$. E.g.,

$$
B_{0,3}=B_{0,1}-2 B_{1,1}+B_{2,1}=B_{0,1}-B_{1,1}-B_{1,2}
$$

(The last equation amounts to $B_{2,1}=B_{1,1}-B_{1,2}$.)
Let us finally investigate how $B_{\lambda, \mu}$ and $B_{\mu, \lambda}$ are connected. For this we extend the definition of the complete beta function or, as it is also called, the Eulerian integral of the first kind

$$
B(\lambda, \mu)=\int_{0}^{1} x^{\lambda-1}(1-x)^{\mu-1} \mathrm{~d} x, \quad \lambda, \mu \in \mathbf{C}, \operatorname{Re} \lambda>0, \operatorname{Re} \mu>0
$$

first, as usual, to $\left[\mathbf{C} \backslash\left(-\mathbf{N}_{0}\right)\right]^{2}$ by analytic continuation, i.e.,

$$
B(\lambda, \mu)=\frac{\Gamma(\lambda) \Gamma(\mu)}{\Gamma(\lambda+\mu)}, \quad \lambda, \mu \in \mathbf{C} \backslash\left(-\mathbf{N}_{0}\right)
$$

and then to the singular values in $-\mathbf{N}_{0}$ by taking the finite part with respect to λ and μ. This implies that $B(\lambda, \mu)=\left\langle 1, S_{\lambda, \mu}\right\rangle$ and $B_{\lambda, \mu}(x)=B(\lambda, \mu)$ hold for $x>1$ and for each $(\lambda, \mu) \in \mathbf{C}^{2}$.

Lemma 3.2. For $\lambda, \mu \in \mathbf{C}$, we have $B_{\mu, \lambda}(x)=B(\lambda, \mu)-B_{\lambda, \mu}(1-x)$.
Proof. If $f, g \in \mathcal{D}(\mathbf{R})$, then

$$
\begin{aligned}
f(-x) * g(1-x) & =\int f(-t) g(1-(x-t)) \mathrm{d} t \\
& =\int f(s) g(1-x-s) \mathrm{d} s \\
& =(f * g)(1-x)
\end{aligned}
$$

and this formula holds by density whenever two distributions are convolvable. Hence

$$
\begin{aligned}
B_{\mu, \lambda}=Y * S_{\mu, \lambda} & =(1-Y(-x)) * S_{\mu, \lambda} \\
& =\left\langle 1, S_{\mu, \lambda}\right\rangle-Y(-x) * S_{\lambda, \mu}(1-x) \\
& =B(\mu, \lambda)-\left(Y * S_{\lambda, \mu}\right)(1-x) \\
& =B(\lambda, \mu)-B_{\lambda, \mu}(1-x) .
\end{aligned}
$$

Let us yet give formulas for the finite parts of the complete beta function $B(\lambda, \mu)$ at the singular points.
Lemma 3.3. For $k, l \in \mathbf{N}_{0}$ and $\mu \in \mathbf{C} \backslash \mathbf{Z}$, we have

$$
\begin{gather*}
B(-k, \mu)=(-1)^{k}\binom{\mu-1}{k}[\psi(k+1)-\psi(\mu-k)] \tag{3.8}\\
B(-k, l)=\left\{\begin{array}{l}
(-1)^{k}\binom{l-1}{k}\left[\sum_{j=1}^{k} \frac{1}{j}-\sum_{j=1}^{l-k-1} \frac{1}{j}\right]: l>k \\
\frac{(-1)^{l}}{l} \cdot\binom{k}{l}^{-1}: 1 \leq l \leq k
\end{array}\right. \tag{3.9}\\
B(-k,-l)=-\binom{k+l}{k}\left[\sum_{j=k+1}^{k+l} \frac{1}{j}+\sum_{j=l+1}^{k+l} \frac{1}{j}\right] \tag{3.10}
\end{gather*}
$$

