

Research Article

On the singular values of the incomplete Beta function

NORBERT ORTNER AND PETER WAGNER*

ABSTRACT. A new definition of the incomplete beta function as a distribution-valued meromorphic function is given and the finite parts of it and of its partial derivatives at the singular values are calculated and compared with formulas in the literature.

Keywords: Beta function, distribution theory, finite parts.

2020 Mathematics Subject Classification: 33B20, 46F10.

1. INTRODUCTION AND NOTATION

This paper originated when one of the authors (N.O.) came across the article [3]. The explicit formulas in [3] were interesting, but we could not concur with the overall framework in which they had been derived. The calculations in [3] are based on van der Corput's "neutrix calculus", see [1], a way of evaluating divergent integrals, which was inspired by Hadamard's method. This "technique of neglecting appropriately defined infinite quantities", see [12, p. 984], produces numbers, not distributions. Accordingly, the results in [3] represent the incomplete beta function only on the open interval (0, 1) and do not furnish a distribution on **R**. So we thought that it might be reasonable to reconsider the calculations in [3] from the nowadays generally adopted viewpoint of distribution theory.

Let us mention that regularizations in Hadamard's sense but employing L. Schwartz' theory of distributions were investigated in [9, pp. 15–19], for three kinds of distributions.

Classically, the incomplete beta function is defined by the integral

$$B_{\lambda,\mu}(x) = \int_0^x t^{\lambda-1} (1-t)^{\mu-1} \,\mathrm{d}t, \quad 0 \le x \le 1, \text{ Re } \lambda > 0, \text{ Re } \mu > 0,$$

see [4, Equ. 8.931]. The goal of the article [3] as well as of this paper consists in defining and evaluating $B_{\lambda,\mu}$ and its partial derivatives with respect to λ and μ at the "singular values", i.e., if $\lambda \in -\mathbf{N}_0$ or $\mu \in -\mathbf{N}_0$.

In Section 2, we define $B_{\lambda,\mu}$ as distributions depending analytically on $(\lambda, \mu) \in \mathbb{C}^2$. At the poles, e.g. if $\lambda = -k \in -\mathbb{N}_0$, we set $B_{-k,\mu} = \operatorname{Pf}_{\lambda=-k} B_{\lambda,\mu}$, i.e., $B_{-k,\mu}$ is defined as the finite part of the Laurent series of $B_{\lambda,\mu}$ about $\lambda = -k$. The procedure of embedding a function into a family of distributions which depend analytically on a parameter goes back to M. Riesz, see [14, pp. 31, 32], L. Schwartz, see [15, p. 39], and J. Dieudonné, see [2, pp. 260–262]. With respect to distribution-valued analytic or meromorphic functions, we refer the reader also to [10].

Received: 11.03.2022; Accepted: 07.05.2022; Published Online: 27.05.2022

^{*}Corresponding author: Peter Wagner; wagner@mat1.uibk.ac.at

DOI: 10.33205/cma.1086298

In Section 3, we collect some algebraic reduction formulas, which show that our task can be reduced to evaluating B, $\partial_{\lambda}B$, $\partial_{\mu}B$ if λ or μ are 1. This is eventually done for B in Section 4 and for $\partial_{\lambda}B$, $\partial_{\mu}B$ in Section 5, respectively.

Let us introduce some notation. As usual, an empty series, as, e.g., in $\sum_{j=1}^{0} c_j$, sums to zero. **N** and **N**₀ denote the sets of positive and of non-negative integers, respectively. We employ the standard notation for the distribution spaces \mathcal{D}' , \mathcal{E}' , the dual spaces of the spaces \mathcal{D} , \mathcal{E} of "test functions" and of C^{∞} functions, respectively, see [15, 6, 11]. For the evaluation of a distribution T on a test function ϕ , we use angle brackets, i.e., $\langle \phi, T \rangle$. In this paper, all distributions are on the real axis **R**, i.e., they belong to $\mathcal{D}'(\mathbf{R})$, but usually depend meromorphically on the complex variables λ, μ . Differentiation with respect to x is denoted by the apostrophe, differentiation with respect to λ, μ by $\partial_{\lambda}, \partial_{\mu}$ or $\partial/\partial\lambda, \partial/\partial\mu$ or ∂_1, ∂_2 .

The Heaviside function is denoted by *Y*, see [15, p. 36]. We write δ for the delta distribution with support in 0, i.e., $\delta = Y'$, and δ_1 for the delta distribution with support in 1, i.e., $\delta_1 = Y(x-1)'$. The letter ψ denotes the logarithmic derivative Γ'/Γ of the gamma function and \mathcal{L}_2 denotes the dilogarithm, i.e., $\mathcal{L}_2(0) = 0$ and

$$\mathcal{L}_2(x) = \oint_0^1 \frac{\log t}{t - x^{-1}} \, \mathrm{d}t, \quad x \in \mathbf{R} \setminus \{0\},$$

see [5, Section 323].

2. DEFINITION OF THE INCOMPLETE BETA FUNCTION

Let us first recall some facts concerning the distribution $x_+^{\lambda} = Y(x)x^{\lambda}$, see [6, Section 3.2, p. 68], , [11, Exs. 1.3.9, 1.4.8, pp. 32, 49]. If $\lambda \in \mathbf{C}$ with Re $\lambda > -1$, then x_+^{λ} is a locally integrable function on **R** and hence belongs to $\mathcal{D}'(\mathbf{R})$. The function

$$\{\lambda \in \mathbf{C}; \operatorname{Re} \lambda > -1\} \longrightarrow \mathcal{D}'(\mathbf{R}) : \lambda \longmapsto x_+^{\lambda}$$

is analytic and can analytically be extended to $\mathbf{C} \setminus (-\mathbf{N})$. This extension, which is also denoted by x_{+}^{λ} , is meromorphic on \mathbf{C} and has simple poles on $-\mathbf{N}$ with the residues

$$\operatorname{Res}_{\lambda=-k-1} x_{+}^{\lambda} = (-1)^{k} \delta^{(k)} / k!$$

for $k \in \mathbf{N}_0$. For abbreviation, we also set

$$x_+^{-k} = \Pr_{\lambda = -k} x_+^{\lambda} \text{ if } k \in \mathbf{N}.$$

In [13, pp. 11, 12], the distributions x_{+}^{λ} are called *Hadamard kernels*.

