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Abstract

Using a coincidence theorem for multimaps, we prove the existence of a saddle point for vector-valued
functions in topological vector spaces by means of scalarized maps. Moreover, we discuss minimax theorems
as a consequence of the saddle point theorem for real-valued functions.
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1. Introduction

Minimax theorem which goes back to von Neumann [10] plays an important role in optimization theory
and game theory. The minimax theorem assures the existence of a saddle point under certain conditions,
where the proof of the theorem is mainly based on a fixed point theorem for multimaps; see [4, 18] for
instance. In game theory, the optimal strategies for two persons are described by saddle points.

Nieuwenhuis [11] introduced the notion of a saddle point for vector-valued functions in finite dimensional
spaces. Various existence results on cone saddle points of vector-valued functions were established in [1,
14, 16, 17]. Loose saddle point theorems for multimaps via scalarization were considered in [6, 9]. Some
ε-saddle point and saddle point theorems based on the coincidence theorem were investigated in [8, 13, 15].
For minimax problems on vector-valued functions, see [2, 3, 5].

In the present paper, we study a saddle point theorem for vector-valued functions in topological vector
spaces by means of scalarized maps, motivated by the work [6]. The main tool is a coincidence theorem for
multimaps due to Park and Kim [12]. Actually, the idea is to first find a saddle point for scalarized maps
which can be transformed into a saddle point for given vector-valued functions. It is remarkable that the
condition “compact convex set” in the underlying space is replaced by weaker condition “compact set” or
“convex set”. Moreover, we discuss some minimax theorems as a consequence of the saddle point theorem
for real-valued functions.
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2. Preliminaries

A multimap F : X ⊸ Y is a function from a set X into the set of all nonempty subsets of a set Y .
For topological spaces X and Y , a multimap F : X ⊸ Y is said to be upper semicontinuous if the set
{x ∈ X : Fx ⊂ A} is open in X for each open set A in Y .

A function f : X → R on a topological space X is said to be lower semicontinuous if the set {x ∈ X :
f(x) > α} is open in X for every real number α; and upper semicontinuous if the set {x ∈ X : f(x) < α} is
open in X for every real number α.

Let E be a real topological vector space with a partial order ≤; that is, a reflexive transitive binary
relation. Let A be a nonempty set in E. A point a0 ∈ A is said to be a minimal point of A if for any a ∈ A,
a ≤ a0 implies a = a0; and a maximal point of A if for any a ∈ A, a0 ≤ a implies a = a0. The set of minimal
[resp. maximal] points of A is denoted by minA [resp. maxA].

Let f be a vector-valued function from a product X × Y to E. For x ∈ X and y ∈ Y we write
f(X, y) := {f(x, y) : x ∈ X} and f(x, Y ) := {f(x, y) : y ∈ Y }. A point (x0, y0) ∈ X × Y is said to be a
saddle point of f on X × Y if f(x0, y0) ∈ max f(X, y0) ∩min f(x0, Y ).

Let f be a real-valued function defined on the product X × Y . A point (x0, y0) is said to be a saddle
point of f on X × Y if f(x, y0) ≤ f(x0, y0) ≤ f(x0, y) for all x ∈ X and all y ∈ Y .

Let E be a real topological vector space with a partial order ≤. A real-valued function g : E → R is said
to be strictly monotone if g(a) < g(b) for a < b, where a < b means a ≤ b and a ̸= b.

A nonempty topological space is said to be acyclic if all of its reduced Čech homology groups over
rationals vanish. Note that every nonempty convex or star-shaped subset of a topological vector space is
acyclic.

As a key tool of our main result, we need the following coincidence theorem which is a particular case
of [12, Theorem 1]; see [7, Theorem 1].

Theorem 2.1. Let X be a nonempty convex set in a topological vector space and Y a Hausdorff compact
topological space. Suppose that A : X ⊸ Y is an upper semicontinuous multimap with closed acyclic values
and B : Y ⊸ X has convex values and open fibers, that is, B−x = {y ∈ Y : x ∈ By} is open in Y for each
x ∈ X. Then there exist points x0 ∈ X and y0 ∈ Y such that y0 ∈ Ax0 and x0 ∈ By0.

The following elementary result on semicontinuity will be often used, taken from [7, Lemma]; see [6,
Lemma 3.1].

Lemma 2.2. Let X and Y be topological spaces and f : X × Y → R a real-valued function on the product
space X × Y. Then the following statements hold:

(a) If f(x, ·) is bounded below on Y for each x ∈ X and f(·, y) is upper semicontinuous on X for each
y ∈ Y , then the real-valued function g : X → R, g(x) := inf f(x, Y ), is upper semicontinuous on X.

(b) If f(·, y) is bounded above on X for each y ∈ Y and f(x, ·) is lower semicontinuous on Y for each
x ∈ X, then the function h : Y → R, h(y) := sup f(X, y), is lower semicontinuous on Y .

(c) If f is lower semicontinuous on X×Y and f(·, y) is upper semicontinuous on X for each y ∈ Y and if Y
is a Hausdorff compact space, then the multimap F : X ⊸ Y, Fx := {y ∈ Y : f(x, y) = min f(x, Y )},
is upper semicontinuous on X.

