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Abstract. Within the continuum model of graphene, we study the properties of energy spectrum of graphene quantum dots 

in the presence of an off-plane donor/acceptor Coulomb impurities as a function of their positions. We propose a variational 

scheme in which the trial wave functions take into account the confinement of the carriers of graphene quantum dot together 

with the influence of magnetic field. The dependence of graphene quantum dot states on the location of impurity is 

investigated in the presence of magnetic field. We show that the off-plane donor/acceptor hydrogenic impurity removes the 

degeneracy of the relativistic Fock-Darwin states, and modifies the valley splitting due to the spatial confinement. 
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Grafen Kuantum Noktalarında Düzlem Dışı Safsızlık Etkileri 

Özet. Grafenin sürekli modeli çerçevesinde, grafen kuantum noktalarının enerji spektrumu konumlarının bir fonksiyonu olarak 

düzlem dışı donör/akseptor Coulomb safsızlıklarının varlığında çalışılmıştır. Manyetik alanın etkisi altındaki grafen kuantum 

noktasının yük taşıyıcılarının sınırlanması göz önüne alınarak, varyasyonel yöntemde kullanılacak dalga fonksiyonu 

önerilmiştir. Grafen kuantum nokta durumlarının safsızlığın konumuna bağlılığı manyetik alanın varlığında incelenmiştir. 

Düzlem dışı donör/akseptör hidrojenik safsızlığın, göreli Fock-Darwin durumlarının dejenereliğini kaldırdığı ve uzaysal 

sınırlamadan dolayı vadi dejenereliğinin değiştiği görülmüştür. 

Anahtar Kelimeler: Grafen kuantum noktaları, Hidrojenik safsızlık 

 

I. INTRODUCTION 

After the discovery of graphene [1-2], there has been great interest in studying the effects of 

impurities (adatoms) in graphene based nanostructures. Due to the special properties of these structures 

various impurity models have been presented to understand their role in graphene. Most of theoretical 

studies [3-19] considers either the continuum model [20] or the tight-binding scheme [21]. It is well-

established that, by experiments [13] with adatoms in monolayer graphene, long range impurities are 

responsible for limiting the mobility of graphene [15], thus Coulomb like hydrogenic impurities are in 

the center of associated literature [7-10,15]. Since adatoms play important roles on various electronic 

and optical properties of graphene, studying their role in graphene quantum dots (GODs) would provide 

better physical insight to the electronic properties of these structures [22-65]. 

The problem of the Dirac electrons bound to a hydrogenic impurity located at the center of graphene 

dot (QD) is an interesting problem itself from the point of view of fundamental physics in the pristine 

graphene. It is originally considered by Pereira et al [5]. They have studied the problem of an unscreened 

Coulomb charge in graphene by solving the problem in continuum description in terms of the 2D Dirac 

equation. Afterwards, a number of theoretical and experimental works in the graphene literature have 

been devoted to study of impurity states in pristine graphene. It is expected that, upon the reduction of 

the size of graphene in making GQDs, impurity related effects become more pronounced. 
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In the present paper, we calculate the low-lying energy spectra of the Dirac electron with an off-

plane impurity under the influence of a static magnetic field. We introduce a variational scheme based 

on a choice of trial wave function from the exactly solvable part of the Hamiltonian, and then calculate 

the energy spectra. It is found that the scalar parabolic confinement together with an off-plane impurity 

have significant effects on the graphene spectrum. It is also shown that the results obtained within the 

approximation presented here reduce to the well-known relativistic Landau Levels (LLs) in the absence 

of both impurity and spatial confinement. 