Note that $x \cdot x_+^{\lambda} = x_+^{\lambda+1}$ holds for each $\lambda \in \mathbf{C}$. In contrast, the differentiation formula $(x_+^{\lambda})' = \lambda x_+^{\lambda-1}$ is valid for $\lambda \in \mathbf{C} \setminus (-\mathbf{N}_0)$ by analytic continuation, but at $\lambda = -k, k \in \mathbf{N}_0$, we obtain

$$(x_{+}^{-k})' = \Pr_{\lambda = -k} (x_{+}^{\lambda})' = \Pr_{\lambda = -k} \lambda x_{+}^{\lambda - 1}$$

= $\Pr_{\lambda = -k} [(\lambda + k) x_{+}^{\lambda - 1} - k x_{+}^{\lambda - 1}]$
= $\lim_{\lambda \to -k} (\lambda + k) x_{+}^{\lambda - 1} - k x_{+}^{-k - 1}$
= $\operatorname{Res}_{\lambda = -k} x_{+}^{\lambda - 1} - k x_{+}^{-k - 1}$
= $\frac{(-1)^{k} \delta^{(k)}}{k!} - k x_{+}^{-k - 1}$,

see also [15, Equ. (II, 2; 28), p. 42], [7, p. 151, Remark], [6, Equ. (3.2.2)", p. 69], , [11, p. 50].

By differentiation with respect to λ , we obtain the distribution-valued function $\lambda \mapsto \partial_{\lambda}(x_{+}^{\lambda}) = x_{+}^{\lambda} \log x$, which is meromorphic in λ with double poles on $-\mathbf{N}$. As above we define $x_{+}^{-k} \log x := Pf_{\lambda=-k} x_{+}^{\lambda} \log x$ for $k \in -\mathbf{N}$ and similarly for the higher derivatives with respect to λ . Hence the Laurent series of x_{+}^{λ} about the pole $\lambda = -k, k \in \mathbf{N}$, is given by

(2.1)
$$x_{+}^{\lambda} = \frac{(-1)^{k-1} \delta^{(k-1)}}{(k-1)!(\lambda+k)} + \sum_{j=0}^{\infty} \frac{x_{+}^{-k} \log^{j} x}{j!} (\lambda+k)^{j}, \quad 0 < |\lambda+k| < 1.$$

(In fact, $\operatorname{Pf}_{\lambda=-k} \partial_{\lambda}^{j} x_{+}^{\lambda} = \operatorname{Pf}_{\lambda=-k} x_{+}^{\lambda} \log^{j} x = x_{+}^{-k} \log^{j} x$ for $j \in \mathbf{N}_{0}$.)

Now we are prepared for giving a distributional definition of the incomplete beta function.

Definition 2.1. For $\lambda, \mu \in \mathbf{C}$, we call $S_{\lambda,\mu} = x_+^{\lambda-1} \cdot (1-x)_+^{\mu-1} \in \mathcal{E}'(\mathbf{R})$ the *M*. Riesz kernels of the incomplete beta function and $B_{\lambda,\mu} = Y * S_{\lambda,\mu} \in \mathcal{D}'(\mathbf{R})$ the incomplete (Eulerian) beta function.

Note that the multiplication of the two distributional factors $x_{+}^{\lambda-1}$ and $(1-x)_{+}^{\mu-1}$ of $S_{\lambda,\mu}$ is well-defined since their respective singular supports {0} and {1} are disjoint, see [6, Thm. 8.2.10, p. 267]. We also observe that $B_{\lambda,\mu}$ is uniquely determined by the two conditions

(i)
$$B'_{\lambda,\mu} = S_{\lambda,\mu}$$
 and (ii) $\operatorname{supp} B_{\lambda,\mu} \subset [0,\infty)$

According to the above, the function $(\lambda, \mu) \mapsto S_{\lambda,\mu}$ is analytic for $\lambda, \mu \in \mathbf{C} \setminus (-\mathbf{N}_0)$. Therefore the same holds true for $B_{\lambda,\mu}$ and its derivatives $(\partial_1 B)_{\lambda,\mu} = \partial B_{\lambda,\mu}/\partial \lambda$ and $(\partial_2 B)_{\lambda,\mu} = \partial B_{\lambda,\mu}/\partial \mu$. As before, we abbreviate

$$(\partial_1 B)_{-k,\mu} := \Pr_{\lambda = -k} (\partial_1 B)_{\lambda,\mu}$$

and

$$(\partial_1 B)_{-k,-l} := \Pr_{\lambda = -k} \Pr_{\mu = -l} (\partial_1 B)_{\lambda,\mu} \text{ if } k, l \in \mathbf{N}_0, \mu \in \mathbf{C} \setminus (-\mathbf{N}_0),$$

and similarly for $\partial_2 B$. As related in Section 1, we aim at calculating explicitly $B_{k,l}$, $(\partial_1 B)_{k,l}$, $(\partial_2 B)_{k,l}$ for the singular values, i.e., if $k, l \in \mathbb{Z}$ and $[k \in -\mathbb{N}_0 \text{ or } l \in -\mathbb{N}_0]$.

