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ABSTRACT 

In this paper, we compute explicitly the oscillation constant for certain half-linear second order differential equations 

having different periodic coefficients. If the periods of these functions are coincide, our result reduce to Dosly and 
Hasil’s result, which were published in Annali di Matematica 190 (2011) 395-408. Finally some examples are also 

given to illustrate the result. 

Keywords: Half linear differential equation, Riemann-Weber equation, Prüfer transformation, Critical oscillation 

constant. 

 

1. INTRODUCTION 

An equation of the form 

(𝑟(𝑡)𝛷(𝑥′))
′

+ 𝑐(𝑡)𝛷(𝑥) = 0                        (1.1) 

𝑓𝑜𝑟  𝛷(𝑥) = |𝑥|𝑝−2𝑥,    𝑝 > 1 . Wheere 𝑟, 𝑐  are 

continuous functions and 𝑟(𝑡) > 0 was introduced for the 

first time in [1]  and called half-linear differential 

equation. The name half-linear equation was introduced in 
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[2]. Since the linear Sturmian theory extends verbatim to 

half-linear case (for details, we refer to Section 1. 2 in [5]),  

we can classify Equ. (1.1) as oscillatory or non-oscillatory. 

Actually, we are interested in the conditional oscillation of 

half-linear differential equations with different periodic 

coefficients. We say that the equation 

(𝑟(𝑡)𝑥′)′ + 𝑐(𝑡)𝑥 = 0                                                     (1.2) 

with positive coefficients is conditionally oscillatory if 

there exists a constant 𝛾0 such that Equ. (1.2) is oscillatory 

for all 𝛾 > 𝛾0  and non-oscillatory for all  𝛾 < 𝛾0 . The 

constant 𝛾0  is called an oscillation constant of this 

equation. 

Considerable effort has been made over the years to extend 

oscillation constant theory of half-linear differential 

equation Equ. (1.1), see [3, 4, 6, 7, 8, 9]  and reference 

there in. For example it is well known that Cauchy-Euler 

differential equation 

𝑥′′ +
𝛾

𝑡2 𝑥 = 0                                                                     (1.3) 

(which is special case 𝑝 = 2, 𝑟(𝑡) = 1 and 𝑐(𝑡) =
1

𝑡2 of 

Equ. (1.1)) is oscillatory if 𝛾 >
1

4
, non-oscillatory if  

𝛾 <
1

4
. Additionally 𝑥(𝑡) = 𝑎√𝑡 + 𝑏√𝑡𝑙𝑜𝑔𝑡 is the general 

solution of Equ. (1.3) and non-oscillatory for 𝛾 =
1

4
. 

In 2000 Elbert and Schneider [6]  considered the 

half-linear Euler differential equation 

(𝛷(𝑥′))
′

+
𝛾

𝑡𝑝  𝛷(𝑥) = 0                                                  (1.4) 

and showed that Equ. (1.4) is non-oscillatory if and only if 

𝛾 ≤ 𝛾𝑝 = (
𝑝−1

𝑝
)

𝑝
. 

In 2008 Hasil [7] considered the half-linear differential 

equation of the form  

(𝑟(𝑡)𝛷(𝑥′))
′

+
𝛾𝑐(𝑡)

𝑡𝑝  𝛷(𝑥) = 0                                    (1.5) 

where 𝑟, 𝑐 are 𝛼-periodic positive functions and showed 

that Equ. (1.5) is oscillatory if 𝛾 > 𝐾 and non-oscillatory 

if 𝛾 < 𝐾, where 𝐾 is given by  

𝐾 = 𝑞−𝑝 (
1

𝛼
∫ 𝑟1−𝑞(𝜏)𝑑𝜏

𝛼

0

)

1−𝑝

(
1

𝛼
∫ 𝑐(𝜏)𝑑𝜏

𝛼

0

)

−1

 

for 𝑝 and 𝑞 are conjugate numbers, i.e., 
1

𝑝
+

1

𝑞
= 1. If the 

functions 𝑟, 𝑐  are positive constants, then Equ. (1.5) 

reduce to the half-linear Euler equation Equ. (1.4), whose 

oscillatory properties were studied in detail [6]  and 

references given therein. 

In 2011 Dosly and Hasil [4] considered the Equ. (1.5) for 

𝑟  and 𝑐  are 𝛼 -periodic positive functions defined on 
[0,∞) and showed that Equ. (1.5) is non-oscillatory if and 

only if 𝛾 ≤ 𝛾𝑟𝑐, where 𝛾𝑟𝑐 is given by  

𝛾 ≤ 𝛾𝑟𝑐 =
𝛼𝑝𝛾𝑝

(∫ 𝑟1−𝑞(𝑡)𝑑𝑡
𝛼

0
)

𝑝−1
∫ 𝑐(𝑡)𝑑𝑡

𝛼

0
 
 .       

