Fixed Point Theorem Through Ω-distance of Suzuki Type Contraction Condition

K. ABODAYEH1,*, W. SHATANAWI1,3, A. BATAIHAH2

1Prince Sultan University, Department of Mathematics and General Courses, Riyadh, SAUDI ARABIA
2Irbid National University, Faculty of Science, Department of Mathematics, Irbid, JORDAN
3Hashemite University, Faculty of Science, Department of Mathematics, Zarqa, JORDAN

Received: 02/01/2016 Accepted: 27/01/2016

ABSTRACT
In this article, we utilize the notion of Ω-distance in the sense of Saadati et al [R. Saadati, S.M. Vaezpour, P. Vetro and B.E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Mathematical and Computer Modeling, 52, 797-801, 2010] to introduce and prove some fixed point results of self-mapping under contraction conditions of the form Ω-Suzuki-contractions.
Key Words: Ω-Distance, Fixed Point Theory, G-Metric Space.

1. INTRODUCTION
G-metric space was introduced by Mustafa and Sims [1] in 2006, which is a generalization of metric space. Since 2006, many researchers have worked on G-metric spaces; see for example [2]-[10].

Samet et al in [11] and [12] proved that many results in G-metric spaces can be derived from known results of the corresponding usual metric space. Moreover, the notion of Ω-distance related to a complete G-metric space was considered by Saadati et.al. [13] in 2010.

Recently, many researchers studied several fixed point results using Ω-distance mappings; see for example, [14]-[17]. It is worth mentioning that the interesting method of Samet et. al. [11] and [12] doesn’t work in the fixed point results involving Ω-distance.

In this paper, we prove new results of fixed point theorem using the map Ω in a complete G-metric space under contractive conditions of the form Ω-Suzuki-contraction.

*Corresponding author, e-mail: kamal@psu.edu.sa
Definition 1.1. [1]. Let X be a nonempty set, and let $G : X \times X \times X \to \mathbb{R}^+$ be a function that satisfies the following conditions:

(G1) $G(x, y, z) = 0$ if $x = y = z$;
(G2) $G(x, y, z) > 0$ for all $x, y \in X$ with $x \neq y$;
(G3) $G(x, y, z) \leq G(x, z, y)$ for all $x, y, z \in X$ with $x \neq z$;
(G4) $G(x, y, z) = G(p(x, y, z))$, for any permutation of x, y, z;
(G5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ for all $x, y, z, a \in X$.

Then the function G is called a generalized metric space, or more specifically G-metric on X, and the pair (X, G) is called a G-metric space.

The notion of convergence and Cauchy sequences in the setting of a G-metric space are given as follows:

Definition 1.2. [1]. Let (X, G) be a G-metric space, and let (x_n) be a sequence of points of X. We say that (x_n) is G-Cauchy if for every $\varepsilon > 0$, there exists $k \in \mathbb{N}$ such that $G(x_n, x_m, x_k) < \varepsilon$ for all $n, m \geq k$.

Definition 1.3. [1]. Let (X, G) be a G-metric space. A sequence (x_n) in X is said to be G-Cauchy if for every $\varepsilon > 0$, there exists $k \in \mathbb{N}$ such that $G(x_n, x_m, x_k) < \varepsilon$ for all $n, m, k \geq k$.

Definition 1.4. [5]. A G-metric space (X, G) is said to be G-complete or a complete G-metric space if every G-Cauchy sequence in (X, G) is G-convergent in (X, G).

In 2010, Saadati et al. [13] introduced the notion of Ω-distance related to a complete G-metric space and proved many results.

Definition 1.5. [13]. Let (X, G) be a G-metric space. Then a function $\Omega : X \times X \times X \to [0, \infty)$ is called an Ω-distance on X if the following conditions are satisfied:

(a) $\Omega(x, y, z) \leq \Omega(x, a, a) + \Omega(a, y, z)$ for all $x, y, z, a \in X$;
(b) for any $x, y \in X$, the functions $\Omega(x, \cdot, y) : X \to [0, \infty)$ are lower semi continuous;
(c) for each $\varepsilon > 0$, there exists $\delta > 0$ such that if $\Omega(x, a, a) \leq \delta$ and $\Omega(a, y, z) \leq \delta$, then $\Omega(x, y, z) \leq \varepsilon$.

