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ABSTRACT 
 

Residual types in time series has not been investigated throughly in literature. This study aims to provide 
practical applications of residual types. In this study, firstly, basic information about different types of residuals 
was given and some features of the residuals were investigated with numerical applications. Then a simulation 
study was conducted to show differences in decisions when different residual types were considered in 
diagnostic checking. 
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1. INTRODUCTION 
 

Time series is an applied field of statistics and could be 
employed in every branch of science. Box and Jenkins 
(1976) worked on building and forecasting time series 
models and found out the method which is called Box-
Jenkins Modelling Process in time series analysis 
[Akdi, 2003]. One of the most important points in the 
process of analyzing a time series is diagnostic 
checking. There are two ways to determine which Box-
Jenkins model is suitable for time series data. The first 
method is examining the autocorrelation function 
(ACF) and partial autocorrelation function (PACF) 
plots of the time series. The second method is testing 
the (H0) null hypothesis that the correlations of 
residuals for lags from 1 to m are equal to zero 
simultaneously [Arranz, 2005]. Thus, residuals play a 
significant role in diagnostic checking in time series 
models.  
 
Examination of the general structure of the residuals is 
very essential in practical applications, however there 
are not many studies in this subject. Ansley and 

Newbold (1979) used normalized residual vector 
instead of unconditional residual vector in their 
simulation study and showed that extends the range of 
cases for which statistics frequently used in model 
diagnostic checking can be usefully interpreted through 
the usual asymptotic significance levels. Moreover, 
Brockwell and Davis (2002) demonstrated that both 
innovations and normalized residuals can be calculated 
in analysis. Mauricio (2008) gave some basic 
distributional and theorotical properties about the 
residuals in time series analysis which can be classified 
in 4 different classes as, "conditional residuals", 
"unconditional residuals", "innovations" and 
"normalized residuals" . In addition, Mauricio indicated 
that when roots of a model contains moving average 
that are near the unit circle and the number of 
observations is small, the unconditional residuals and 
normalized residuals give different decisions in 
diagnostic checking. Unsal and Kasap (2010) 
investigated some special matrices and their 
elementwise cases, which are used to calculate residuals 
types.  
 



410 GU J Sci, 25(2):409-416 (2012)/ Mehmet Güray ÜNSAL, Reşat KASAP 

Since very few studies have been conducted about the 
residuals, this subject has not been investigated 
sufficiently in the literature. Thus this article aims to fill 
this gap by providing practical applications of residual 
types in literature. This paper is structured as follows: 
Section 2 gives the structures of the residual types 
adopted by Mauricio (2008). Then in Section 3, 
numerical applications are given to indicate some 
features about the residual types and a simulation study 
is conducted for comparing the conditional and 
normalized residuals in diagnostic checking. Lastly, we 
concluded the study in Section 4. 

 
2. DEFINING AND CALCULATING TYPES OF 
RESIDUALS FOR ARMA(p,q)  
  
Let { }tW  be a stationary time series process, following 

the model and let 1 2[ , ,..., ] 'nw w w w=  be 

generated from { }tW . The theoretical representation of 
ARMA (Autoregressive Moving Average) model is 
given below 
 

( ) ( ) .t tB W B Aφ θ=%    (1) 

Here, 
1

( ) 1
p

i
i

i

B Bφ φ
=

= −∑ and 
1

( ) 1
p

i
i

i
B Bθ θ

=

= −∑  

are polinomials with degrees of p and q, also B is a lag 

operator, [ ]t t tW W E W= −%  and { }tA is a white 

noise process with 2 0σ > . Regarding model (1) for 
1, 2,...,t n= , 

1 2[ , ,..., ] 'nW W W W=% % % % , 1 2[ , ,..., ]'nA A A A=  and 

* 1 0 1 0[ ,..., , ,..., ]'p qU W W A A− −= % % , observed time 

series 1 2[ , ,..., ] 'nw w w w= can be seen as a 
particular realization of a random vector 