II. THEORY 

In the low-energy approximation, the Hamiltonian of a single off-plane hydrogenic impurity in 

GQD with parabolic confinement under the homogenous magnetic field along the z-axis in graphene 

quantum dot (GQD) is written as 

                                           ℋ = 𝑣𝐹 𝜶 ∙ (𝒑 +
𝑒

𝑐
 𝑨) + 𝜷∆0𝑟2 −

𝑍𝑒2

𝜖√𝑟2+𝑧0
2
                                                            (1) 

where ∆0= 𝑈0 2𝑅0
2⁄ . In Eq.(1), 𝜶 and 𝜷 are the Dirac matrices while 𝑈0 and 𝑅0 are the confining 

strength and the radius of the GQD respectively, and 𝑣𝐹 = (3𝑎 2⁄ )𝐽0 and 𝑧0 are the Fermi velocity and 

the position of impurity from the dot center chosen to be 𝑟𝑖 = (0,0, 𝑧0). Here, 𝐽0 is the resonance integral 

between nearest neighbor carbon atoms, and is of order of 2.7 eV, and 𝑎 is the equilibrium bond length 

of the graphene. 𝑨 is the vector potential in the symmetric gauge, i.e., 𝑨 = 𝐵0(−y, x, 0)/2 corresponding 

to a magnetic field perpendicular to GQD plane. The solution of Eq.(1) in the absence of GQD potential 

is well established Ref.17. In this case, the eigenfunctions corresponding to the Dirac-Weyl equation 

ℋΨn = EnΨn which are four-component spinors are given by 

Ψ𝑛
𝑲(𝑥, 𝜑) = 𝑅𝑛(𝑥)𝑒𝑖𝑚𝜑𝑒−𝑥2/2 ( 

𝕃0

0
0

𝕃𝑲

 ) 

                                                                                                                                                                (2) 

Ψ𝑛
𝑲′(𝑥, 𝜑) = 𝑅𝑛(𝑥)𝑒𝑖𝑚𝜑𝑒−𝑥2/2 (

0
𝕃0

  𝕃𝑲′

0

) 

 

with 𝑅𝑛(𝑥) = [𝜈!/2𝜋(𝜈 + |𝑚|)!]1/2𝛾0𝑥|𝑚|. In Eq. (2) we have defined 𝕃𝟎, 𝕃𝑲 and 𝕃𝑲′ in terms of 

Laquerre polynomials as 𝕃𝟎(𝑥) = 𝕃𝜈
|𝑚|

(𝑥2), 

 

     𝕃𝑲 =
𝑖𝑥𝑒+𝑖𝜑

√𝑛
{

   𝐿𝜈
|𝑚|+1(𝑥2)     𝑚 ≥ 0

−
𝑛

𝑥2
𝐿𝜈+1

|𝑚|−1(𝑥2)     𝑚 < 0      
 

                                                                                                                                                                (3)                         

                                                   𝕃𝑲′ =
𝑖𝑥𝑒−𝑖𝜑

√𝑛
{

−
𝑛

𝑥2 𝐿𝜈
|𝑚|−1(𝑥2)     𝑚 ≥ 0

         𝐿𝜈+1
|𝑚|+1(𝑥2)     𝑚 < 0
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respectively. The corresponding eigenvalues are given by 𝐸𝑛 = 𝜆𝜖𝑛 wherein 𝜖𝑛 = ℏ𝑣𝐹√2𝑛/𝑙𝐵, 𝜆 is the 

chirality index and takes −1 and +1 values, which correspond to valence and conduction bands of 

graphene, respectively. 𝑙𝐵 = (ℏ𝑐/𝑒𝐵)1/2 is the magnetic confinement length, and 𝑛 = 𝜈 +

(|𝑚| + 𝑚 + 𝜏 + 1)/2  where 𝜏 is considered as a pseudospin index whose −1 and +1 values specify 

the two valleys, i.e., 𝑲 and 𝑲′, respectively. In the following, we will restrict ourselves to only 

conduction band. Extension of the results to the other band is straightforward. In Eqs.(2) and (3), 𝑥 =