Definition 1.6. [13]. Let (X, G) be a G-metric space and Ω be an Ω-distance on X. Then we say that X is Ω-bounded if there exists $M > 0$ such that $\Omega(x, y, z) \leq M$ for all $x, y, z \in X$.

The following lemma plays an important role in the development of the results in this article.

Lemma 1.1. [13]. Let X be a metric space with metric G and Ω be an Ω-distance on X. Let $(x_n), (y_n)$ be sequences in X and $(a_n), (b_n)$ be sequences in $[0, \infty)$ converging to zero. Then for all $x, y, z, a \in X$, we have the following:

(1) If $\Omega(y_n, x_n, x_0) \leq a_0$ and $\Omega(x_n, y, z) \leq b_0$ for $n \in \mathbb{N}$, then $\Omega(x_n, y, z) \leq s$ and hence $y_n \to z$;
(2) If $\Omega(y_n, x_n, x_0) \leq a_0$ and $\Omega(x_n, y_m, z) \leq b_0$ for all $m > n \in \mathbb{N}$, then $\Omega(y_n, y_m, z) \to 0$ and hence $y_n \to z$;
(3) If $\Omega(x_n, x_m, x_0) \leq a_0$ then the sequence (x_n) is a G-Cauchy sequence, for all $m, n, l \in \mathbb{N}$ with $n \leq m \leq l$;
(4) If $\Omega(x_n, a, a) \leq a_0$ for any $n \in \mathbb{N}$, then (x_n) is a G-Cauchy sequence.

2. MAIN RESULT

Definition 2.7. [19] A nondecreasing continuous function $\varphi : [0, \infty) \to [0, \infty)$ is called an altering distance function if the following condition holds: $\varphi(t) = 0$ if and only if $t = 0$.

Definition 2.8. A mapping $T : X \to X$ of a G-metric space (X, G) is called an Ω-Suzuki contraction if there exists $k \in (0, 1)$ and an altering distance function φ such that for all $x, y, z \in X$ and $p, q \in \mathbb{N}$ with $q \geq p$, the following condition holds

if $(1 - k) \Omega(x, T^p(x), T^q(x)) \leq \Omega(x, y, z)$, then $\varphi(\Omega(x, y, z)) \leq k \varphi(\Omega(x, y, z))$.

Theorem 2.2. Let (X, G) be a complete G-metric space and Ω be an Ω-distance on X such that X is Ω-bounded. Let $T : X \to X$ be an Ω-Suzuki-contraction mapping that satisfies the following condition:

for all $u \in X$ if $Tu = u$, then $\inf\{\Omega(u, x, u) : x \in X\} > 0$. (2.1)

Then T has a fixed point in X. Moreover, for any fixed point $x \in X$ of T, we have $\Omega(x, x, x) = 0$.

Proof. Let $x_0 \in X$ and define a sequence (x_n) in X inductively by setting $x_{n+1} = Tx_n$, $n \in \mathbb{N}$.

For $p = q = 1$, since $(1 - k) \Omega(x, Tx, Tx) \leq \Omega(x, Tx, Tx)$, we have $\varphi(\Omega(Tx, T^2x, T^2x)) \leq k \varphi(\Omega(x, Tx, Tx))$.

Substituting $x = x_{n-1}$ in the inequality (2.2), gives us

$\varphi(\Omega(x_n, x_{n+1}, x_{n+1})) = \varphi(\Omega(Tx_{n-1}, Tx_n, x_n)) \leq k \varphi(\Omega(x_{n-1}, x_{n-1}, x_{n-1}))$. (2.3)

Since $k < 1$ and φ is an altering distance function, the sequence $(\varphi(\Omega(x_n, x_{n+1}, x_{n+1}))) : n \in \mathbb{N}$ is a non-increasing sequence of nonnegative real numbers. Therefore, there is $r \geq 0$ such that

$\lim_{n \to \infty} \Omega(x_n, x_{n+1}, x_{n+1}) = r$.