Our goal is to find explicit oscillation constant for Equ. 

(1.5) with periodic coefficients which have different 

periods. We point out that the main motivation of our 

research comes from the papers [4, 7] , where the 

oscillation constant is computed for Equ. (1.5) with the 

periodic coefficients which have same 𝛼-period. But in 

that papers the oscillation constant is not obtained for the 

periodic functions having different periods and 

consequently the number of the least common multiple of 

these periodic coefficients is not defined. Thus in this paper 

we investigate the oscillation constant for Equ. (1.5) with 

periodic coefficients which have different periods. For the 

sake of simplicity, we usually use the same notations with 

the papers [4,7]. 

2. PRELIMINARIES 

First, we start this section with the recalling the concept of 

half-linear trigonometric functions [5] . Consider the 

following special half-linear equation of the form 

(𝛷(𝑥′))
′

+ (𝑝 − 1)𝛷(𝑥) = 0                                        (2.1) 

and denote by 𝑥 = 𝑥(𝑡) its solution given by the initial 

conditions 𝑥(0) = 0, 𝑥′(0) = 1. We see that the behavior 

of this solution is very similar to that of the classical sine 

function. We denote this solution by 𝑠𝑖𝑛𝑝𝑡  and its 

derivative (𝑠𝑖𝑛𝑝𝑡)
′

= 𝑐𝑜𝑠𝑝𝑡 . These functions are 

2𝜋𝑝 − periodic, where 𝜋𝑝 ≔
2𝜋

𝑝𝑠𝑖𝑛(
𝜋

𝑝
)

 and satisfy the 

half-linear Pythagorean identity  

|𝑠𝑖𝑛𝑝𝑡|
𝑝

+ |𝑐𝑜𝑠𝑝𝑡|
𝑝

= 1,          𝑡𝜖𝑅 .                              (2.2) 

Every solution of Equ. (2.1) is of the form 𝑥(𝑡) =
𝐶𝑠𝑖𝑛𝑝(𝑡 + 𝜑), where 𝐶, 𝜑 are real constants, that is it is 

bounded together with its derivative and periodic with the 

period 2𝜋𝑝. The function 𝑢 = Φ(𝑐𝑜𝑠𝑝𝑡) is a solution of 

the reciprocal equation to Equ. (2.1); 

 

 

(Φ−1(𝑢′)′)′ + (𝑝 − 1)𝑞−1Φ−1(𝑢) = 0, Φ−1(𝑢) = |𝑢|𝑞−2𝑢, 𝑞 =
𝑝

𝑝 − 1
                                                  

which is an equation of the form as Equ. (2.1), so the functions  𝑢 and  𝑢′ are also bounded. 
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Let 𝑥 be a nontrivial solution of Equ. (1.1) and we consider the half-linear Prüfer transformation which is introduced using the 

half-linear trigonometric functions  

𝑥(𝑡) = 𝜌(𝑡)𝑠𝑖𝑛𝑝𝜑(𝑡), 𝑥′(𝑡) =  𝑟1−𝑞(𝑡) 𝜌(𝑡)𝑐𝑜𝑠𝑝𝜑(𝑡),                                                                                                                       (2.3) 

where 𝜌(𝑡) = √|𝑥(𝑡)|𝑝 + 𝑟𝑞(𝑡)|𝑥′(𝑡)|𝑝𝑝
 and Prüfer angle 𝜑 be a continuos function defined at all points where 𝑥(𝑡) ≠ 0.  

Then  𝜑 satisfies the following differential equation 

𝜑′ =
1

𝑡
[𝑟1−𝑞(𝑡)|𝑐𝑜𝑠𝑝𝜑|

𝑝
− 𝛷(𝑐𝑜𝑠𝑝𝜑)𝑠𝑖𝑛𝑝𝜑 +

𝑡𝑝𝑐(𝑡)

𝑝 − 1
|𝑠𝑖𝑛𝑝𝜑|

𝑝
]                                                           

which plays the fundamental role in this paper. 

Next, we briefly mention about principal solution of non-oscilatory equation Equ. (1.1) [3], which is defined via the minimal 

solution of the associated Riccati equation  

𝑤′ + 𝑐(𝑡) + (𝑝 − 1)𝑟1−𝑞(𝑡)|𝑤|𝑞 = 0,                                                                                                                                                    (2.4) 

where 𝑤(𝑡) = 𝑟(𝑡)
𝛷(𝑥′(𝑡))

𝛷(𝑥(𝑡))
. Non-oscillation of Equ. (1.1) implies that there exists 𝑇 ∈ ℝ and a solution �̃� of Equ. (2.4) which 

is defined on some interval [𝑇�̃�,∞). �̃� called the minimal solution of among all solution of Eq. (2.4) and it satisfies the 

inequality 𝑤(𝑡) > �̃�(𝑡) where 𝑤 is any other solution of Equ. (2.4) which is defined on some interval [𝑇𝑤,∞) and then �̃� is 

the principal solution of Equ. (1.1) via the formula �̃�(𝑡)= 𝑟(𝑡)
𝛷(𝑥′(𝑡))

𝛷(𝑥(𝑡))
. 