Proof. We first calculate

$$
\begin{equation*}
\operatorname{Res}_{\lambda=-k} \Gamma(\lambda)=\operatorname{Res}_{\lambda=-k} \frac{\Gamma(\lambda+k+1)}{\lambda(\lambda+1) \cdots(\lambda+k)}=\frac{(-1)^{k}}{k!} \tag{3.11}
\end{equation*}
$$

see [8, Section 13.1.4, p. 156], and

$$
\begin{align*}
\operatorname{Pf}_{\lambda=-k} \Gamma(\lambda) & =\operatorname{Pf}_{\lambda=-k} \frac{\Gamma(\lambda+k+1)}{\lambda(\lambda+1) \cdots(\lambda+k)} \\
& =\left.\partial_{\lambda}\left(\frac{\Gamma(\lambda+k+1)}{\lambda(\lambda+1) \cdots(\lambda+k-1)}\right)\right|_{\lambda=-k} \\
& =\frac{(-1)^{k}}{k!}\left(\psi(1)+\sum_{j=1}^{k} \frac{1}{j}\right) \tag{3.12}\\
& =\frac{(-1)^{k} \psi(k+1)}{k!},
\end{align*}
$$

see [10, p. 65]. This furnishes

$$
\begin{aligned}
B(-k, \mu) & =\operatorname{Pf}_{\lambda=-k} \frac{\Gamma(\lambda) \Gamma(\mu)}{\Gamma(\lambda+\mu)} \\
& =\operatorname{Pf}_{\lambda=-k} \Gamma(\lambda) \cdot \frac{\Gamma(\mu)}{\Gamma(\mu-k)}+\left.\operatorname{Res}_{\lambda=-k} \Gamma(\lambda) \cdot \partial_{\lambda}\left(\frac{\Gamma(\mu)}{\Gamma(\lambda+\mu)}\right)\right|_{\lambda=-k} \\
& =(-1)^{k}\binom{\mu-1}{k}[\psi(k+1)-\psi(\mu-k)]
\end{aligned}
$$

and hence formula (3.8).
If $l>k$ and if we set $\mu=l$ in formula (3.8), then we immediately obtain the first equation in (3.9) due to $\psi(n+1)=\psi(1)+\sum_{j=1}^{n} j^{-1}$ for $n \in \mathbf{N}_{0}$, see [4, Equ. 8.365.3]. On the other hand, if $1 \leq l \leq k$, then

$$
\psi(\mu-k)=\psi(\mu-l+1)-\sum_{j=l}^{k} \frac{1}{\mu-j},
$$

see [4, Equ. 8.365.3], and this implies

$$
\begin{aligned}
B(-k, l) & =\lim _{\mu \rightarrow l}(-1)^{k}\binom{\mu-1}{k}[\psi(k+1)-\psi(\mu-k)] \\
& =(-1)^{l} \frac{(l-1)!(k-l)!}{k!} \\
& =\frac{(-1)^{l}}{l}\binom{k}{l}^{-1},
\end{aligned}
$$

i.e., the second equation in formula (3.9).

Finally, we obtain

$$
\begin{aligned}
B(-k,-l) & =(-1)^{k} \operatorname{Pf}_{\mu=-l}\binom{\mu-1}{k}\left[\psi(k+1)-\psi(\mu+l+1)+\sum_{j=0}^{k+l} \frac{1}{\mu-k+j}\right] \\
& =(-1)^{k}\binom{-l-1}{k}\left[\psi(k+1)-\psi(1)+\sum_{j=0}^{k+l-1} \frac{1}{-k-l+j}\right] \\
& +\left.(-1)^{k} \partial_{\mu}\binom{\mu-1}{k}\right|_{\mu=-l} \\
& =-\binom{k+l}{k}\left[\sum_{j=k+1}^{k+l} \frac{1}{j}+\sum_{j=l+1}^{k+l} \frac{1}{j}\right] .
\end{aligned}
$$