𝛾0𝜌 is a dimensionless, and 𝛾0 is the inverse of characteristic length of the system. On the one hand, 

without spatial parabolic confinement, 𝛾0 is proportional to inverse of magnetic confinement length 𝑙𝐵, 

i.e., 𝛾0 = 𝛾 = 1 √2𝑙𝐵⁄ . On the other hand, in the presence of spatial confinement, graphene system 

described by the Hamiltonian Eq.(1) suggests a natural unit of length 𝑅 = (ℏ𝑣𝐹𝑅0
2 𝑈0⁄ )1 3⁄  which 

characterizes the size of a scalar parabolic quantum dot in graphene [22-23] . We will use the ansatz of 

Ref. 23 to characterize the system by only one parameter, i.e., we write 𝛾0
2 = 𝛾2 + 𝑅−2 and take 𝛾 to be 

a variational parameter, so as to reduce to 1 √2𝑙𝐵⁄  in the limit 𝑅 → ∞. Therefore, the variational 

eigenenergies of GQD is given by 

 

                                                𝐸𝑛 = ∫ 𝑑2𝒓 𝛹𝑛
† [𝜶 ∙ (−𝑖𝜵 +

𝑒

ℏ𝑐
𝑨) + 𝜷∆0𝑟2 −

𝑍𝑒2

𝜖√𝑟2+𝑧0
2
] 𝛹𝑛                    (4) 

If the Eq.(2) is replaced into Eq.(4) by using the relation 

1

√𝑟2 + 𝑧0
2

=
2

√𝜋
 ∫ 𝑒−(𝑟2+𝑧0

2)𝑢2
𝑑𝑢

∞

0

 

after some derivations, the variational energy can be written as    

                                            �̃� = (√𝑛 −
1

2
�̅��̃�𝑛

𝐼 ) 𝛾0 +
√𝑛

2𝑙�̅�
2

1

�̅�0
+

1

4�̅�3

1

�̅�0
2 �̃�𝑛

𝐼𝐼                                                    (5) 

where we have defined the integral �̃�𝑛
𝐼  in Eq.(5) as 

 

�̃�𝑛
𝐼 =

2

√𝜋

𝜈!

(𝜈 + |𝑚|)!
∫ 𝑒−�̅�0

2�̅�0
2𝑢2

𝑑𝑢 [∫ 𝑑𝑟
∞

0

 𝑟|𝑚|𝑒−(1+𝑢2)𝑟 |𝐿𝜈
|𝑚|

(𝑟)|
2∞

0

+
1

𝑛
∫ 𝑑𝑟

∞

0

 𝑟|𝑚|𝑒−(1+𝑢2)𝑟𝑅𝜈
𝐾(𝐾′)

(𝑟)] 

with 
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𝑅𝑛
𝐾 = {

 𝑟 |𝐿𝜈
|𝑚|+1(𝑟)|

2
                  𝑚 ≥ 0

    𝑛2𝑟−1 |𝐿𝜈+1
|𝑚|+1(𝑟)|

2
        𝑚 < 0

 

𝑅𝑛
𝐾′ = {

  𝑛2𝑟−1  |𝐿𝜈
|𝑚|−1(𝑟)|

2
        𝑚 ≥ 0

    𝑟 |𝐿𝜈−1
|𝑚|+1(𝑟)|

2
                 𝑚 < 0

 

�̃�𝑛
𝐼𝐼 in Eq.(5) arising from the GQD potential includes integrals in terms of associated Laguerre 

polynomials and it can be written in closed form as 

�̃�𝑛
𝐼𝐼 = 𝔽𝑛 −

1

𝑛
𝔾𝑛 

where 

𝔽𝑛 =
𝜈!

(𝜈 + |𝑚|)!
∫ 𝑑𝑟

∞

0

 𝑟|𝑚|+1 𝑒−𝑟 𝐿𝜈
|𝑚|

(𝑟2) 

 

𝔾𝑛 =
𝜈!