1 2[ , ,..., ]'nW W W W=  following the model; 
 

*
ˆD W D A VUφ θ= +     (2)  

 
Where Dφ  and Dθ  are nxn  parameter matrices with 

ones as diagonal elements and jφ− and jθ−  as 

elements that constitute the jth subdiagonal  
respectively, and V is a  ( )n x p q+  matrix with  

( 1,..., ; 1,..., )ij p i jV i p j pφ + −= = =  and 

( 1,..., ; ,..., )ij q i j pV i q j p i p qθ + − += − = = + +

 where the remaining elements are zero [Mauricio, 
2008]. 
 
Let us assume that the theoretical autocovariance matrix 

is 2 [ ']w E WWσ −∑ = % % , and ˆ
w∑ is an estimation of 

w∑ . The autocovariance matrix can be given as 
follows from equation (2) [Mauricio, 2008]; 
 

1 1 1 1( ' ') ' ( ') 'w D D D V V D K I Z Z Kφ φ θ φ
− − − −∑ = + Ω = + Ω

   (3) 

In equation (3) 1 1,K D D Z D Vθ φ θ
− −= = −  and 

2
* *[ ']E U Uσ −Ω =  are parameter matrices of 

dimensions , ( )nxn nx p q+  and 

( ) ( )p q x p q+ +  respectively, with  being readily 

expressible in terms of  1 1,..., , ,...,p qφ φ θ θ  for 

example, in Ljung and Box (1979). Besides,  here 
1 1 1

0 ' [ ( ' ) ']I Z Z I Z Z Z Z− − −∑ = + Ω = − Ω +
 

Using the relation (3), 1ˆ' ww w−Σ% %  can be written as, 
1 ˆ ˆˆ' ' '( ')ww w w K I Z Z Kw−Σ = + Ω% % % %                   (4) 

 
ˆ ˆ,K Z and Ω̂  symbolize the estimations of parameter 

matrices defined in equation (3). According to these 
theoretical information, residuals have been grouped by 
Mauricio (2008) in four different types as below: 
 
2.1. Conditional Residuals 
 
Conditional residuals are associated with relation (4) 
and defined as the elements of the nx1 vector 

0
ˆâ Kw= % . 

 
2.2. Unconditional Residuals 
 
Unconditional residuals are associated with (4) and 
defined as the elements of the nx1 vector 

1 1
0 0

ˆˆ ˆ ˆ ˆˆ ˆ( ')a I Z Z Kw a− −= + Ω = ∑% .  
 
2.3. Innovations 
 
Innovation residuals are associated with (4) and defined 
as the elements of the nx1 vector 

1 1
0

ˆ ˆ ˆˆ ˆ( )e L w KL a− −= =% . Here, L̂  is the estimation 
of the nxn unit lower- triangle matrix L in below as 
Cholesky decomposition, 
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From relation (4), the equations given below will be 
obtained [Mauricio, 2008]: 
 

1 1 1
0 0 0 0

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ' ' ' 'ww w a a a a e F e− − −∑ = ∑ = ∑ =% %
 

 

where, F̂ is the estimation of matrix F. 
 
2.4. Normalized Residuals 
 
If we define lower-triangle matrix P as, 

0 ' 'I Z Z PP∑ = + Ω = , the definition of vector  v̂  
(normalized residuals) is 

1 1/ 2
0

ˆ ˆ ˆˆ ˆ ˆ ˆ'v P a P a F e− −= = = , where P̂  is the 
estimator of matrix P [Mauricio, 2008; Box et al., 1994; 
Wei,1990; Kasap, 1998]. 

 

3. NUMERICAL APPLICATIONS AND 
SIMULATION STUDY 
In this section, firstly, diagonal elements which belong 
to P-1 and F matrices are presented for ARMA model 
from the vectors which are generated by diagonal 
elements of these matrices. In Mauricio (2008), for an 
invertible model, the (i,i)th element of 

0 ' 'I Z Z PP∑ = + Ω =  converges to one from 
above as i increases, it turns out that the (i,i)th element 
of P-1 (which is strictly positive of all i) converges to 
one from below as i increases. As a contribution to this 
finding of Mauricio, similarly for F matrix, it could be 
said that (i,i)th element of F converges to one from 
above as i increases [Unsal and Kasap, 2010]. 
 