4. THE SINGULAR VALUES OF THE INCOMPLETE BETA FUNCTION

As explained in Section 3, we can reduce the general case of calculating $B_{k, l}, k, l \in \mathbf{Z}$, to the particular cases of $B_{j, 1}$ and $B_{1, j}, j \in \mathbf{Z}$.
Proposition 4.1. For $\lambda, \mu \in \mathbf{C} \backslash\left(-\mathbf{N}_{0}\right)$ and $j \in \mathbf{N}$, the following holds:

$$
\begin{equation*}
B_{\lambda, 1}=\frac{1}{\lambda}\left[Y(1-x) x_{+}^{\lambda}+Y(x-1)\right], \quad B_{1, \mu}=\frac{Y(x)}{\mu}\left[1-(1-x)_{+}^{\mu}\right] ; \tag{4.13}
\end{equation*}
$$

$$
\begin{equation*}
B_{0,1}=Y(x) Y(1-x) \log x, \quad B_{1,0}=-Y(x) Y(1-x) \log (1-x) \tag{4.14}
\end{equation*}
$$

Proof. For $\lambda \in \mathbf{C}$ with $\operatorname{Re} \lambda>0$, we have

$$
B_{\lambda, 1}(x)=Y(x) \int_{0}^{x} Y(1-t) t^{\lambda-1} \mathrm{~d} t=\frac{1}{\lambda}\left[Y(1-x) x_{+}^{\lambda}+Y(x-1)\right]
$$

By analytic continuation, the last expression represents $B_{\lambda, 1}$ for all $\lambda \in \mathbf{C} \backslash\left(-\mathbf{N}_{0}\right)$.
For the remaining cases, we use the following formula, which is familiar in the context of complex analysis:

$$
\begin{equation*}
\underset{\lambda=\lambda_{0}}{\operatorname{Pf}}\left(f_{\lambda} \cdot T_{\lambda}\right)=\underset{\lambda=\lambda_{0}}{\operatorname{Res}} f_{\lambda} \cdot \operatorname{Pf}_{\lambda=\lambda_{0}}^{\operatorname{Pa}} \partial_{\lambda} T_{\lambda}+\underset{\lambda=\lambda_{0}}{\operatorname{Pf}} f_{\lambda} \cdot \underset{\lambda=\lambda_{0}}{\operatorname{Pf}} T_{\lambda}+\underset{\lambda=\lambda_{0}}{\operatorname{Pf}} \partial_{\lambda} f_{\lambda} \cdot \operatorname{Res}_{\lambda=\lambda_{0}}^{\operatorname{Res}} T_{\lambda} . \tag{4.17}
\end{equation*}
$$

Here f_{λ} is an analytic $\mathcal{C}^{\infty}(\mathbf{R})$-valued function for $0<\left|\lambda-\lambda_{0}\right|<\epsilon$ and T_{λ} is an analytic $\mathcal{D}^{\prime}(\mathbf{R})$ valued function for $0<\left|\lambda-\lambda_{0}\right|<\epsilon, \epsilon>0$, and both f_{λ} and T_{λ} have at most a simple pole in λ_{0}, see [10, Prop. 1.6.3, p. 28].

Hence

$$
\begin{aligned}
B_{0,1} & =\operatorname{Pf}_{\lambda=0} \frac{1}{\lambda}\left[Y(1-x) x_{+}^{\lambda}+Y(x-1)\right] \\
& =\left.\frac{\partial}{\partial \lambda}\left[Y(1-x) x_{+}^{\lambda}+Y(x-1)\right]\right|_{\lambda=0} \\
& =Y(x) Y(1-x) \log x
\end{aligned}
$$

and

$$
\begin{aligned}
B_{-j, 1} & =-\frac{1}{j} \underset{\lambda=-j}{\operatorname{Pf}}\left[Y(1-x) x_{+}^{\lambda}+Y(x-1)\right]-\frac{1}{j^{2}} Y(1-x) \underset{\lambda=-j}{\operatorname{Res}} x_{+}^{\lambda} \\
& =-\frac{1}{j}\left[Y(1-x) x_{+}^{-j}+Y(x-1)\right]+\frac{(-1)^{j} \delta^{(j-1)}}{j \cdot j!} .
\end{aligned}
$$