(𝜈 + |𝑚|)!
∫ 𝑑𝑟

∞

0

 𝑟|𝑚|+1 𝑒−𝑟 ℍ𝜈,𝛼
|𝑚|

(𝑟) 

 

with 

ℍ𝜈,𝛼
|𝑚|(𝑟) = {

     𝑟 |𝐿𝜈+𝛼
|𝑚|+1(𝑟)|

2
  ,    𝛼 = { 

  0   𝑚 ≥ 0  𝜏 = +1
−1   𝑚 < 0  𝜏 = −1

 
 𝑛2

𝑟
 |𝐿𝜈+𝛼

|𝑚|−1(𝑟)|
2

  ,    𝛼 = { 
   0    𝑚 ≥ 0  𝜏 = +1
+1   𝑚 < 0  𝜏 = −1

 

 

where 𝐿𝜈
|𝑚|

(𝑟) are the associated Laguerre polynomials. Integrals in �̃�𝑛
𝐼𝐼 can be integrated separately 

[66] to yield 𝔽𝑛 = 2𝜈 + |𝑚| + 1 and 𝔾𝑛 = 2𝑛 − 𝑚, respectively. Thus, it reduces to �̃�𝑛
𝐼𝐼 = −𝜏. Before 

numerical minimization of Eq.(5), to get an approximate analytical expression for the energy we 

investigate some its limiting cases. Since the minimization of the energy given by Eq.(5), in the absence 

of both spatial confinement potential and the impurity, with respect to the variational parameter �̅� gives 

�̅� = 1 √2𝑙𝐵⁄ , by replacing this value back into the relevant variational energy, one gets �̅�𝑛 = √2𝑛 𝑙�̅�⁄  , 

which are the well-known Landau levels for massless graphene. �̃�𝑛
𝐼  can also be integrated analytically 

for each 𝑛. For zero energy states, it can be found in terms of confluent hypergeometric functions as 

�̃�𝑛
𝐼 = 𝑈 (

1

2
,

1

2
− 𝑙,

�̅�0
2

𝑙0̅
2 ), where 𝑙 takes values 0 and |𝑚|, respectively. It also reduces to 

Γ(|𝑚| + 1 2⁄ ) Γ(|𝑚| + 1)⁄  when 𝑧0̅ = 0. Consequently, substituting these values back into Eq.(5) as a 

first approximation yields  
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                                        �̅�0 =
−𝑍

2𝑙0̅
𝑈 (

1

2
,

1

2
− 𝑙,

�̅�0
2

𝑙0̅
2 ) − 𝜏

𝑙0̅
2

4�̅�3                                                                          (6) 

 

where 1 𝑙0̅
2⁄ = 1 𝑙�̅�

2⁄ + 1 �̅�2⁄  defines the effective confinement length. Eq.(6) may give an idea about the 

effect of off-plane impurity on the GQD spectrum. From Eqs.(6), in the absence of magnetic field for 

𝑚 = 0, we estimate the energy 

                                                    �̅�0 = −
1

2
�̅�𝑒 �̅�0

2 �̅�2⁄ Γ(1 2⁄ , 𝑧0̅
2 �̅�2⁄ ) +

1

4�̅�
                                                               (7) 

 

 

so that the critical value of �̅� can be easily found that 

 

 

                                                            �̅�𝑐𝑟𝑡 =
1

2

𝑒�̅�0
2 �̅�2⁄

Γ(1 2⁄ ,�̅�0
2 �̅�2⁄ )

 .                                                                                    (8) 

 

This reduces to �̅�𝑐𝑟𝑡 = 1 2⁄ √𝜋 at 𝑧0̅ = 0. In Eq.(8), we have used the relation 𝑈 (
1