3. MAIN RESULTS 

We need the following two lemmas for proving the main theorem of this paper. 

Lemma 1 Let 𝜑 = 𝜑1 + 𝜑2 + 𝜑3 + 𝑀, ( where 𝑀 is a suitable constant )be a solution of the equation  

𝜑′ = 𝜑′
1

+ 𝜑′
2

+ 𝜑′
3

           

where  

𝜑1
′ =

1

𝑡
𝑟1−𝑞(𝑡)|𝑐𝑜𝑠𝑝𝜑|

𝑝
,           

𝜑2
′ = −

1

𝑡
 𝛷(𝑐𝑜𝑠𝑝𝜑)𝑠𝑖𝑛𝑝𝜑                                                                                                                                  

𝜑3
′ =

𝑐(𝑡)

(𝑝 − 1)𝑡
|𝑠𝑖𝑛𝑝𝜑|

𝑝
      

with  𝑟, 𝑐 are positive defined functions which have different 𝛽1 , 𝛽2 −periods, respectively and  

𝜃(𝑡) = [
1

𝛽1
∫ 𝜑1(𝑠)𝑑𝑠

𝑡+𝛽1

𝑡

+
1

𝜉
∫ 𝜑2(𝑠)𝑑𝑠

𝑡+𝜉

𝑡

+
1

𝛽2
∫ 𝜑3(𝑠)𝑑𝑠

𝑡+𝛽2

𝑡

],                                                        

where 𝜉 is one of the periods 𝛽1 𝑜𝑟 𝛽2. Then 𝜃 is a solution of  

𝜃′(𝑡) =
1

𝑡
[𝑅|𝑐𝑜𝑠𝑝𝜃|

𝑝
− 𝛷(𝑐𝑜𝑠𝑝𝜃)𝑠𝑖𝑛𝑝𝜃 + 𝐶|𝑠𝑖𝑛𝑝𝜃|

𝑝
] + Ο (

1

𝑡2)                                                           

where 

𝑅 =
1

𝛽1
∫ 𝑟1−𝑞(𝜏)𝑑𝜏

𝛽1

0

, 𝐶 =
1

𝛽2(𝑃 − 1)
∫ 𝑐(𝜏)𝑑𝜏

𝛽2

0

                                                                              

and  𝜑(𝜏) − 𝜃(𝑡) = 𝜊(1)  𝑎𝑠 𝑡 → ∞ . 

 

Proof Taking derivative of 𝜃(𝑡), we have  
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𝜃′(𝑡) = [
1

𝛽1
∫ 𝜑′

1
(𝑠)𝑑𝑠

𝑡+𝛽1

𝑡

+
1

𝜉
∫ 𝜑′

2
(𝑠)𝑑𝑠

𝑡+𝜉

𝑡

+
1

𝛽2
∫ 𝜑′

3
(𝑠)𝑑𝑠

𝑡+𝛽2

𝑡

]                                                   

=
1

𝛽1
∫

1

𝑠
𝑟1−𝑞(𝑠)|𝑐𝑜𝑠𝑝𝜑(𝑠)|

𝑝
𝑑𝑠 −

1

𝜉
∫

1

𝑠
 𝛷 (𝑐𝑜𝑠𝑝𝜑(𝑠)) 𝑠𝑖𝑛𝑝𝜑(𝑠)𝑑𝑠

𝑡+𝜉

𝑡

𝑡+𝛽1

𝑡

               

+
1

𝛽2
∫

𝑐(𝑠)

(𝑝 − 1)𝑠
|𝑠𝑖𝑛𝑝𝜑(𝑠)|

𝑝
𝑑𝑠

𝑡+𝛽2

𝑡

 .                                                                             

Using integration by parts, we get 

𝜃′(𝑡) =
1

𝛽1𝑡
∫ 𝑟1−𝑞(𝜏)|𝑐𝑜𝑠𝑝𝜑(𝜏)|

𝑝
𝑑𝜏

𝑡+𝛽1

𝑡

−
1

𝜉𝑡
∫  𝛷 (𝑐𝑜𝑠𝑝𝜑(𝜏)) 𝑠𝑖𝑛𝑝𝜑(𝜏)𝑑𝜏

𝑡+𝜉

𝑡

                          