The formulas for $B_{1, \mu}, B_{1,0}$ and $B_{1,-j}$ then follow from Lemma 3.2.
Example 4.1. Let us calculate here $B_{0, n}$ for $n \in \mathbf{Z}$. If $n=l \in \mathbf{N}$, then we use formula (3.7) and obtain from Proposition 4.1 that

$$
B_{0, l}=B_{0,1}-\sum_{j=1}^{l-1} B_{1, j}=Y(x) Y(1-x) \log x-\sum_{j=1}^{l-1} \frac{Y(x)}{j}\left[1-(1-x)_{+}^{j}\right] .
$$

If $n=-l \in-\mathbf{N}_{0}$, we set $\lambda=k=\mu=0$ in formula (3.3) and conclude from Equations (4.14) and (4.16) in Proposition 4.1 that

$$
\begin{align*}
B_{0,-l} & =B_{0,1}+\sum_{j=0}^{l} B_{1,-j} \\
& =Y(x) Y(1-x) \log \left(\frac{x}{1-x}\right)+\sum_{j=1}^{l}\left\{\frac{Y(x)}{j}\left[(1-x)_{+}^{-j}-1\right]+\frac{\delta_{1}^{(j-1)}}{j \cdot j!}\right\}, \quad l \in \mathbf{N}_{0} . \tag{4.18}
\end{align*}
$$

In the open interval $(0,1)$, Equation (4.18) coincides with the expression given in Thm. 2.1 in [3, p. 5]. Note that the calculation in this paper is based on van der Corput's neutrix method, which does not produce a distribution but rather represents $B_{0,-l}$ as a function outside its singular support. Similarly, formulas (1), (2), (3) in [3, pp. 4, 5], also follow from Lemma 3.1 and Proposition 4.1 or from the above by Lemma 3.2.

More generally, formula (3.3) yields a representation of $B_{-k,-l}, k, l \in \mathbf{N}_{0}$, which, on the basis of van der Corput's method, is considered in [12, p. 990].

5. ON THE SINGULAR VALUES OF THE PARTIAL DERIVATIVES OF THE INCOMPLETE BETA FUNCTION

As indicated above, we denote $\partial B_{\lambda, \mu} / \partial \lambda$ by $\partial_{1} B$ and similarly for $\partial_{2} B$. Motivated by the calculations in [3], let us derive formulas for $\left(\partial_{1} B\right)_{1, j}$ and $\left(\partial_{1} B\right)_{j, 1}, j \in \mathbf{Z}$. Lemma 3.1 then immediately yields representations of $\partial_{1} B$ at the singular values $(k, l) \in \mathbf{Z}^{2}, k \leq 0$ or $l \leq 0$. Furthermore, we conclude from Lemma 3.2 that

$$
\begin{align*}
\left(\partial_{2} B\right)_{\lambda, \mu} & =\frac{\partial B_{\lambda, \mu}}{\partial \mu} \\
& =\frac{\partial B(\lambda, \mu)}{\partial \mu}-\frac{\partial B_{\mu, \lambda}(1-x)}{\partial \mu} \tag{5.19}\\
& =\frac{\partial B(\lambda, \mu)}{\partial \mu}-\left(\partial_{1} B\right)_{\mu, \lambda}(1-x),
\end{align*}
$$

and hence the derivative $\partial_{2} B$ can be expressed by $\partial_{1} B$.
Proposition 5.2. For $\lambda, \mu \in \mathbf{C} \backslash\left(-\mathbf{N}_{0}\right)$ and $k, l \in \mathbf{N}$, the following holds:

$$
\begin{equation*}
\left(\partial_{1} B\right)_{\lambda, 1}=\lambda^{-1} Y(1-x) x_{+}^{\lambda} \log x-\lambda^{-2}\left[Y(1-x) x_{+}^{\lambda}+Y(x-1)\right] ; \tag{5.20}
\end{equation*}
$$

$$
\begin{equation*}
\left(\partial_{1} B\right)_{0,1}=\frac{1}{2} Y(x) Y(1-x) \log ^{2} x \tag{5.21}
\end{equation*}
$$

$$
\begin{equation*}
\left(\partial_{1} B\right)_{-k, 1}=-\frac{Y(1-x)}{k} x_{+}^{-k} \log x-\frac{x_{+}^{-k} Y(1-x)+Y(x-1)}{k^{2}}+\frac{(-1)^{k} \delta^{(k-1)}}{k^{2} \cdot k!} \tag{5.22}
\end{equation*}
$$