To see these features, P-1 and F matrices are composed 
under the assumption that the appropriate model is 
ARMA(1,1) with φ =0.1 and θ =0.9 parameter values. 
In this situation, when the number of observation (n) is 
10, the diagonal elements vectors are as below: 

 

1

0.779334306883787
0.871036251437872
0.914606656149130
0.939710732340943
0.955757237069755
0.966696844415371
0.974484506469331
0.980200094152302
0.984489332730189
0.987762164172522

V
P −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣ ⎦10x1

⎥
⎥
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⎥
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⎥
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                                 1 .6 4 6 4 6 4 6 5 0 0 0 0 0 0
1 .3 1 8 0 3 6 8 1 0 8 7 2 3 1
1 .1 9 5 4 4 9 6 3 7 4 3 1 6 6
1 .1 3 2 4 3 0 6 7 8 2 6 7 4 4
1 .0 9 4 7 2 4 4 2 9 0 1 3 8 3
1 .0 7 0 0 8 7 7 6 4 0 6 8 9 2
1 .0 5 3 0 5 2 7 4 0 9 0 7 8 6
1 .0 4 0 8 0 7 7 5 6 7 8 7 4 9
1 .0 3 1 7 5 8 2 9 8 0 9 3 2 9
1 .0 2 4 9 3 2 4 1 0 5 2 9 7 8 1 0 1

V F

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
The vector 1P

V − and vector FV are diagonal elements 

vectors of P-1 and F matrices respectiely. As seen from 
the vectors, diagonal elements of P-1 and F converge to 

one from below and above, respectively, as i increases. 
The diagonal elements of P-1 and F vectors are found as 
below when number of obsevation (n) is 25: 
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Elements of 1P

V − and FV  vectors converge to one 

from below and above again, respectively, as i 
increases.  The convergence of the elements is better 
when n=25 than when n=10. This result supports 
another finding of Mauricio. Mauricio (2008) indicated 
that when roots of a model contains moving average 
that are near the unit circle (or close to non-invertibilty) 
and the number of observation is small, the residuals 
causes different decision making in diagnostic 
checking. This situation is a result of cases of  
P-1 and F matrices. Let us suppose that we are interested 
in calculating conditional and normalized residuals. The 

relationship between them is 1
0v P a−= . So, the 

difference between 0a and v  is caused from 1P− . 
Besides, because of matrix Z, model’s moving average 

parameters are influenced by the value of 1P−  as 
presented in Section 2. When the moving average 
parameter is close to non-invertibility and the number 
of observations is small, the calculated residual values 
could be different from each other. The calculated 
values of conditional and normalized residual values 
under ARMA(1,1) model with parameters φ =0.1 and 

θ =0.9 are given below for n=10 and 25.  
 

Table 1. Conditional and Normalized Residuals for n=10 
 

n Conditional Normalized 
1 1.97379 1.53824 
2 1.57116 0.76100 
3 0.69266 -0.11415 
4 0.93222 0.20191 
5 1.17986 0.48899 
6 1.01038 0.35683 
7 1.28699 0.67054 
8 -1.85790 -2.38003 
9 1.96528 1.51393 