+
1

𝛽2𝑡
∫

𝑐(𝜏)

(𝑝 − 1)
|𝑠𝑖𝑛𝑝𝜑(𝜏)|

𝑝
𝑑𝜏 

𝑡+𝛽2

𝑡

                                                                                        

−
1

𝛽1
∫

1

𝑠2 ∫ 𝑟1−𝑞(𝜏)|𝑐𝑜𝑠𝑝𝜑(𝜏)|
𝑝

𝑑𝜏𝑑𝑠
𝑡+𝛽1

𝑠

𝑡+𝛽1

𝑡

                                                                 

+
1

𝜉
∫

1

𝑠2 ∫ 𝛷 (𝑐𝑜𝑠𝑝𝜑(𝜏)) 𝑠𝑖𝑛𝑝𝜑(𝜏)𝑑𝜏𝑑𝑠     
𝑡+𝜉

𝑠

 
𝑡+𝜉

𝑡

                                                             

−
1

𝛽2
∫

1

𝑠2 ∫
𝑐(𝜏)

(𝑝 − 1)
|𝑠𝑖𝑛𝑝𝜑(𝜏)|

𝑝
𝑑𝜏𝑑𝑠

𝑡+𝛽2

𝑠

 
𝑡+𝛽2

𝑡

.                                                                   

By using the fact, ∫ 𝑓(𝑠)𝑑𝑠 =
𝑡+𝑇

𝑡 ∫ 𝑓(𝑠)𝑑𝑠
𝑇

0
 for any 𝑇 −periodic function and half-linear Pythagorean identity, the expressions 

𝑟1−𝑞(𝜏)|𝑐𝑜𝑠𝑝𝜑(𝜏)|
𝑝

, 𝛷 (𝑐𝑜𝑠𝑝𝜑(𝜏)) 𝑠𝑖𝑛𝑝𝜑(𝜏),
𝑐(𝜏)

(𝑝 − 1)
|𝑠𝑖𝑛𝑝𝜑(𝜏)|

𝑝
                                                      

are bounded. Thus we get  

𝜃′(𝑡) =
1

𝛽1𝑡
∫ 𝑟1−𝑞(𝜏)|𝑐𝑜𝑠𝑝𝜑(𝜏)|

𝑝
𝑑𝜏 −

1

𝜉𝑡
∫  𝛷 (𝑐𝑜𝑠𝑝𝜑(𝜏)) 𝑠𝑖𝑛𝑝𝜑(𝜏)𝑑𝜏

𝑡+𝜉

𝑡

𝑡+𝛽1

𝑡

                         

+
1

𝛽2𝑡
∫

𝑐(𝜏)

(𝑝 − 1)
|𝑠𝑖𝑛𝑝𝜑(𝜏)|

𝑝
𝑑𝜏

𝑡+𝛽2

𝑡

+ Ο (
1

𝑡2).                                                                        

We can rewrite this equation as 

𝜃′(𝑡) =
1

𝛽1𝑡
∫ 𝑟1−𝑞(𝜏)|𝑐𝑜𝑠𝑝𝜃(𝑡)|

𝑝
𝑑𝜏 −

1

𝜉𝑡
∫  𝛷 (𝑐𝑜𝑠𝑝𝜃(𝑡)) 𝑠𝑖𝑛𝑝𝜃(𝑡)𝑑𝜏

𝑡+𝜉

𝑡

𝑡+𝛽1

𝑡

                            

+
1

𝛽2𝑡
∫

𝑐(𝜏)

(𝑝 − 1)
|𝑠𝑖𝑛𝑝𝜃(𝑡)|

𝑝
𝑑𝜏

𝑡+𝛽2

𝑡

                                                                                          

+
1

𝛽1𝑡
∫ 𝑟1−𝑞(𝜏){|𝑐𝑜𝑠𝑝𝜑(𝜏)|

𝑝
− |𝑐𝑜𝑠𝑝𝜃(𝑡)|

𝑝
}𝑑𝜏

𝑡+𝛽1

𝑡

                                                           

−
1

𝜉𝑡
∫ {𝛷 (𝑐𝑜𝑠𝑝𝜑(𝜏)) 𝑠𝑖𝑛𝑝𝜑(𝜏) −  𝛷 (𝑐𝑜𝑠𝑝𝜃(𝑡)) 𝑠𝑖𝑛𝑝𝜃(𝑡)}  𝑑𝜏

𝑡+𝜉

𝑡

                            

+
1

𝛽2𝑡
∫

𝑐(𝜏)

(𝑝 − 1)
{|𝑠𝑖𝑛𝑝𝜑(𝜏)|

𝑝
− |𝑠𝑖𝑛𝑝𝜃(𝑡)|

𝑝
}𝑑𝜏

𝑡+𝛽2

𝑡

+ Ο (
1

𝑡2).                                  