$$
\begin{equation*}
\left(\partial_{1} B\right)_{1, \mu}=-\mu^{-1} Y(x) \log x \cdot(1-x)_{+}^{\mu}+\mu^{-1} B_{0, \mu+1} \tag{5.23}
\end{equation*}
$$

$$
\begin{align*}
\left(\partial_{1} B\right)_{1,0} & =-Y(x) Y(1-x)\left[\log x \log (1-x)+\mathcal{L}_{2}(x)\right]-Y(x-1) \frac{\pi^{2}}{6} \tag{5.24}\\
& =Y(x)\left[Y(1-x) \mathcal{L}_{2}(1-x)-\frac{\pi^{2}}{6}\right] \\
l\left(\partial_{1} B\right)_{1,-l} & =Y(x) \log x \cdot(1-x)_{+}^{-l}-Y(x) Y(1-x) \log \left(\frac{x}{1-x}\right)
\end{align*}
$$

$$
\begin{equation*}
-\frac{1}{l} Y(x-1)-\sum_{j=1}^{l-1} \frac{Y(x)}{j}\left\{\left[(1-x)_{+}^{-j}-1\right]+\frac{l \delta_{1}^{(j-1)}}{(l-j) \cdot j!}\right\} \tag{5.25}
\end{equation*}
$$

Proof. Formula (5.20) follows immediately from the first equation in formula (4.13) by differentiation with respect to λ.

By taking the finite part at $\lambda=0$, we infer

$$
\begin{aligned}
\left(\partial_{1} B\right)_{0,1} & =\operatorname{Pf}_{\lambda=0} \frac{1}{\lambda} Y(1-x) x_{+}^{\lambda} \log x-\operatorname{Pf}_{\lambda=0} \frac{1}{\lambda^{2}} Y(1-x) x_{+}^{\lambda} \\
& =\left.\frac{\partial}{\partial \lambda}\left[Y(1-x) x_{+}^{\lambda} \log x\right]\right|_{\lambda=0}-\left.\frac{1}{2} \frac{\partial^{2}}{\partial \lambda^{2}}\left[Y(1-x) x_{+}^{\lambda}\right]\right|_{\lambda=0} \\
& =\frac{1}{2} Y(x) Y(1-x) \log ^{2} x
\end{aligned}
$$

and hence we obtain formula (5.21).
In order to calculate the finite part of $\left(\partial_{1} B\right)_{\lambda, 1}$ at $\lambda=-k \in-\mathbf{N}$, let us first derive the Laurent series of $x_{+}^{\lambda} \log x$ about $\lambda=-k$ from that of x_{+}^{λ}, i.e. formula (2.1), by differentiation with respect to λ :

$$
x_{+}^{\lambda} \log x=\frac{(-1)^{k} \delta^{(k-1)}}{(k-1)!(\lambda+k)^{2}}+\sum_{j=0}^{\infty} \frac{x_{+}^{-k} \log ^{j+1} x}{j!}(\lambda+k)^{j}, \quad 0<|\lambda+k|<1 .
$$

Hence $\operatorname{Res}_{\lambda=-k} x_{+}^{\lambda} \log x=0$ and we conclude that

$$
\begin{aligned}
\left(\partial_{1} B\right)_{-k, 1} & =\operatorname{Pf}_{\lambda=-k}\left\{\frac{1}{\lambda} Y(1-x) x_{+}^{\lambda} \log x-\frac{1}{\lambda^{2}}\left[Y(1-x) x_{+}^{\lambda}+Y(x-1)\right]\right\} \\
& =-\frac{1}{k} Y(1-x) x_{+}^{-k} \log x-\frac{1}{k^{2}}\left[Y(1-x) x_{+}^{-k}+Y(x-1)\right] \\
& +\left.\frac{1}{2} \frac{\partial^{2} \lambda^{-1}}{\partial \lambda^{2}}\right|_{\lambda=-k} \cdot \frac{(-1)^{k} \delta^{(k-1)}}{(k-1)!}-\left.\frac{\partial \lambda^{-2}}{\partial \lambda}\right|_{\lambda=-k} \cdot \operatorname{Res}_{\lambda=-k} Y(1-x) x_{+}^{\lambda} \\
& =-\frac{1}{k} Y(1-x) x_{+}^{-k} \log x-\frac{1}{k^{2}}\left[Y(1-x) x_{+}^{-k}+Y(x-1)\right]+\frac{(-1)^{k} \delta^{(k-1)}}{k^{2} \cdot k!}
\end{aligned}
$$