3. Main Result

In this section, we study a saddle point theorem for vector-valued functions, where the main method is
to use the coincidence theorem stated in the previous section.

Motivated by the work [6], we prove the existence of a saddle point for vector-valued functions via
scalarization.
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Theorem 3.1. Let X be a nonempty convex set in a Hausdorff topological vector space, Y a nonempty
compact set in a Hausdorff topological vector space, and E a topological vector space with a partial order ≤.
Let f : X × Y → E be a vector-valued function on the product space X × Y . Suppose that there is a strictly
monotone function g : E → R such that

(1) g ◦ f is lower semicontinuous on X × Y ;

(2) g ◦ f(·, y) is bounded above and upper semicontinuous on X for each y ∈ Y ;

(3) g ◦ f(x, ·)− sup g ◦ f(X, ·) is lower semicontinuous on Y for each x ∈ X;

(4) g ◦ f(·, y) is quasiconcave for each y ∈ Y ;

(5) {y ∈ Y : g ◦ f(x, y) = min g ◦ f(x, Y )} is acyclic for each x ∈ X; and

(6) for every sequence {xn}n∈N in X, there exist a subsequence {xnk
}k∈N and a point x̂ ∈ X such that

g ◦ f(x̂, y) ≥ lim sup
k→∞

g ◦ f(xnk
, y) for all y ∈ Y.

Then f has a saddle point (x0, y0) in X × Y .

Proof. Let A : X ⊸ Y be a multimap defined by

Ax := {y ∈ Y : g ◦ f(x, y) = min g ◦ f(x, Y )} for x ∈ X.

By Lemma 2.2(c), the multimap A is upper semicontinuous onX and has closed acyclic values by assumption
(5).

Let h : Y → R be a real-valued function defined by

h(y) := sup g ◦ f(X, y) for y ∈ Y.

Since g ◦ f(x, ·) is lower semicontinuous on Y for each x ∈ X, Lemma 2.2(b) implies that the function h is
lower semicontinuous on Y .

For each n ∈ N, let Bn : Y ⊸ X be a multimap defined by

Bny :=

{
x ∈ X : g ◦ f(x, y) > h(y)− 1

n

}
for y ∈ Y.

Then it follows from assumptions (3) and (4) that the multimap Bn has convex values and open fibers. By
Theorem 2.1, there exist points xn ∈ X and yn ∈ Y such that yn ∈ Axn and xn ∈ Bnyn. This implies

g ◦ f(xn, y) ≥ g ◦ f(xn, yn) > h(yn)−
1

n
for all y ∈ Y. (3.1)

In view of assumption (6), we can choose a subsequence {xnk
}k∈N of {xn}n∈N and a point x0 ∈ X such

that
g ◦ f(x0, y) ≥ lim sup

k→∞
g ◦ f(xnk

, y) for all y ∈ Y. (3.2)

By the compactness of Y , there are a subnet {yα} of {ynk
}k∈N and a point y0 ∈ Y which converges to y0.

Note that min g ◦ f(x0, Y ) = g ◦ f(x0, ŷ) for some ŷ ∈ Y . Since h is lower semicontinuous on Y , we obtain
from (3.1) and (3.2) that

g ◦ f(x0, y0) ≥ min g ◦ f(x0, Y ) = g ◦ f(x0, ŷ)
≥ lim sup

k→∞
g ◦ f(xnk

, ŷ) ≥ lim sup
α

g ◦ f(xα, ŷ)

≥ lim inf
α

(h(yα)− α−1) ≥ h(y0)

≥ g ◦ f(x0, y0),
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which implies
g ◦ f(x0, y0) = min g ◦ f(x0, Y ) = h(y0) = max g ◦ f(X, y0). (3.3)

Thus, (x0, y0) is a saddle point of the real-valued function g ◦ f : X × Y → R. Since g is strictly monotone,
we obtain from (3.3) that

f(x0, y0) ∈ min f(x0, Y ) and f(x0, y0) ∈ max f(X, y0).

In fact, if f(x0, y0) is not a minimal point of f(x0, Y ), then w < f(x0, y0) for some w ∈ f(x0, Y ) and hence by
the strict monotonicity g(w) < g ◦ f(x0, y0), which contradicts the fact that g ◦ f(x0, y0) = min g ◦ f(x0, Y ).
A similar argument shows that f(x0, y0) ∈ max f(X, y0). Therefore, (x0, y0) ∈ X × Y is a saddle point of
the vector-valued function f . This completes the proof.

Remark 3.2. In Theorem 3.1, it is emphasized that the hypothesis “compact convex set” in [6] was replaced
by “compact set” or “convex set”.

The following result is the real-valued function case of Theorem 3.1. When X is a generalized convex
space, it was studied in [7, Theorem 2].