3. ALGEBRAIC REDUCTION FORMULAS

The trivial identity

$$S_{\lambda,\mu} = 1 \cdot S_{\lambda,\mu} = (x+1-x) \cdot S_{\lambda,\mu} = S_{\lambda+1,\mu} + S_{\lambda,\mu+1}$$

leads to representations of $S_{k,l}$, $k, l \in \mathbf{Z}$, by $S_{j,1}$ and $S_{1,j}$, $j \in \mathbf{Z}$. By convolution with Y and by differentiation with respect to λ and μ , we obtain similar representation formulas for $B_{k,l}$, $(\partial_1 B)_{k,l}$ and $(\partial_2 B)_{k,l}$, respectively.

Lemma 3.1. Let $\lambda, \mu \in \mathbb{C}$ and $k, l \in \mathbb{N}_0$. Then the following holds:

(3.2)
$$S_{\lambda,\mu+l} = \sum_{j=0}^{l} \binom{l}{j} (-1)^j S_{\lambda+j,\mu};$$

(3.3)
$$S_{\lambda-k,\mu-l} = \sum_{j=0}^{k} \binom{k+l-j}{l} S_{\lambda-j,\mu+1} + \sum_{j=0}^{l} \binom{k+l-j}{k} S_{\lambda+1,\mu-j}$$

and for k < l we have

(3.4)
$$S_{\lambda-k,\mu+l} = \sum_{j=0}^{k} {\binom{l-1}{j}} (-1)^{j} S_{\lambda-k+j,\mu+1} + (-1)^{k+1} \sum_{j=1}^{l-k-1} {\binom{l-j-1}{k}} S_{\lambda+1,\mu+j}.$$

The corresponding formulas hold likewise if S is replaced throughout by B = Y * S, *by* $\partial_1 B$, *or by* $\partial_2 B$, *respectively.*

Proof. Equation (3.2) follows directly from the binomial formula:

$$S_{\lambda,\mu+l} = x_{+}^{\lambda-1} (1-x)_{+}^{\mu+l-1} = S_{\lambda,\mu} \cdot (1-x)^{l}$$
$$= S_{\lambda,\mu} \cdot \sum_{j=0}^{l} \binom{l}{j} (-1)^{j} x^{j}$$
$$= \sum_{j=0}^{l} \binom{l}{j} (-1)^{j} S_{\lambda+j,\mu}.$$

Formula (3.3) follows similarly by using the polynomial identity

(3.5)
$$1 = \sum_{j=0}^{k} {\binom{k+l-j}{l} x^{k-j} (1-x)^{l+1} + \sum_{j=0}^{l} {\binom{k+l-j}{k} x^{k+1} (1-x)^{l-j}}.$$

For completeness, let us indicate shortly how the identity (3.5) is derived from a Mittag-Leffler expansion. In fact, in the representation

$$z^{-k-1}(1-z)^{-l-1} = \sum_{j=0}^{k} c_j z^{-j-1} + \sum_{j=0}^{l} d_j (1-z)^{-j-1}, \quad z \in \mathbf{C} \setminus \{0,1\},$$

the coefficients c_j can be determined from the Laurent expansion

$$z^{-k-1}(1-z)^{-l-1} = \sum_{n=0}^{\infty} \binom{-l-1}{n} (-1)^n z^{n-k-1}, \quad 0 < |z| < 1,$$

i.e.,

$$n = k - j$$
 and $c_j = {\binom{-l-1}{k-j}} (-1)^{k-j} = {\binom{k+l-j}{l}}, \quad j = 0, \dots, k,$

and similarly for d_j , $j = 0, \ldots, l$.

Equation (3.4) follows in the same way by using the polynomial identity

$$(1-x)^{l-1} = \sum_{j=0}^{k} \binom{l-1}{j} (-1)^{j} x^{j} + (-1)^{k+1} \sum_{j=1}^{l-k-1} \binom{l-j-1}{k} x^{k+1} (1-x)^{j-1}.$$

This can be shown by first replacing x by 1-x and then employing the Mittag-Leffler expansion of $z^{l-1}(1-z)^{-k-1}$ with respect to the poles 0 and ∞ .

Remark 3.1. Let us illustrate how the formulas (3.2), (3.3) and (3.4) are applied in order to reduce the singular values $B_{k,l}$ to $B_{j,1}$ and $B_{1,j}$, $j, k, l \in \mathbb{Z}$. E.g., setting $\lambda = \mu = k = l = 0$ in formula (3.3) yields the equation $B_{0,0} = B_{0,1} + B_{1,0}$. Instead, if $l \in \mathbb{N}$ and if we set $\lambda = 0$, $\mu = 1$ and replace l by l - 1, then formula (3.2) implies

(3.6)
$$B_{0,l} = \sum_{j=0}^{l-1} \binom{l-1}{j} (-1)^j B_{j,1}, \quad l \in \mathbf{N}$$

Note that formula (3.4) leads to a different representation by setting $\lambda = k = \mu = 0$:

(3.7)
$$B_{0,l} = B_{0,1} - \sum_{j=1}^{l-1} B_{1,j}, \quad l \in \mathbf{N}.$$

The formulas (3.6) *and* (3.7) *coincide in the cases* l = 1 *and* l = 2, *but yield different representations for* $l \ge 3$. *E.g.,*

$$B_{0,3} = B_{0,1} - 2B_{1,1} + B_{2,1} = B_{0,1} - B_{1,1} - B_{1,2}$$

(The last equation amounts to $B_{2,1} = B_{1,1} - B_{1,2}$.)