Taking the limit as $n \to \infty$ in 2.3, implies that $r \leq k \varphi r$ and thus $r = 0$, since $k < 1$. Hence

$\lim_{n \to \infty} \Omega(x_n, x_{n+1}, x_{n+1}) = 0$. (2.4)

Moreover, for $p = 1$, and $q \geq 1$, since $(1 - k)\Omega(x, Tx, T^qTx) \leq \Omega(x, Tx, T^qTx)$ holds for every $x \in X$, then

$\varphi(\Omega(Tx, T^2x, T^{q+1}x)) \leq k \varphi(\Omega(x, Tx, T^qTx))$. (2.5)

For $n, s \in \mathbb{N}$ with $s \geq 1$, substituting $x = x_{n-1}$ in (2.5), implies that
φΩ((x_n, x_{n+1}, x_{n+2}) = φΩ(T_{n-1} T_n T_{n+1}) ≤ k φΩ(x_{n-1}, x_n, x_{n+1}).

Since k < 1 and φ is an altering distance function, the sequence (Ω(x_n, x_{n+1}, x_{n+2}); n ∈ N) is a non-increasing sequence of nonnegative real numbers. Therefore, there is \(r \geq 0 \) such that

\[
\lim_{n \to \infty} \Omega(x_n, x_{n+1}, x_{n+2}) = r.
\]

Applying the limit as \(n \to \infty \) to the inequality 2.6, gives us \(φr \leq k φr \). Since \(k < 1 \), we have \(r = 0 \) and hence

\[
\lim_{n \to \infty} \Omega(x_n, x_{n+1}, x_{n+2}) = 0, \quad \forall s \geq 1. \tag{2.7}
\]

Considering the Definition 1.5, implies that

\[
\Omega(x_n, x_m, x_l) ≤ \Omega(x_n, x_{n+1}, x_{n+1}) + \Omega(x_{n+1}, x_{n+2}, x_{n+2}) + \cdots + \Omega(x_{m-1}, x_m, x_l),
\]

for all \(l, m, n \in \mathbb{N} \) with \(l ≥ m ≥ n, m = n + s \) and \(l = m + t \).

By taking the limit of the above inequality as \(n \to \infty \), we get

\[
\lim_{n, m, l \to \infty} \Omega(x_n, x_m, x_l) = 0.
\]

Lemma 1.1 implies that \((x_n) \) is a G-Cauchy sequence and hence \((x_n) \) converges to an element \(u \in X \). For all \(ε > 0 \), since \((x_n) \) is a G-Cauchy sequence, there exists \(N \in \mathbb{N} \) such that \(\Omega(x_n, x_m) < ε \), for all \(n, m, l ≥ N \).

\[
\lim_{l \to \infty} \inf \Omega(x_n, x_m, x_l) ≤ ε, \quad \forall \, n, \, m, \, n ≥ N.
\]

The lower semi-continuity of \(\Omega \) implies that

\[
\Omega(x_n, x_m, u) \leq \lim_{l \to \infty} \inf \Omega(x_n, x_m, x_l) ≤ ε, \quad \forall \, n, \, m, \, n ≥ N.
\]

Considering \(m = n + 1 \) in (2.8), gives us \(\Omega(x_n, x_{n+1}, u) ≤ ε, \quad \forall \, n, \, m, \, l ≥ N \).

Assume that \(Tu ≠ u \). Then 2.1 implies that

\[
0 < \inf \{ \Omega(x, T x, u) : x \in X \} ≤ \inf \{ \Omega(x, x_{n+1}, u) : n ≥ N \} ≤ ε, \quad \forall \, ε > 0 \text{ which is a contradiction.}
\]

Then \(Tu = u \). Let \(z = T z \). Then by (2.2), we have

\[
Ω(z, z, z) = Ω(T z, T^2 z, T^3 z) ≤ k φΩ(z, T z, T z) = k φΩ(z, z, z).
\]

Since \(k < 1 \) and \(φ \) is an altering distance function, we have \(Ω(z, z, z) = 0 \).