Corollary 3.3. Let X be a nonempty convex set in a Hausdorff topological vector space and Y a nonempty
compact set in a Hausdorff topological vector space. Suppose that f : X × Y → R is a lower semicontinuous
function on X × Y such that

(1) f(·, y) is bounded above and upper semicontinuous on X for each y ∈ Y ;

(2) f(x, ·)− sup f(X, ·) is lower semicontinuous on Y for each x ∈ X;

(3) f(·, y) is quasiconcave for each y ∈ Y ;

(4) {y ∈ Y : f(x, y) = min f(x, Y )} is acyclic for each x ∈ X; and

(5) for every sequence {xn}n∈N in X, there are a subsequence {xnk
}k∈N and a point x̂ ∈ X such that

f(x̂, y) ≥ lim sup
k→∞

f(xnk
, y) for all y ∈ Y.

Then f has a saddle point (x0, y0) ∈ X × Y.

Proof. Apply Theorem 3.1 with E = R and g = id, the identity map.

Remark 3.4. Corollary 3.3 holds true when assumption (5) is replaced by

(5′) {f(x, ·) : x ∈ X} is sequentially compact in which convergence is uniform on Y .

This means that for every sequence {xn}n∈N in X, there exist a subsequence {xnk
}k∈N and a point x̂ ∈ X

such that {f(xnk
, ·)} converges to f(x̂, ·) uniformly on Y.

Next we give a minimax theorem as a consequence of the saddle point theorem for real-valued functions;
see [7, Theorem 4].

Theorem 3.5. Under the assumptions of Corollary 3.3, we have

min
y∈Y

sup
x∈X

f(x, y) = sup
x∈X

min
y∈Y

f(x, y).

Proof. Corollary 3.3 implies that there is a point (x0, y0) of X × Y such that

sup
x∈X

f(x, y0) = f(x0, y0) = min
y∈Y

f(x0, y). (3.4)

From Lemma 2.2 we know that sup f(X, ·) is lower semicontinuous on the compact set Y . Obviously,
miny∈Y supx∈X f(x, y) exists and min f(x, Y ) exists for each x ∈ X. We have

min
y∈Y

sup
x∈X

f(x, y) ≥ min f(x, Y ) for every x ∈ X.
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This implies
min
y∈Y

sup
x∈X

f(x, y) ≥ sup
x∈X

min
y∈Y

f(x, y).

On the other hand, it follows from (3.4) that

min
y∈Y

sup
x∈X

f(x, y) ≤ sup
x∈X

f(x, y0) = min
y∈Y

f(x0, y) ≤ sup
x∈X

min
y∈Y

f(x, y).

The proof is complete.

Corollary 3.6. Let X be a nonempty compact convex set in a Hausdorff topological vector space and Y
a nonempty compact set in a Hausdorff topological vector space. Suppose that f : X × Y → R is a lower
semicontinuous function on X × Y such that

(1) f(·, y) is upper semicontinuous on X for each y ∈ Y ;

(2) f(x, ·)−max f(X, ·) is lower semicontinuous on Y for each x ∈ X;

(3) f(·, y) is quasiconcave for each y ∈ Y ;

(4) {y ∈ Y : f(x, y) = min f(x, Y )} is acyclic for each x ∈ X; and

(5′) {f(x, ·) : x ∈ X} is sequentially compact in which convergence is uniform on Y.

Then we have the minimax theorem

min
y∈Y

max
x∈X

f(x, y) = max
x∈X

min
y∈Y

f(x, y).

Proof. In view of Lemma 2.2, max f(X, ·) is lower semicontinuous on the compact set Y and min f(·, Y ) is up-
per semicontinuous on the compact setX. It is clear that miny∈Y maxx∈X f(x, y) and maxx∈X miny∈Y f(x, y)
exist. We conclude by Theorem 3.5 that

min
y∈Y

max
x∈X

f(x, y) = max
x∈X

min
y∈Y

f(x, y).

Corollary 3.7. Let X and Y be nonempty compact convex sets in Hausdorff topological vector spaces,
respectively. Suppose that f : X × Y → R is a continuous function on X × Y such that

(1) f(·, y) is quasiconcave for each y ∈ Y ;

(2) f(x, ·) is quasiconvex for each x ∈ X; and

(3) {f(x, ·) : x ∈ X} is sequentially compact in C(Y ), where C(Y ) denotes the Banach space of all
continuous real-valued functions defined on Y equipped with the supremum norm.

Then we have
min
y∈Y

max
x∈X

f(x, y) = max
x∈X

min
y∈Y

f(x, y).

Proof. Notice that if f is continuous on X × Y and X is compact, then the function h : Y → R, h(y) :=
max f(X, y), is continuous on Y ; see [6, Lemma 2.2]. Moreover, it follows from the quasiconvexity of f(x, ·)
that the set {y ∈ Y : f(x, y) = min f(x, Y )} is convex for each x ∈ X. Since all the assumptions of Corollary
3.6 are satisfied, this implies

min
y∈Y

max
x∈X

f(x, y) = max
x∈X

min
y∈Y

f(x, y).

We have shown a saddle point theorem for vector-valued functions in topological vector spaces which
implies minimax theorems for real-valued functions. For minimax theorems on convex sets in topological
vector spaces, see [4, Theorem 4].
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