Let us finally investigate how $B_{\lambda,\mu}$ and $B_{\mu,\lambda}$ are connected. For this we extend the definition of the *complete beta function* or, as it is also called, the *Eulerian integral of the first kind*

$$B(\lambda,\mu) = \int_0^1 x^{\lambda-1} (1-x)^{\mu-1} \,\mathrm{d}x, \quad \lambda,\mu \in \mathbf{C}, \ \mathrm{Re}\,\lambda > 0, \ \mathrm{Re}\,\mu > 0,$$

first, as usual, to $[\mathbf{C} \setminus (-\mathbf{N}_0)]^2$ by analytic continuation, i.e.,

$$B(\lambda,\mu) = \frac{\Gamma(\lambda)\Gamma(\mu)}{\Gamma(\lambda+\mu)}, \quad \lambda,\mu \in \mathbf{C} \setminus (-\mathbf{N}_0),$$

and then to the singular values in $-\mathbf{N}_0$ by taking the finite part with respect to λ and μ . This implies that $B(\lambda,\mu) = \langle 1, S_{\lambda,\mu} \rangle$ and $B_{\lambda,\mu}(x) = B(\lambda,\mu)$ hold for x > 1 and for each $(\lambda,\mu) \in \mathbf{C}^2$.

Lemma 3.2. For $\lambda, \mu \in \mathbf{C}$, we have $B_{\mu,\lambda}(x) = B(\lambda, \mu) - B_{\lambda,\mu}(1-x)$.

Proof. If $f, g \in \mathcal{D}(\mathbf{R})$, then

$$f(-x) * g(1-x) = \int f(-t)g(1-(x-t)) dt$$

= $\int f(s)g(1-x-s) ds$
= $(f * g)(1-x)$

and this formula holds by density whenever two distributions are convolvable. Hence

$$B_{\mu,\lambda} = Y * S_{\mu,\lambda} = (1 - Y(-x)) * S_{\mu,\lambda}$$

= $\langle 1, S_{\mu,\lambda} \rangle - Y(-x) * S_{\lambda,\mu}(1-x)$
= $B(\mu, \lambda) - (Y * S_{\lambda,\mu})(1-x)$
= $B(\lambda, \mu) - B_{\lambda,\mu}(1-x).$

Let us yet give formulas for the finite parts of the complete beta function $B(\lambda, \mu)$ at the singular points.

Lemma 3.3. For $k, l \in \mathbf{N}_0$ and $\mu \in \mathbf{C} \setminus \mathbf{Z}$, we have

(3.8)
$$B(-k,\mu) = (-1)^k \binom{\mu-1}{k} \left[\psi(k+1) - \psi(\mu-k) \right];$$

(3.9)
$$B(-k,l) = \begin{cases} (-1)^k \binom{l-1}{k} \left[\sum_{j=1}^k \frac{1}{j} - \sum_{j=1}^{l-k-1} \frac{1}{j} \right] : l > k, \\ \frac{(-1)^l}{l} \cdot \binom{k}{l}^{-1} : 1 \le l \le k; \end{cases}$$

(3.10)
$$B(-k,-l) = -\binom{k+l}{k} \Big[\sum_{j=k+1}^{k+l} \frac{1}{j} + \sum_{j=l+1}^{k+l} \frac{1}{j} \Big].$$

 \square

Proof. We first calculate

(3.11)
$$\operatorname{Res}_{\lambda=-k} \Gamma(\lambda) = \operatorname{Res}_{\lambda=-k} \frac{\Gamma(\lambda+k+1)}{\lambda(\lambda+1)\cdots(\lambda+k)} = \frac{(-1)^k}{k!},$$

see [8, Section 13.1.4, p. 156], and

(3.12)

$$\begin{aligned}
& \Pr_{\lambda=-k} \Gamma(\lambda) = \Pr_{\lambda=-k} \frac{\Gamma(\lambda+k+1)}{\lambda(\lambda+1)\cdots(\lambda+k)} \\
& = \partial_{\lambda} \Big(\frac{\Gamma(\lambda+k+1)}{\lambda(\lambda+1)\cdots(\lambda+k-1)} \Big) \Big|_{\lambda=-k} \\
& = \frac{(-1)^{k}}{k!} \Big(\psi(1) + \sum_{j=1}^{k} \frac{1}{j} \Big) \\
& = \frac{(-1)^{k} \psi(k+1)}{k!},
\end{aligned}$$

see [10, p. 65]. This furnishes

$$B(-k,\mu) = \Pr_{\lambda=-k} \frac{\Gamma(\lambda)\Gamma(\mu)}{\Gamma(\lambda+\mu)}$$

= $\Pr_{\lambda=-k} \Gamma(\lambda) \cdot \frac{\Gamma(\mu)}{\Gamma(\mu-k)} + \operatorname{Res}_{\lambda=-k} \Gamma(\lambda) \cdot \partial_{\lambda} \left(\frac{\Gamma(\mu)}{\Gamma(\lambda+\mu)}\right) \Big|_{\lambda=-k}$
= $(-1)^{k} {\mu-1 \choose k} [\psi(k+1) - \psi(\mu-k)]$

and hence formula (3.8).

If l > k and if we set $\mu = l$ in formula (3.8), then we immediately obtain the first equation in (3.9) due to $\psi(n+1) = \psi(1) + \sum_{j=1}^{n} j^{-1}$ for $n \in \mathbb{N}_0$, see [4, Equ. 8.365.3]. On the other hand, if $1 \le l \le k$, then

$$\psi(\mu - k) = \psi(\mu - l + 1) - \sum_{j=l}^{k} \frac{1}{\mu - j},$$

see [4, Equ. 8.365.3], and this implies

$$B(-k,l) = \lim_{\mu \to l} (-1)^k {\binom{\mu - 1}{k}} [\psi(k+1) - \psi(\mu - k)]$$

= $(-1)^l \frac{(l-1)!(k-l)!}{k!}$
= $\frac{(-1)^l}{l} {\binom{k}{l}}^{-1}$,

i.e., the second equation in formula (3.9).