By using the definition of 𝑅 𝑎𝑛𝑑 𝐶, we get 

𝜃′(𝑡) =
1

𝑡
[𝑅|𝑐𝑜𝑠𝑝𝜃(𝑡)|

𝑝
− 𝛷 (𝑐𝑜𝑠𝑝𝜃(𝑡)) 𝑠𝑖𝑛𝑝𝜃(𝑡) + 𝐶|𝑠𝑖𝑛𝑝𝜃(𝑡)|

𝑝
]                                                   
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+
1

𝛽1𝑡
∫ 𝑟1−𝑞(𝜏){|𝑐𝑜𝑠𝑝𝜑(𝜏)|

𝑝
− |𝑐𝑜𝑠𝑝𝜃(𝑡)|

𝑝
}𝑑𝜏

𝑡+𝛽1

𝑡

                                                          

−
1

𝜉𝑡
∫ {𝛷 (𝑐𝑜𝑠𝑝𝜑(𝜏)) 𝑠𝑖𝑛𝑝𝜑(𝜏) −  𝛷 (𝑐𝑜𝑠𝑝𝜃(𝑡)) 𝑠𝑖𝑛𝑝𝜃(𝑡)}  𝑑𝜏

𝑡+𝜉

𝑡

                          

+
1

𝛽2𝑡
∫

𝑐(𝜏)

(𝑝 − 1)
{|𝑠𝑖𝑛𝑝𝜑(𝜏)|

𝑝
− |𝑠𝑖𝑛𝑝𝜃(𝑡)|

𝑝
}𝑑𝜏

𝑡+𝛽2

𝑡

+ Ο (
1

𝑡2).                                      

And using the half-linear trigonometric functions, we have  

||𝑐𝑜𝑠𝑝𝜑(𝜏)|
𝑝

− |𝑐𝑜𝑠𝑝𝜃(𝑡)|
𝑝

| ≤ 𝑝 |∫ |𝛷(𝑐𝑜𝑠𝑝𝑠)(𝑐𝑜𝑠𝑝𝑠)′|𝑑𝑠
𝜑(𝜏)

𝜃(𝑡)

| ≤ (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)|𝜑(𝜏) − 𝜃(𝑡)|,                 

|𝛷 (𝑐𝑜𝑠𝑝𝜑(𝜏)) 𝑠𝑖𝑛𝑝𝜑(𝜏) −  𝛷 (𝑐𝑜𝑠𝑝𝜃(𝑡)) 𝑠𝑖𝑛𝑝𝜃(𝑡)| ≤ |∫ |[𝛷(𝑐𝑜𝑠𝑝𝑠)(𝑠𝑖𝑛𝑝𝑠)]′|𝑑𝑠
𝜑(𝜏)

𝜃(𝑡)

|                 

                                                                         ≤ (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)|𝜑(𝜏) − 𝜃(𝑡)|              

and  

||𝑠𝑖𝑛𝑝𝜑(𝜏)|
𝑝

− |𝑠𝑖𝑛𝑝𝜃(𝑡)|
𝑝

| ≤ (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)|𝜑(𝜏) − 𝜃(𝑡)|.                                                                                   

By the mean value theorem we can write 

𝜃(𝑡) = 𝜑1(𝑡1) + 𝜑2(𝑡2) + 𝜑3(𝑡3)                                                                                                                    

for 𝑡1 ∈ [𝑡, 𝑡 + 𝛽1], 𝑡2 ∈ [𝑡, 𝑡 + 𝜉], 𝑡3 ∈ [𝑡, 𝑡 + 𝛽2]. Thus  

|𝜑(𝜏) − 𝜃(𝑡)| ≤ |𝜑1(𝜏) − 𝜑1(𝑡1)| + |𝜑2(𝜏) − 𝜑2(𝑡2)| + |𝜑3(𝜏) − 𝜑3(𝑡3)| ≤ 𝜊 (
1

𝑡
).                       

This implies that  

|𝜑(𝜏) − 𝜃(𝑡)| ≤ 𝜊 (
1

𝑡
)  𝑎𝑠 𝑡 → ∞ , 𝜑(𝜏) − 𝜃(𝑡) = 𝜊(1).                                                                     

Hence we get  

𝜃′(𝑡) =
1

𝑡
[𝑅|𝑐𝑜𝑠𝑝𝜃(𝑡)|

𝑝
− 𝛷 (𝑐𝑜𝑠𝑝𝜃(𝑡)) 𝑠𝑖𝑛𝑝𝜃(𝑡) + 𝐶|𝑠𝑖𝑛𝑝𝜃(𝑡)|

𝑝
] + Ο (

1

𝑡2) .                                 