Definition 2.9. A mapping \(T : X → X \) of a G-metric space \((X, G)\) is called a generalized \(Ω \)-Suzuki-contraction if there exists \(k \in (0, 1) \) and an altering distance function \(φ \) such that the following condition holds:

If for all \(p, q \in \mathbb{N} \) with \(q ≥ p \),

\[
(1 - k) \, Ω(x, T^p x, T^q x) ≤ Ω(x, y, x)
\]

then we have

\[
Ω(T x, T y, T z) ≤ k \max \{ Ω(x, T x, T x), Ω(y, T y, T y), Ω(z, T z, T z) \}
\]

for all \(x, y, z \in X \).

Lemma 2.3. Let \(T : X → X \) be a generalized \(Ω \)-Suzuki-contraction. Then

\[
Ω(T x, T^2 x, T^3 x) ≤ k Ω(x, T x, T x) \quad \forall \, x \in X. \tag{2.9}
\]

Proof. Assume \(p = q = 1 \). Since \((1 - k)\Omega(x, T x, T x) ≤ Ω(x, T x, T x) \) holds for every \(x \in X \), then we have

If \(\max \{ Ω(x, T x, T x), Ω(x, T^2 x, T x) \} = Ω(x, T^2 x, T x) \), then \(Ω(x, T^2 x, T x) ≤ k Ω(x, T^2 x, T^2 x) \) which is a contradiction, since \(k < 1 \). Therefore, \(\max \{ Ω(x, T x, T x), Ω(x, T^2 x, T^2 x) \} = Ω(x, T x, T x) \) and hence

\[
Ω(T x, T^2 x, T^3 x) ≤ k Ω(x, T x, T x) \quad \forall \, x \in X. \tag{2.10}
\]

Lemma 2.4. Let \(q ≥ 1 \) and \(T : X → X \) be a generalized \(Ω \)-Suzuki-contraction. Then

\[
Ω(T^q x, T^{q+1} x, T^{q+1} x) ≤ k^q \, Ω(x, T x, T x) \quad \forall \, x \in X. \tag{2.11}
\]

Proof. By substituting \(x \) in Lemma (2.3) by \(T^q x \), we get

\[
Ω(T^q x, T^{q+1} x, T^{q+1} x) = Ω(T (T^{q-1} x), T (T^{q-1} x), T (T^{q-1} x)) ≤ k \, Ω(T^{q-1} x, T^q x, T^q x)
\]

Thus

\[
Ω(T^q x, T^{q+1} x, T^{q+1} x) ≤ k^q \, Ω(x, T x, T x). \tag{2.12}
\]

Theorem 2.5. Let \((X, G)\) be a complete G-metric space and \(Ω \) be an \(Ω \)-distance on \(X \) such that \(X \) is \(Ω \)-bounded. Let \(T \) be a self-mapping on \(X \) that satisfies the following conditions:

1. \(T \) is a generalized \(Ω \)-Suzuki-contraction;
2. if for all \(u \in X \), \(Tu ≠ u \), then

\[
\inf \{ Ω(x, T x, u) : x \in X \} > 0.
\]

Then \(T \) has a fixed point in \(X \).

Proof. Let \(x_0 \in X \) and define a sequence \(\{ x_n \} \) in \(X \) inductively by taking \(x_n = T x_{n-1} \) for \(n \in \mathbb{N} \).