Finally, we obtain

$$\begin{split} B(-k,-l) &= (-1)^k \Pr_{\mu=-l} \binom{\mu-1}{k} \Big[\psi(k+1) - \psi(\mu+l+1) + \sum_{j=0}^{k+l} \frac{1}{\mu-k+j} \Big] \\ &= (-1)^k \binom{-l-1}{k} \Big[\psi(k+1) - \psi(1) + \sum_{j=0}^{k+l-1} \frac{1}{-k-l+j} \Big] \\ &+ (-1)^k \partial_\mu \, \binom{\mu-1}{k} \Big|_{\mu=-l} \\ &= -\binom{k+l}{k} \Big[\sum_{j=k+1}^{k+l} \frac{1}{j} + \sum_{j=l+1}^{k+l} \frac{1}{j} \Big]. \end{split}$$

4. The singular values of the incomplete beta function

As explained in Section 3, we can reduce the general case of calculating $B_{k,l}$, $k, l \in \mathbb{Z}$, to the particular cases of $B_{j,1}$ and $B_{1,j}$, $j \in \mathbb{Z}$.

Proposition 4.1. For $\lambda, \mu \in \mathbf{C} \setminus (-\mathbf{N}_0)$ and $j \in \mathbf{N}$, the following holds:

(4.13)
$$B_{\lambda,1} = \frac{1}{\lambda} \left[Y(1-x)x_{+}^{\lambda} + Y(x-1) \right], \quad B_{1,\mu} = \frac{Y(x)}{\mu} \left[1 - (1-x)_{+}^{\mu} \right];$$

(4.14)
$$B_{0,1} = Y(x)Y(1-x)\log x, \quad B_{1,0} = -Y(x)Y(1-x)\log(1-x);$$

(4.15)
$$B_{-j,1} = -\frac{1}{j} \left[Y(1-x)x_{+}^{-j} + Y(x-1) \right] + \frac{(-1)^{j} \delta^{(j-1)}}{j \cdot j!};$$

(4.16)
$$B_{1,-j} = \frac{Y(x)}{j} \left[(1-x)_+^{-j} - 1 \right] + \frac{\delta_1^{(j-1)}}{j \cdot j!}$$

Proof. For $\lambda \in \mathbf{C}$ with $\operatorname{Re} \lambda > 0$, we have

$$B_{\lambda,1}(x) = Y(x) \int_0^x Y(1-t)t^{\lambda-1} dt = \frac{1}{\lambda} \big[Y(1-x)x_+^{\lambda} + Y(x-1) \big].$$

By analytic continuation, the last expression represents $B_{\lambda,1}$ for all $\lambda \in \mathbf{C} \setminus (-\mathbf{N}_0)$.

For the remaining cases, we use the following formula, which is familiar in the context of complex analysis:

(4.17)
$$\Pr_{\lambda=\lambda_0}(f_{\lambda}\cdot T_{\lambda}) = \operatorname{Res}_{\lambda=\lambda_0}f_{\lambda}\cdot \operatorname{Pf}_{\lambda=\lambda_0}\partial_{\lambda}T_{\lambda} + \operatorname{Pf}_{\lambda=\lambda_0}f_{\lambda}\cdot \operatorname{Pf}_{\lambda=\lambda_0}T_{\lambda} + \operatorname{Pf}_{\lambda=\lambda_0}\partial_{\lambda}f_{\lambda}\cdot \operatorname{Res}_{\lambda=\lambda_0}T_{\lambda}.$$

Here f_{λ} is an analytic $C^{\infty}(\mathbf{R})$ -valued function for $0 < |\lambda - \lambda_0| < \epsilon$ and T_{λ} is an analytic $\mathcal{D}'(\mathbf{R})$ -valued function for $0 < |\lambda - \lambda_0| < \epsilon, \epsilon > 0$, and both f_{λ} and T_{λ} have at most a simple pole in λ_0 , see [10, Prop. 1.6.3, p. 28].

Hence

$$B_{0,1} = \Pr_{\lambda=0} \frac{1}{\lambda} \left[Y(1-x)x_{+}^{\lambda} + Y(x-1) \right]$$
$$= \frac{\partial}{\partial \lambda} \left[Y(1-x)x_{+}^{\lambda} + Y(x-1) \right] \Big|_{\lambda=0}$$
$$= Y(x)Y(1-x)\log x$$

and

$$B_{-j,1} = -\frac{1}{j} \Pr_{\lambda=-j} \left[Y(1-x)x_{+}^{\lambda} + Y(x-1) \right] - \frac{1}{j^2} Y(1-x) \operatorname{Res}_{\lambda=-j} x_{+}^{\lambda}$$
$$= -\frac{1}{j} \left[Y(1-x)x_{+}^{-j} + Y(x-1) \right] + \frac{(-1)^{j} \delta^{(j-1)}}{j \cdot j!}.$$

The formulas for $B_{1,\mu}$, $B_{1,0}$ and $B_{1,-j}$ then follow from Lemma 3.2.

Example 4.1. Let us calculate here $B_{0,n}$ for $n \in \mathbb{Z}$. If $n = l \in \mathbb{N}$, then we use formula (3.7) and obtain from Proposition 4.1 that

$$B_{0,l} = B_{0,1} - \sum_{j=1}^{l-1} B_{1,j} = Y(x)Y(1-x)\log x - \sum_{j=1}^{l-1} \frac{Y(x)}{j} \left[1 - (1-x)_+^j\right]$$

If $n = -l \in -\mathbf{N}_0$, we set $\lambda = k = \mu = 0$ in formula (3.3) and conclude from Equations (4.14) and (4.16) in Proposition 4.1 that

$$B_{0,-l} = B_{0,1} + \sum_{j=0}^{l} B_{1,-j}$$

(4.18)

$$=Y(x)Y(1-x)\log\left(\frac{x}{1-x}\right)+\sum_{j=1}^{l}\left\{\frac{Y(x)}{j}\left[(1-x)_{+}^{-j}-1\right]+\frac{\delta_{1}^{(j-1)}}{j\cdot j!}\right\},\quad l\in\mathbf{N}_{0}$$

In the open interval (0, 1), Equation (4.18) coincides with the expression given in Thm. 2.1 in [3, p. 5]. Note that the calculation in this paper is based on van der Corput's neutrix method, which does not produce a distribution but rather represents $B_{0,-l}$ as a function outside its singular support. Similarly, formulas (1), (2), (3) in [3, pp. 4, 5], also follow from Lemma 3.1 and Proposition 4.1 or from the above by Lemma 3.2.