2
,

1

2
− 𝑙,

�̅�0
2

𝑙0̅
2 ) =

𝑒 �̅�0
2 �̅�2⁄ Γ(1 2⁄ , 𝑧0̅

2 �̅�2⁄ ). In the absence of impurity, Eq.(7) is consistent with the reported experimental 

values for the graphene devices fabricated by Ponomarenko et al [67] , wherein the GQDs have a gap 

value of 0.010 − 0.5 𝑒𝑉 for the GQDs with diameter of 𝐷 = 40 − 1.0 𝑛𝑚. Eq.(6) predicts their 

corresponding values as 0.014 − 0.57 𝑒𝑉. The valley splitting of energy levels can easily be seen from 

the FIG. 1(a) and 1(b) as the impurity approaches onto GQD. It should be noted that the degeneracy of 

relativistic LLs with negative values of angular momentum quantum number 𝑚 is lifted by the off-plane 

impurity, and they can be controlled by the position of the impurity. Another obvious feature of the 

figure is that, as a result of competition of confinement potential and magnetic field, the donor(acceptor) 

impurity strongly affects the size of the valley splitting, and lowers (raises) it towards smaller (higher) 

values, with decreasing 𝑧0̅. The splitting become higher and higher as approach to the graphene surface. 

The binding energy is defined as the minimum energy required to remove the Dirac electron to 

infinity where impurity strength is zero, i.e., it is simply the difference between energies with and 

without impurity. The binding energy as a function of dot radius as well as the confinement strengths is 

plotted in FIG. 2 and in FIG. 3 for a typical value of �̅� = 0.15 . As is seen from the FIG. 3, binding 

energies increases with decreasing confinement length. They further increase by switching the magnetic 

field on, since the magnetic field immerse the electron towards to the impurity center. This can also be 

controlled by the position of the impurity. 
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                                                 (a)                                                                           (b) 

Figure 1. The spectra of low-lying states of GQD electron as a function of position of an (a) donor (b) acceptor impurity. The 

numbers in the brackets represent energy levels. The first columns of each of two energy diagrams are for �̅� = 0, while second 

ones are for �̅� = 0.15 . The solid and dashed curves represent 𝑲 and 𝑲′ valleys. 

 

Figure 2. Impurity binding energies as a function of dot strength. While the thick straight (dashed) lines, represented by labels 
[𝑛] ([�̅�]),  correspond to the 𝑲 (𝑲′) valleys for 𝑧0 = 0, the thin straight (dashed) ones correspond to 𝑲 (𝑲′) valleys again, but 

for 𝑧0 = 𝑅 2⁄ , in the absence of magnetic field. 

 



Off-plane Impurity Effects in Graphene Quantum Dots 

26 
 

 
 
Figure 3. Impurity binding energies associated with the first two GQD levels as a function of GQD radius R in nanometers for 

𝐵 = 1 𝑇 and �̅� = 0.15 . Curves are for different values of �̅�. While the thin straight (dashed) lines, represented by labels 

[𝑛] ([�̅�]), correspond to the 𝑲 (𝑲′) valleys for 𝑧0 = 0, the thick straight (dashed) ones correspond to the 𝑲 (𝑲′) valleys again, 

but for 𝑧0 = 𝑅 2⁄ . Inset includes the same graphs in the absence of magnetic field.  

 

III. CONCLUSIONS 

In conclusion, we investigated theoretically long range hydrogenic impurity related effects on the 

electronic energy spectrum of massless Dirac fermions in parabolic QDs. We employ a variational 

scheme based on using exact solutions of Dirac-Weyl equation in the absence of quantum dot potential 

as trial wave functions. The electronic energy spectrum of the Dirac electron bound to a hydrogenic off-

plane impurity subjected to a uniform magnetic field together with the impurity binding energies are all 

calculated. The results show that, due to the presence of off-plane impurity, the magnitude of the valley 

splitting can easily be controlled. It starts to enhance away from the plane, allowing to control the the 

splitting. In the high magnetic field regime, we also checked that the validity of the obtained results by 

reproducing the well-known gapless spectrum of the graphene in the absence of impurity. 
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