This furnishes formula (5.22).
Since $\mu \in \mathbf{C} \backslash\left(-\mathbf{N}_{0}\right)$, we have

$$
-\frac{1}{\mu} \frac{\mathrm{~d}}{\mathrm{~d} x}(1-x)_{+}^{\mu}=(1-x)_{+}^{\mu-1}
$$

and hence

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[-\frac{1}{\mu} Y(x) \log x \cdot(1-x)_{+}^{\mu}\right]=Y(x) \log x \cdot(1-x)_{+}^{\mu-1}-\frac{1}{\mu} x_{+}^{-1}(1-x)_{+}^{\mu}
$$

Thus $\left(\partial_{1} S\right)_{1, \mu}=Y(x) \log x \cdot(1-x)^{\mu-1}$ is the derivative of the distribution $-\mu^{-1} Y(x) \log x$. $(1-x)_{+}^{\mu}+\mu^{-1} B_{0, \mu+1}$ and this distribution has its support in the positive half-axis $[0, \infty)$ and coincides therefore with $\left(\partial_{1} B\right)_{1, \mu}$. This implies formula (5.23).

Evaluating the finite part of $\left(\partial_{1} B\right)_{1, \mu}$ at $\mu=0$ in formula (5.23) yields

$$
\begin{aligned}
\left(\partial_{1} B\right)_{1,0} & =\operatorname{Pf}_{\mu=0}\left(\partial_{1} B\right)_{1, \mu}=-\left.\frac{\partial}{\partial \mu} Y(x) \log x \cdot(1-x)_{+}^{\mu}\right|_{\mu=0}+\left.\frac{\partial B_{0, \mu+1}}{\partial \mu}\right|_{\mu=0} \\
& =-Y(x) Y(1-x) \log x \log (1-x)+Y(x) \int_{0}^{x} Y(1-t) \log (1-t) \frac{\mathrm{d} t}{t} \\
& =-Y(x) Y(1-x)\left[\log x \log (1-x)+\mathcal{L}_{2}(x)\right]-Y(x-1) \mathcal{L}_{2}(1)
\end{aligned}
$$

see [5, Equ. 323.3a]. Due to $\mathcal{L}_{2}(1)=\frac{\pi^{2}}{6}$, this gives the first equation in formula (5.24). On the other hand, a direct calculation yields the following:

$$
\begin{aligned}
\left(\partial_{1} B\right)_{1,0} & =Y(x) \int_{0}^{x} Y(1-t)(1-t)^{-1} \log t \mathrm{~d} t \\
& =Y(x) \int_{1-x}^{1} Y(t) \log (1-t) \frac{\mathrm{d} t}{t} \\
& =Y(x)\left[Y(1-x) \mathcal{L}_{2}(1-x)-\mathcal{L}_{2}(1)\right]
\end{aligned}
$$

Of course, these two representations of $\left(\partial_{1} B\right)_{1,0}$ must and do coincide as can be seen from [5, Equ. 323.3 g].