Substitute \(x = x_{n-1} \) in (2.10), implies that

\[
Ω(x_n, x_{n+1}, x_{n+1}) = Ω(Tx_{n-1}, Tx_n, Tx_n) ≤ k \, Ω(x_{n-1}, x_n, x_{n+1})
\]

Thus

\[
Ω(T^q x, T^{q+1} x, T^{q+1} x) ≤ k^q \, Ω(x, T x, T x). \tag{2.11}
\]

Since \(X \) is \(Ω \)-bounded, there exists \(M > 0 \) such that \(Ω(x, y, z) ≤ M \) for all \(x, y, z \in X \). Hence
\[\Omega(x_n, x_{n+1}, x_{n+1}) \leq k^{2M}. \]

By taking the limit as \(n \to \infty \) for both sides, we get

\[\lim_{n \to \infty} \Omega(x_n, x_{n+1}, x_{n+1}) = 0. \tag{2.13} \]

since \(k < 1 \). Also, for \(p = 1 \), and \(q \geq 1 \), since \((1-k)\Omega(x, Tx, T^q x) \leq \Omega(x, Tx, T^q x) \) holds for every \(x \in X \), we have

\[
\Omega(Tx, T^{2}x, T^{q+1}x) \leq k \max \{ \Omega(x, Tx, Tx), \Omega(Tx, T^{2}x, T^{q}x), \Omega(T^{q}x, T^{q+1}x, T^{q+1}x) \} = k \max \{ \Omega(x, Tx, Tx), \Omega(T^{q}x, T^{q+1}x, T^{q+1}x) \}.
\]

But from 2.11, we have \(\Omega(T^{q}x, T^{q+1}x, T^{q+1}x) \leq k \Omega(Tx, Tx, Tx) \) and thus,

\[\Omega(Tx, T^{2}x, T^{q+1}x) \leq k \Omega(x, Tx, Tx). \tag{2.14} \]

For \(n, s \in \mathbb{N} \) with \(s \geq 1 \) substitute \(x = x_{n-s-1} \) in (2.14), implies that

\[\Omega(x_n, x_{n+s}, x_{n+s}) = \Omega(Tx_{n-s-1}, T^{2}x_{n-s-1}, T^{q}x_{n+s-1}) \leq k \Omega(x_{n-s-1}, x_{n+s}). \]

Taking the limit as \(n \to \infty \) for both sides and using 2.13, we get

\[\lim_{n \to \infty} \Omega(x_n, x_{n+1}, x_{n+s}) = 0. \tag{2.15} \]

The Definition 1.5 implies that

\[\Omega(x_n, x_{m}, x_{l}) \leq \Omega(x_n, x_{m}, x_{l}) + \Omega(x_{m}, x_{l}, x_{m}) \]

for all \(l, m, k \in \mathbb{N} \) with \(l \geq m \geq n, m = n+s \) and \(l = m+t \). Applying the limit as \(n \to \infty \) and using 2.13 and 2.15, we get that

\[\lim_{n, m, k \to \infty} \Omega(x_n, x_{m}, x_{l}) = 0. \]

Lemma 1.1 implies that \((x_n) \) is a G-Cauchy sequence and so \((x_n) \) converges to some \(u \in X \). Since \((x_n) \) is a G-Cauchy sequence, then for all \(\varepsilon > 0 \), there exists \(N \in \mathbb{N} \) such that \(\Omega(x_n, x_m, x_l) \leq \varepsilon \), for all \(n, m, l \geq N \). Thus

\[\lim_{l \to \infty} \inf \Omega(x_n, x_m, x_l) \leq \varepsilon. \]

Since \(\Omega \) is lower semi-continuous, we have

\[\Omega(x_n, x_m, u) \leq \liminf_{l \to \infty} \Omega(x_n, x_m, x_l) \leq \varepsilon, \tag{2.16} \]

for all \(n, m \geq N \).

Considering \(m = n + 1 \) in (2.16), we get \(\Omega(x_n, x_{n+1}, u) \leq \varepsilon \), for all \(n \geq N \). Suppose that \(Tu \neq u \). Then Condition 2.12 implies that

\[0 < \inf \{ \Omega(x, Tx, u); x \in X \} \leq \inf \{ \Omega(x_n, x_{n+1}, u); n \geq N \} \leq \varepsilon, \]

for all \(\varepsilon > 0 \) which is a contradiction. Therefore \(Tu = u \).

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