More generally, formula (3.3) *yields a representation of* $B_{-k,-l}$, $k, l \in \mathbb{N}_0$, *which, on the basis of van der Corput's method, is considered in* [12, p. 990].

5. ON THE SINGULAR VALUES OF THE PARTIAL DERIVATIVES OF THE INCOMPLETE BETA FUNCTION

As indicated above, we denote $\partial B_{\lambda,\mu}/\partial \lambda$ by $\partial_1 B$ and similarly for $\partial_2 B$. Motivated by the calculations in [3], let us derive formulas for $(\partial_1 B)_{1,j}$ and $(\partial_1 B)_{j,1}$, $j \in \mathbb{Z}$. Lemma 3.1 then immediately yields representations of $\partial_1 B$ at the singular values $(k, l) \in \mathbb{Z}^2$, $k \leq 0$ or $l \leq 0$. Furthermore, we conclude from Lemma 3.2 that

(5.19)

$$(\partial_2 B)_{\lambda,\mu} = \frac{\partial B_{\lambda,\mu}}{\partial \mu}$$

$$= \frac{\partial B(\lambda,\mu)}{\partial \mu} - \frac{\partial B_{\mu,\lambda}(1-x)}{\partial \mu}$$

$$= \frac{\partial B(\lambda,\mu)}{\partial \mu} - (\partial_1 B)_{\mu,\lambda}(1-x),$$

and hence the derivative $\partial_2 B$ can be expressed by $\partial_1 B$.

Proposition 5.2. For $\lambda, \mu \in \mathbf{C} \setminus (-\mathbf{N}_0)$ and $k, l \in \mathbf{N}$, the following holds:

(5.20)
$$(\partial_1 B)_{\lambda,1} = \lambda^{-1} Y(1-x) x_+^{\lambda} \log x - \lambda^{-2} \big[Y(1-x) x_+^{\lambda} + Y(x-1) \big];$$

(5.21) $(\partial_1 B)_{0,1} = \frac{1}{2}Y(x)Y(1-x)\log^2 x;$

(5.22)
$$(\partial_1 B)_{-k,1} = -\frac{Y(1-x)}{k} x_+^{-k} \log x - \frac{x_+^{-k} Y(1-x) + Y(x-1)}{k^2} + \frac{(-1)^k \delta^{(k-1)}}{k^2 \cdot k!}$$

(5.23)
$$(\partial_1 B)_{1,\mu} = -\mu^{-1} Y(x) \log x \cdot (1-x)^{\mu}_{+} + \mu^{-1} B_{0,\mu+1};$$

(5.24)
$$(\partial_1 B)_{1,0} = -Y(x)Y(1-x)\left[\log x \log(1-x) + \mathcal{L}_2(x)\right] - Y(x-1)\frac{\pi^2}{6}$$
$$= Y(x)\left[Y(1-x)\mathcal{L}_2(1-x) - \frac{\pi^2}{6}\right].$$

(5.25)
$$l(\partial_1 B)_{1,-l} = Y(x)\log x \cdot (1-x)_+^{-l} - Y(x)Y(1-x)\log\left(\frac{x}{1-x}\right) - \frac{1}{l}Y(x-1) - \sum_{j=1}^{l-1}\frac{Y(x)}{j}\left\{\left[(1-x)_+^{-j} - 1\right] + \frac{l\,\delta_1^{(j-1)}}{(l-j)\cdot j!}\right\}.$$

Proof. Formula (5.20) follows immediately from the first equation in formula (4.13) by differentiation with respect to λ .

By taking the finite part at $\lambda = 0$, we infer

$$(\partial_1 B)_{0,1} = \Pr_{\lambda=0} \frac{1}{\lambda} Y(1-x) x_+^{\lambda} \log x - \Pr_{\lambda=0} \frac{1}{\lambda^2} Y(1-x) x_+^{\lambda}$$
$$= \frac{\partial}{\partial \lambda} \left[Y(1-x) x_+^{\lambda} \log x \right] \Big|_{\lambda=0} - \frac{1}{2} \frac{\partial^2}{\partial \lambda^2} \left[Y(1-x) x_+^{\lambda} \right] \Big|_{\lambda=0}$$
$$= \frac{1}{2} Y(x) Y(1-x) \log^2 x$$

and hence we obtain formula (5.21).

In order to calculate the finite part of $(\partial_1 B)_{\lambda,1}$ at $\lambda = -k \in -\mathbb{N}$, let us first derive the Laurent series of $x^{\lambda}_+ \log x$ about $\lambda = -k$ from that of x^{λ}_+ , i.e. formula (2.1), by differentiation with respect to λ :

$$x_{+}^{\lambda} \log x = \frac{(-1)^{k} \delta^{(k-1)}}{(k-1)!(\lambda+k)^{2}} + \sum_{j=0}^{\infty} \frac{x_{+}^{-k} \log^{j+1} x}{j!} (\lambda+k)^{j}, \quad 0 < |\lambda+k| < 1.$$

Hence $\operatorname{Res}_{\lambda=-k} x_{+}^{\lambda} \log x = 0$ and we conclude that

$$\begin{aligned} (\partial_1 B)_{-k,1} &= \Pr_{\lambda=-k} \Big\{ \frac{1}{\lambda} Y(1-x) x_+^{\lambda} \log x - \frac{1}{\lambda^2} \big[Y(1-x) x_+^{\lambda} + Y(x-1) \big] \Big\} \\ &= -\frac{1}{k} Y(1-x) x_+^{-k} \log x - \frac{1}{k^2} \big[Y(1-x) x_+^{-k} + Y(x-1) \big] \\ &+ \frac{1}{2} \frac{\partial^2 \lambda^{-1}}{\partial \lambda^2} \Big|_{\lambda=-k} \cdot \frac{(-1)^k \delta^{(k-1)}}{(k-1)!} - \frac{\partial \lambda^{-2}}{\partial \lambda} \Big|_{\lambda=-k} \cdot \frac{\operatorname{Res}}{\lambda=-k} Y(1-x) x_+^{\lambda} \\ &= -\frac{1}{k} Y(1-x) x_+^{-k} \log x - \frac{1}{k^2} \big[Y(1-x) x_+^{-k} + Y(x-1) \big] + \frac{(-1)^k \delta^{(k-1)}}{k^2 \cdot k!} \end{aligned}$$

This furnishes formula (5.22).