The computation of oscillation constant in Equ. (1.5) is based on the following lemma. 

Lemma 2 Suppose that 𝜃 is a solution of the differential equation  

𝜃′(𝑡) =
1

𝑡
[𝑅|𝑐𝑜𝑠𝑝𝜃(𝑡)|

𝑝
− 𝛷 (𝑐𝑜𝑠𝑝𝜃(𝑡)) 𝑠𝑖𝑛𝑝𝜃(𝑡) + 𝐶|𝑠𝑖𝑛𝑝𝜃(𝑡)|

𝑝
] + ο (

1

𝑡
),                                    

where 𝑅, 𝐶 are as in Lemma 1. 

If (∫ 𝑟1−𝑞(𝑡)𝑑𝑡
𝛽1

0
)

𝑝−1

∫ 𝑐(𝑡)𝑑𝑡
𝛽2

0
> 𝛽1

𝑝−1
𝛽2𝛾𝑝, then  𝜃(𝑡) → ∞ 𝑎𝑠 𝑡 → ∞. 

If (∫ 𝑟1−𝑞(𝑡)𝑑𝑡
𝛽1

0
)

𝑝−1

∫ 𝑐(𝑡)𝑑𝑡
𝛽2

0
< 𝛽1

𝑝−1
𝛽2𝛾𝑝, then 𝜃(𝑡) is bounded for large t. 

 

Proof Consider the extremal problem  

𝑅|𝑥|𝑝 − Φ(𝑥)𝑦 + 𝐶|𝑦|𝑝 → min(max) , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |𝑥|𝑝 + |𝑦|𝑝 = 1.                                                                                 (3.1) 

Using method of the Lagrange multipliers, we obtain Lagrange function 

𝐿(𝑥, 𝑦, 𝜆) = 𝑅|𝑥|𝑝 − Φ(𝑥)𝑦 + 𝐶|𝑦|𝑝 − 𝜆(|𝑥|𝑝 + |𝑦|𝑝 − 1)                                                                      

which leads to  
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𝐿𝑥 = |𝑥|𝑝−2[𝑝(𝑅 − 𝜆)𝑥 − (𝑝 − 1)𝑦] = 0                                                                                                                      (3.2) 

and  

𝐿𝑦 = −Φ(𝑥) + 𝑝Φ(𝑦)(𝐶 − 𝜆) = 0                                                                                                                                    (3.3) 

together with the restriction |𝑥|𝑝 + |𝑦|𝑝 = 1. 

Applying the function Φ−1 to Equ. (3.2) and Equ. (3.3), we get  

𝑝(𝑅 − 𝜆)𝑥 − (𝑝 − 1)𝑦 = 0                                                                                                                                

−𝑥 + Φ−1(𝑝)Φ−1(𝐶 − 𝜆)𝑦 = 0                                                                                                                       

Hence 𝜆 must be a root of the equation  

𝛷(𝜆 − 𝑅)(𝜆 − 𝐶) −
1

𝑝
(

𝑝 − 1

𝑝
)

𝑝−1

.                                                                                                                                       (3.4) 

Denote  

𝐹(𝜆) = 𝛷(𝜆 − 𝑅)(𝜆 − 𝐶),   �̃� =
1

𝑝
(

𝑝 − 1

𝑝
)

𝑝−1

                                                                                              

we have 

𝑑

𝑑𝜆
𝐹(𝜆) = |𝜆 − 𝑅|𝑝−2[(𝑝 − 1)(𝜆 − 𝐶) + (𝜆 − 𝑅)].                                                                                    

Hence 𝜆∗ =
1

𝑝
𝑅 +

𝑝−1

𝑝
𝐶 is minimum point and 𝐹(𝜆∗) = −�̃�|𝑅 − 𝐶|𝑝 < 0 is minimum value. This means that Equ. (3.4) has 

two real roots 𝜆𝑚𝑖𝑛 < 𝜆∗ < 𝜆𝑚𝑎𝑥. Moreover, 

𝛷(𝑅)𝐶 = �̃� ⟺ 𝜆𝑚𝑖𝑛 = 0                                                                                                                                    

Φ(𝑅)𝐶 > �̃� ⟺ 𝜆𝑚𝑎𝑥 > 0                                                                                                                                 

Φ(𝑅)𝐶 < �̃� ⟺ 𝜆𝑚𝑖𝑛 < 0 < 𝜆𝑚𝑎𝑥.                                                                                                                  

Multiplying Equ. (3.2) by x, Equ. (3.3) by y and adding the obtained equations, we get  