Let us finally calculate $\left(\partial_{1} B\right)_{1,-l}$ for $l \in \mathbf{N}$. From formula (5.23), we obtain

$$
\begin{aligned}
\left(\partial_{1} B\right)_{1,-l} & =\operatorname{Pf}_{\mu=-l}\left(\partial_{1} B\right)_{1, \mu} \\
& =Y(x) l^{-1} \log x \cdot(1-x)_{+}^{-l}+Y(x) l^{-2} \log x \cdot \operatorname{Res}_{\mu=-l}(1-x)_{+}^{\mu}-l^{-1} B_{0,1-l}-l^{-2}{\underset{\mu=-l}{\operatorname{Res}} B_{0, \mu+1}}
\end{aligned}
$$

Furthermore,

$$
\underset{\mu=-l}{\operatorname{Res}}(1-x)_{+}^{\mu}=\left(\operatorname{Res}_{\mu=-l} x_{+}^{\mu}\right)(1-x)=\frac{(-1)^{l-1} \delta^{(l-1)}(1-x)}{(l-1)!}=\frac{\delta_{1}^{(l-1)}}{(l-1)!},
$$

and, for a function f which is differentiable at 1 and $m \in \mathbf{N}_{0}$, we have

$$
f \cdot \delta_{1}^{(m)}=\sum_{j=0}^{m}\binom{m}{j}(-1)^{m-j} f^{(m-j)}(1) \delta_{1}^{(j)}
$$

and hence

$$
(\log x) \cdot \operatorname{Res}_{\mu=-l}(1-x)_{+}^{\mu}=-\sum_{j=0}^{l-2} \frac{\delta_{1}^{(j)}}{(l-j-1) \cdot j!}
$$

From formula (4.18), we infer that

$$
B_{0,1-l}=Y(x) Y(1-x) \log \left(\frac{x}{1-x}\right)+\sum_{j=1}^{l-1}\left\{\frac{Y(x)}{j}\left[(1-x)_{+}^{-j}-1\right]+\frac{\delta_{1}^{(j-1)}}{j \cdot j!}\right\} .
$$

In order to evaluate the residue $\operatorname{Res}_{\mu=-l} B_{0, \mu+1}$, we note that

$$
\underset{\mu=-l}{\operatorname{Res}} S_{0, \mu+1}=\operatorname{Res}_{\mu=-l} x_{+}^{-1}(1-x)_{+}^{\mu}=x^{-1} \cdot \frac{\delta_{1}^{(l-1)}}{(l-1)!}=\sum_{j=0}^{l-1} \frac{\delta_{1}^{(j)}}{j!}
$$

and thus

$$
\operatorname{Res}_{\mu=-l} B_{0, \mu+1}=Y * \operatorname{Res}_{\mu=-l} S_{0, \mu+1}=Y(x-1)+\sum_{j=0}^{l-2} \frac{\delta_{1}^{(j)}}{(j+1)!}
$$

Collecting terms we arrive at formula (5.25). The proof is complete.
Remark 5.2. From formula (5.25) in Proposition 5.2, we conclude that

$$
\begin{equation*}
\left(\partial_{1} B\right)_{1,-l}(x)=-\frac{1}{l^{2}}+\frac{1}{l} \sum_{j=1}^{l-1} \frac{1}{j}, \quad l \in \mathbf{N}, x>1 . \tag{5.26}
\end{equation*}
$$

Let u s check this equation by replacing $\log x$ by its Taylor series about 1 . If $l \in \mathbf{N}$ and $x>1$, then

$$
\begin{aligned}
\left(\partial_{1} B\right)_{1,-l}(x) & =\left\langle 1,\left(\partial_{1} S\right)_{1,-l}\right\rangle \\
& =\left\langle 1, Y(x) \log x \cdot(1-x)_{+}^{-l-1}\right\rangle \\
& =\left\langle 1,-\sum_{j=1}^{\infty} j^{-1} Y(x)(1-x)_{+}^{j-l-1}\right\rangle \\
& =-\left\langle 1, \sum_{j=1}^{\infty} j^{-1} S_{1, j-l}\right\rangle
\end{aligned}
$$