Since $\mu \in \mathbf{C} \setminus (-\mathbf{N}_0)$, we have

$$-\frac{1}{\mu}\frac{\mathrm{d}}{\mathrm{d}x}(1-x)_{+}^{\mu} = (1-x)_{+}^{\mu-1}$$

and hence

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[-\frac{1}{\mu} Y(x) \log x \cdot (1-x)_{+}^{\mu} \right] = Y(x) \log x \cdot (1-x)_{+}^{\mu-1} - \frac{1}{\mu} x_{+}^{-1} (1-x)_{+}^{\mu}.$$

Thus $(\partial_1 S)_{1,\mu} = Y(x) \log x \cdot (1-x)^{\mu-1}$ is the derivative of the distribution $-\mu^{-1}Y(x) \log x \cdot (1-x)^{\mu}_{+} + \mu^{-1}B_{0,\mu+1}$ and this distribution has its support in the positive half-axis $[0,\infty)$ and coincides therefore with $(\partial_1 B)_{1,\mu}$. This implies formula (5.23).

Evaluating the finite part of $(\partial_1 B)_{1,\mu}$ at $\mu = 0$ in formula (5.23) yields

$$\begin{aligned} (\partial_1 B)_{1,0} &= \Pr_{\mu=0} (\partial_1 B)_{1,\mu} = -\frac{\partial}{\partial \mu} Y(x) \log x \cdot (1-x)_+^{\mu} \Big|_{\mu=0} + \left. \frac{\partial B_{0,\mu+1}}{\partial \mu} \right|_{\mu=0} \\ &= -Y(x)Y(1-x) \log x \log(1-x) + Y(x) \int_0^x Y(1-t) \log(1-t) \frac{\mathrm{d}t}{t} \\ &= -Y(x)Y(1-x) \Big[\log x \log(1-x) + \mathcal{L}_2(x) \Big] - Y(x-1)\mathcal{L}_2(1), \end{aligned}$$

see [5, Equ. 323.3a]. Due to $\mathcal{L}_2(1) = \frac{\pi^2}{6}$, this gives the first equation in formula (5.24). On the other hand, a direct calculation yields the following:

$$(\partial_1 B)_{1,0} = Y(x) \int_0^x Y(1-t)(1-t)^{-1} \log t \, dt$$

= $Y(x) \int_{1-x}^1 Y(t) \log(1-t) \frac{dt}{t}$
= $Y(x) [Y(1-x)\mathcal{L}_2(1-x) - \mathcal{L}_2(1)].$

Of course, these two representations of $(\partial_1 B)_{1,0}$ must and do coincide as can be seen from [5, Equ. 323.3g].

Let us finally calculate $(\partial_1 B)_{1,-l}$ for $l \in \mathbb{N}$. From formula (5.23), we obtain

$$\begin{aligned} (\partial_1 B)_{1,-l} &= \Pr_{\mu=-l} (\partial_1 B)_{1,\mu} \\ &= Y(x)l^{-1}\log x \cdot (1-x)^{-l}_+ + Y(x)l^{-2}\log x \cdot \operatorname{Res}_{\mu=-l} (1-x)^{\mu}_+ - l^{-1}B_{0,1-l} - l^{-2}\operatorname{Res}_{\mu=-l} B_{0,\mu+1}. \end{aligned}$$

Furthermore,

$$\operatorname{Res}_{\mu=-l}(1-x)_{+}^{\mu} = \left(\operatorname{Res}_{\mu=-l} x_{+}^{\mu}\right)(1-x) = \frac{(-1)^{l-1}\delta^{(l-1)}(1-x)}{(l-1)!} = \frac{\delta_{1}^{(l-1)}}{(l-1)!}$$

and, for a function f which is differentiable at 1 and $m \in \mathbf{N}_0$, we have

$$f \cdot \delta_1^{(m)} = \sum_{j=0}^m \binom{m}{j} (-1)^{m-j} f^{(m-j)}(1) \,\delta_1^{(j)}$$

and hence

$$(\log x) \cdot \operatorname{Res}_{\mu=-l} (1-x)_{+}^{\mu} = -\sum_{j=0}^{l-2} \frac{\delta_{1}^{(j)}}{(l-j-1) \cdot j!}$$

From formula (4.18), we infer that

$$B_{0,1-l} = Y(x)Y(1-x)\log\left(\frac{x}{1-x}\right) + \sum_{j=1}^{l-1} \left\{\frac{Y(x)}{j}\left[(1-x)_{+}^{-j} - 1\right] + \frac{\delta_{1}^{(j-1)}}{j \cdot j!}\right\}.$$

In order to evaluate the residue $\operatorname{Res}_{\mu=-l} B_{0,\mu+1}$, we note that

$$\operatorname{Res}_{\mu=-l} S_{0,\mu+1} = \operatorname{Res}_{\mu=-l} x_{+}^{-1} (1-x)_{+}^{\mu} = x^{-1} \cdot \frac{\delta_{1}^{(l-1)}}{(l-1)!} = \sum_{j=0}^{l-1} \frac{\delta_{1}^{(j)}}{j!}$$

and thus

$$\operatorname{Res}_{\mu=-l} B_{0,\mu+1} = Y * \operatorname{Res}_{\mu=-l} S_{0,\mu+1} = Y(x-1) + \sum_{j=0}^{l-2} \frac{\delta_1^{(j)}}{(j+1)!}.$$

Collecting terms we arrive at formula (5.25). The proof is complete.