𝑅|𝑥|𝑝 − 𝛷(𝑥)𝑦 + 𝐶|𝑦|𝑝 = 𝜆.                                                                                                                             

Hence ((𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛), 𝜆𝑚𝑖𝑛) 𝑎𝑛𝑑 ((𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥), 𝜆𝑚𝑎𝑥)  are extremum for the function in Equ. (3.1). Let 𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑘𝑠  be 

determined by 

𝑐𝑜𝑠 𝜃𝑚𝑖𝑛 = 𝑥𝑚𝑖𝑛,  𝑠𝑖𝑛 𝜃𝑚𝑖𝑛 = 𝑦𝑚𝑖𝑛                                                                                                                  

𝑐𝑜𝑠 𝜃𝑚𝑎𝑥 = 𝑥𝑚𝑎𝑥,  𝑠𝑖𝑛 𝜃𝑚𝑎𝑥 = 𝑦𝑚𝑎𝑥.                                                                                                        

If 𝜆𝑚𝑖𝑛 > 0, then for large t (when the term 𝜊 (
1

𝑡
) is less than 

𝜆𝑚𝑖𝑛

2
) we have 𝜃′(𝑡) ≥

𝜆𝑚𝑖𝑛

2
. Hence if (𝑝 − 1)𝛷(𝑅)𝐶 > 𝛾𝑃 then 

 𝜃(𝑡) → ∞ 𝑎𝑠 𝑡 → ∞.  

If 𝜆𝑚𝑖𝑛 < 0 < 𝜆𝑚𝑎𝑥 , 𝜃′(𝑡) > 0 when 𝜃(𝑡)  is in a right neighborhood of  𝜃𝑚𝑎𝑥  and 𝜃′(𝑡) < 0  when  𝜃(𝑡)  is in a left 

neighborhood of  𝜃𝑚𝑖𝑛 for 𝜃𝑚𝑎𝑥 < 𝜃𝑚𝑖𝑛. Hence if (𝑝 − 1)𝛷(𝑅)𝐶 > 𝛾𝑃, then 𝜃(𝑡) is bounded for large 𝑡. 

The main result of this paper as follows. 

Theorem 1 Let 𝑟 𝑎𝑛𝑑 𝑐 be positive defined functions which have different 𝛽1, 𝛽2  periods respectively in Equ. (1.5). Then Equ. 

(1.5) is non-oscillatory if and only  

 𝛾 < 𝛾∗ =
𝛽1

𝑝−1
𝛽2𝛾𝑝

(∫ 𝑟1−𝑞(𝑡)𝑑𝑡
𝛽1

0
)

𝑝−1

∫ 𝑐(𝑡)𝑑𝑡
𝛽2

0

                                                                                                      

where 𝛾𝑝 = (
𝑝−1

𝑝
)

𝑝
. 
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Proof Let 𝑥 is the nontrivial solution of Equ. (1.5) and 𝜑 is the Prüfer angle of Equ. (1.5) given by Equ. (2.3). Then 𝜑 is the 

solution of 

𝜑′ =
1

𝑡
[𝑟1−𝑞(𝑡)|𝑐𝑜𝑠𝑝𝜑|

𝑝
− 𝛷(𝑐𝑜𝑠𝑝𝜑)𝑠𝑖𝑛𝑝𝜑 +

𝛾𝑐(𝑡)

𝑝 − 1
|𝑠𝑖𝑛𝑝𝜑|

𝑝
].                                                           

By the help of Lemma 1the function 𝜃 satisfies the equation 

𝜃′(𝑡) =
1

𝑡
[𝑅|𝑐𝑜𝑠𝑝𝜃(𝑡)|

𝑝
− 𝛷 (𝑐𝑜𝑠𝑝𝜃(𝑡)) 𝑠𝑖𝑛𝑝𝜃(𝑡) + 𝛾𝐶|𝑠𝑖𝑛𝑝𝜃(𝑡)|

𝑝
] + 𝜊 (

1

𝑡
),                                 

where 𝑅, 𝐶 is as given in Lemma 1. 

Again by Lemma 1 𝜑 and 𝜃 are at the same time bounded or unbounded. By the help of Lemma 2 if 

𝛾 < 𝛾∗,                                                                                                                                                                     

then 𝜃(𝑡) is bounded for large 𝑡  and 𝜑 is bounded, then Equ. (1.5) is non-oscillatory and if  

𝛾 > 𝛾∗,                                                                                                                                                                     

then  𝜃(𝑡) → ∞ 𝑎𝑠 𝑡 → ∞ and 𝜑 is unbounded, then Equ. (1.5) is oscillatory. 

Remark 1 If the periods of the functions 𝑟, 𝑐 in Equ. (1.5) are coincide with 𝛼 −period, which is given in [4] then our 

oscillation constants 𝛾∗ reduce to 𝛾𝑟𝑐 is given in [4] and the main result complies with the result given by [4]. 