(In fact, these series converge in $\mathcal{E}^{\prime}(\mathbf{R})$.) For $\operatorname{Re} \mu>0$, we have

$$
\left\langle 1, S_{1, \mu}\right\rangle=\left\langle 1, S_{\mu, 1}\right\rangle=\int_{0}^{1} x^{\mu-1} d x=\frac{1}{\mu}
$$

and hence

$$
\left\langle 1, S_{1,0}\right\rangle=0 \text { and }\left\langle 1, S_{1, l}\right\rangle=l^{-1} \text { for } l \in \mathbf{Z} \backslash\{0\}
$$

by analytic continuation and taking finite parts. Therefore Equation (5.27) implies

$$
\begin{aligned}
\left(\partial_{1} B\right)_{1,-l}(x) & =-\sum_{j=1, j \neq l}^{\infty} \frac{1}{j(j-l)} \\
& =-\frac{1}{l} \sum_{j=1, j \neq l}^{\infty}\left(\frac{1}{j-l}-\frac{1}{j}\right) \\
& =-\frac{1}{l}\left(\frac{1}{l}-\sum_{j=1}^{l-1} \frac{1}{j}\right), \quad l \in \mathbf{N}, x>1 .
\end{aligned}
$$

in accordance with the result in formula (5.26).
Remark 5.3. In the open interval $(0,1)$, the representation of $\left(\partial_{1} B\right)_{1,-l}$ in formula (5.25) coincides with [3, Thm. 2.2, p. 6]. Similarly, the formulas for $\left(\partial_{2} B\right)_{-k, 1}$ and for $\left(\partial_{2} B\right)_{-k, l}, k, l \in \mathbf{N}$, in [3, Thms. 2.3, 2.4, pp. 6, 7], follow from Equation (5.19), Lemma 3.1 and Proposition 5.2.

References

[1] J. G. van der Corput: Introduction to the neutrix calculus, J. Analyse Math., 7 (1959/60), 291-398.
[2] J. Dieudonné: Eléments d'analyse III, Chap. XVI et XVII, Gauthier-Villars, Paris (1970).
[3] B. Fisher, M. Lin and S. Orankitjaroen: Results on partial derivatives of the incomplete beta function, Rostock Math. Kolloq., 72 (2019/20), 3-10.
[4] I. S. Gradshteyn, I. M. Ryzhik: Table of integrals, series and products, Academic Press, New York (1980).
[5] W. Gröbner, N. Hofreiter: Integraltafel, 2. Teil: Bestimmte Integrale, 5th edn., Springer, Wien (1973).
[6] L. Hörmander: The analysis of linear partial differential operators. Vol. I (Distribution theory and Fourier analysis), Grundlehren Math. Wiss. 256, 2nd edn., Springer, Berlin (1990).
[7] J. Horváth: Finite parts of distributions. In: Linear operators and approximation (ed. by P. L. Butzer et al.), 142-158, Birkhäuser, Basel (1972).
[8] S. G. Krantz: Handbook of complex variables, Birkhäuser, Boston (1999).
[9] J. Lavoine: Calcul symbolique. Distributions et pseudo-fonctions, Editions du CNRS, Paris (1959).
[10] N. Ortner, P. Wagner: Distribution-valued analytic functions, Tredition, Hamburg (2013).
[11] N. Ortner, P. Wagner, Fundamental solutions of linear partial differential operators, Springer, New York (2015).
[12] E. Özçağ, İ. Ege and H. Gürçay: An extension of the incomplete beta function for negative integers, J. Math. Anal. Appl., 338 (2008), 984-992.
[13] V. P. Palamodov: Distributions and harmonic analysis. In: Commutative harmonic analysis. Vol. III (Enc. Math. Sci. Vol. 72, ed. by N.K. Nikol'skij), 1-127, Springer, Berlin (1995).
[14] M. Riesz: L'intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math., 81 (1948), 1-223.
[15] L. Schwartz: Théorie des distributions, 2nd edn., Hermann, Paris (1966).
Norbert Ortner
University of Innsbruck
Department of Mathematics
Technikerstr. 13, A-6020 Innsbruck, Austria
ORCID: 0000-0003-0942-1218
E-mail address: mathematik1@uibk.ac.at
Peter Wagner
University of Innsbruck
Department of Mathematics
Technikerstr. 13, A-6020 Innsbruck, Austria
ORCID: 0000-0001-5688-099X
E-mail address: wagner@mat1.uibk.ac.at

[^0]: Received: 11.03.2022; Accepted: 07.05.2022; Published Online: 27.05.2022
 *Corresponding author: Peter Wagner; wagner@mat1.uibk.ac.at
 DOI: 10.33205/cma. 1086298