Remark 5.2. From formula (5.25) in Proposition 5.2, we conclude that

(5.26)
$$(\partial_1 B)_{1,-l}(x) = -\frac{1}{l^2} + \frac{1}{l} \sum_{j=1}^{l-1} \frac{1}{j}, \quad l \in \mathbf{N}, \ x > 1.$$

Let us check this equation by replacing $\log x$ by its Taylor series about 1. If $l \in \mathbf{N}$ and x > 1, then

(5.27)

$$(\partial_1 B)_{1,-l}(x) = \langle 1, (\partial_1 S)_{1,-l} \rangle \\
= \langle 1, Y(x) \log x \cdot (1-x)_+^{l-1} \rangle \\
= \langle 1, -\sum_{j=1}^{\infty} j^{-1} Y(x) (1-x)_+^{j-l-1} \rangle \\
= -\langle 1, \sum_{j=1}^{\infty} j^{-1} S_{1,j-l} \rangle.$$

(In fact, these series converge in $\mathcal{E}'(\mathbf{R})$.) For $\operatorname{Re} \mu > 0$, we have

$$\langle 1, S_{1,\mu} \rangle = \langle 1, S_{\mu,1} \rangle = \int_0^1 x^{\mu-1} \, dx = \frac{1}{\mu}$$

and hence

$$\langle 1, S_{1,0} \rangle = 0$$
 and $\langle 1, S_{1,l} \rangle = l^{-1}$ for $l \in \mathbf{Z} \setminus \{0\}$

by analytic continuation and taking finite parts. Therefore Equation (5.27) implies

$$(\partial_1 B)_{1,-l}(x) = -\sum_{j=1, \ j \neq l}^{\infty} \frac{1}{j(j-l)}$$
$$= -\frac{1}{l} \sum_{j=1, \ j \neq l}^{\infty} \left(\frac{1}{j-l} - \frac{1}{j}\right)$$
$$= -\frac{1}{l} \left(\frac{1}{l} - \sum_{j=1}^{l-1} \frac{1}{j}\right), \quad l \in \mathbf{N}, \ x > 1$$

in accordance with the result in formula (5.26).

Remark 5.3. In the open interval (0,1), the representation of $(\partial_1 B)_{1,-l}$ in formula (5.25) coincides with [3, Thm. 2.2, p. 6]. Similarly, the formulas for $(\partial_2 B)_{-k,1}$ and for $(\partial_2 B)_{-k,l}$, $k, l \in \mathbb{N}$, in [3, Thms. 2.3, 2.4, pp. 6, 7], follow from Equation (5.19), Lemma 3.1 and Proposition 5.2.

References

- [1] J. G. van der Corput: Introduction to the neutrix calculus, J. Analyse Math., 7 (1959/60), 291-398.
- [2] J. Dieudonné: Eléments d'analyse III, Chap. XVI et XVII, Gauthier-Villars, Paris (1970).
- [3] B. Fisher, M. Lin and S. Orankitjaroen: Results on partial derivatives of the incomplete beta function, Rostock Math. Kolloq., 72 (2019/20), 3–10.
- [4] I. S. Gradshteyn, I. M. Ryzhik: Table of integrals, series and products, Academic Press, New York (1980).
- [5] W. Gröbner, N. Hofreiter: Integraltafel, 2. Teil: Bestimmte Integrale, 5th edn., Springer, Wien (1973).

 \Box

- [6] L. Hörmander: *The analysis of linear partial differential operators. Vol. I (Distribution theory and Fourier analysis),* Grundlehren Math. Wiss. 256, 2nd edn., Springer, Berlin (1990).
- [7] J. Horváth: Finite parts of distributions. In: Linear operators and approximation (ed. by P. L. Butzer et al.), 142–158, Birkhäuser, Basel (1972).
- [8] S. G. Krantz: Handbook of complex variables, Birkhäuser, Boston (1999).
- [9] J. Lavoine: Calcul symbolique. Distributions et pseudo-fonctions, Editions du CNRS, Paris (1959).
- [10] N. Ortner, P. Wagner: Distribution-valued analytic functions, Tredition, Hamburg (2013).
- [11] N. Ortner, P. Wagner, Fundamental solutions of linear partial differential operators, Springer, New York (2015).
- [12] E. Özçağ, İ. Ege and H. Gürçay: An extension of the incomplete beta function for negative integers, J. Math. Anal. Appl., 338 (2008), 984–992.
- [13] V. P. Palamodov: Distributions and harmonic analysis. In: Commutative harmonic analysis. Vol. III (Enc. Math. Sci. Vol. 72, ed. by N.K. Nikol'skij), 1–127, Springer, Berlin (1995).
- [14] M. Riesz: L'intégrale de Riemann–Liouville et le problème de Cauchy, Acta Math., 81 (1948), 1–223.
- [15] L. Schwartz: Théorie des distributions, 2nd edn., Hermann, Paris (1966).

NORBERT ORTNER UNIVERSITY OF INNSBRUCK DEPARTMENT OF MATHEMATICS TECHNIKERSTR. 13, A-6020 INNSBRUCK, AUSTRIA ORCID: 0000-0003-0942-1218 *E-mail address*: mathematik1@uibk.ac.at

PETER WAGNER UNIVERSITY OF INNSBRUCK DEPARTMENT OF MATHEMATICS TECHNIKERSTR. 13, A-6020 INNSBRUCK, AUSTRIA ORCID: 0000-0001-5688-099X *E-mail address*: wagner@mat1.uibk.ac.at