 

Example 1 Consider the equation Equ (1.5) for  𝑝 = 2, 𝑟(𝑡) =
1

2+𝑐𝑜𝑠6𝑡
  𝑎𝑛𝑑  𝑐(𝑡) = 2 + 𝑐𝑜𝑠8𝑡  

((
1

2 + 𝑐𝑜𝑠6𝑡
) 𝑥′)

′

+ 𝛾
2 + 𝑐𝑜𝑠8𝑡

𝑡2 𝑥 = 0.                                                                                                                                           (3.5) 

In this case 𝑟(𝑡) is positive defined for all 𝑡 ∈ ℝ and 
𝜋

3
  periodic function and 𝑐(𝑡) is positive defined for all 𝑡 ∈ ℝ and  

𝜋

4
 

periodic function. Thus we can apply Theorem 1 and we obtain an oscillation constant for Equ. (3.5) 

𝛾∗ =

𝜋
4

𝜋
3

1
4

(∫ (2 + 𝑐𝑜𝑠6𝑡)𝑑𝑡
𝜋
3

0
) ∫ (2 + 𝑐𝑜𝑠8𝑡 )𝑑𝑡

𝜋
4

0

=
1

16
                                                                                    

and Equ. (3.5) is non-oscillatory if and only if 𝛾 <
1

16
. 

 

Remark 2 It is well known that if 𝑓 is any periodic function with period P, then 𝑘𝑃 (𝑘 ∈ ℕ) is also period of the same 

function. If we use this fact for the functions 𝑟(𝑡) 𝑎𝑛𝑑 𝑐(𝑡), we can choose these functions having 𝜋-period. In this case we can 

apply Theorem 3. 1 in [4] to the above example and we get oscillation constant as 

𝛾𝑟𝑐 =
𝛼𝑝𝛾𝑝

(∫ 𝑟1−𝑞(𝑡)𝑑𝑡
𝛼

0
)

𝑝−1
∫ 𝑐(𝑡)𝑑𝑡

𝛼

0

=
1

16
                                                                                                      

and Equ. (1.5)is non-oscillatoryif and only if 𝛾 <
1

16
. 

Example 2 Consider the linear equation  

((1 − 𝜀)𝑥′)
′

+
1 + 𝜀

8𝑡2 𝑥 = 0                                                                                                                                                          (3.6) 

for 𝑝 = 2, 𝑟(𝑡) = 1 − 𝜀, 𝑐(𝑡) = 1 + 𝜀 and 𝛾 =
1

8
 in Equ (1.5). This equation is non-oscillatory when 𝜀 > 0 sufficiently small 

(oscillation constant in the Equ. (1.3) is 𝛾 =
1 

4
). Now, consider the equation  

((1 + 𝜀𝑠𝑖𝑛𝑡)𝑥′)
′

+
1 + 𝑓(𝑡)

8𝑡2 𝑥 = 0                                                                                                                                       (3.7) 
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with small 𝜀 > 0 and 𝑓 periodic with period  √71, satisfying |𝑓(𝑡)| < 𝜀. Under assumptions on 𝑓, Equ. (3.7) is a Sturmian 

minorant of Equ. (3.6), since 

1 + 𝑓(𝑡) < 1 + 𝜀,    1 + 𝜀𝑠𝑖𝑛𝑡 ≥ 1 − 𝜀.                                                                                                          

i.e., it is also non-oscillation. Equ. (3.7) is a particular case of Equ. (1.5) with 

 𝑝 = 2, 𝑟(𝑡) = 1 + 𝜀𝑠𝑖𝑛𝑡, 𝑐(𝑡) = 1 + 𝑓(𝑡), 𝛾 =
1

8
, 𝛽1 = 2𝜋, 𝛽2 = √71   

and satisfying all conditions of Theorem 1. Thus we can apply Theorem 1 and we obtain an oscillation constant for Equ. (3.7) 

 𝛾∗ →
1

4
    𝑎𝑠 𝜀 → 0+.                                                                                                                                                              

 Consequently for 𝜀 > 0 sufficiently small we have 𝛾 =
1

8
< 𝛾∗ =

1

4
  which means Equ. (3.7) is non-oscillatory by Theorem 1. 

But it is well known that 𝑙𝑐𝑚 (2𝜋, √71) is not defined. Thus, we can not apply the Theorem 3. 1 in [4] for Equ. (3.7). 

The important point to note here is that the recent results obtained by P. Hasil in [7] and O. Dosly and P. Hasil in [4] and the 

others do not apply to Equ. (1.5) with periodic coefficients having different periods, when the least common multiple of these 

periods not defined. 
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