10 -0.12716 -0.54772 
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Table 2. Conditional and Normalized Residuals for n=25 
 

n Conditional Normalized n Conditional Normalized n Conditional Normalized 

1 1.87087 145804 9 -0.67701 -0,58488 17 0.37777 0.39825 

2 -1.23734 -1.65363 10 0.42791 0,51264 18 0.40583 0.42246 

3 -1.47123 -1.51271 11 0.95894 1,01955 19 1.51810 1.52971 

4 0.35036 0.40340 12 0.67653 0,71659 20 1.32287 1.32920 

5 1.50438 1.46252 13 0.76587 0,79201 21 -2.14862 -2.14220 

6 -0.46384 -0.54110 14 -0.96780 -0,94398 22 -0.64083 -0.63238 

7 -1.33207 -1.35004 15 -0.63317 -0,60510 23 0.40906 0.41687 

8 -1.98629 -1.93243 16 0.52340 0,54906 24 -0.47641 -0.46937 

  25 1.16136 1.16739 
 
As seen from Table 1 and Table 2, conditional and 
normalized residuals are quite different. This difference 
between residuals might cause a significant difference 
between calculated test statistics (Portmanteu test 
statistics). In other words, residual types could lead to 
different decisions in diagnostic checking. Another 
important finding is that the differences between 
residual types vanish when the number of observations 
increases. A similar deduction could be made for 
calculated test statistics values.  
 

To see the differences between calculated residuals, 
again assume that appropriate model is ARMA(1,1) 
with parameters φ =0.1 and θ =0.9, and conditional  

( 0â ), unconditional ( â ), innovations ( ê ) and 

normalized ( v̂ ) residuals are calculated from the 
generated time series. The mean absolate differences 
are given in Table 3 for different numbers of 
observation (n) as below: 

 
Table 3. Mean Absolate Differences For Residuals  

 

Number of 
Observation 

0
1

ˆ ˆ /
n

i i
i

a a n
=

−∑  
0

1

ˆ ˆ /
n

i i
i

a e n
=

−∑ 0
1

ˆ ˆ /
n

i i
i

a v n
=

−∑
1

ˆ ˆ /
n

i i
i

a e n
=

−∑
1

ˆ ˆ /
n

i i
i

a v n
=

−∑  
1

ˆ ˆ /
n

i i
i

e v n
=

−∑  

n=10 0.16006 0.23615 0.25728 0.12524 0.11438 0.05892 
n=25 0.09124 0.12356 0.13177 0.05363 0.04900 0.02568 
n=50 0.04890 0.06501 0.06912 0.02690 0.02458 0.01286 

n=100 0.02457 0.03263 0.03469 0.01345 0.01229 0.00643 
n=250 0.00983 0.01305 0.01387 0.00538 0.00492 0.00257 
n=500 0.00491 0.00653 0.00694 0.00269 0.00246 0.00129 

 
In Table 3 (i=1,2,…,n), the mean absolate differences 
between calculated residuals tend to decrease as the 
number of observations increases. Table 3 shows that 
the differences between calculated test statistics which 
are used for diagnostic checking decrease as the number 
of observations increase.  
 
As a last investigation of this study, the conditional and 
normalized residuals are compared by a simulation 
study for the ARMA(1,1) model under certain parameter 
values for different number of observations and lags 
and their conditions in diagnostic checking are 
examined using the Ljung-Box test statistic [Ljung and 
Box, 1978].  The test statistics, which are used for 
diagnostic checking, are called Portmanteau test 
statistics. There are a lot of Portmanteau test statistics in 
the literature and detailed information about structures 
and distributions of other Portmanteau test statistics 
could be found in many studies [Ljung and Box, 1978; 

Davies, Triggs and Newbold 1977; Battaglia ,1990; 
Arranz 2005]. 
 
Ljung-Box test statistic, one of the most popular 
Portmanteu test statistics tests the hypothesis "Ho: 
Model is appropriate" and the test statistics could be 
written as below: 

2

1
( 2) /( )

m

LB k
k

Q n n r n k
=

= + −∑
 

k is the number of lag, n is the number of observations 
and rk is the sample autocorrelation values obtained as 
follows:  

2

1 1
/ , 1, 2,...,

n n

k t t k t
t k t

r u u u k m−
= + =

= =∑ ∑
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Here, ut represents the residuals. In the simulation 
study, we used two pairs of model parameter values as  
φ =0.5,θ =0.6 and φ =0.2,θ =0.9 respectively. To 
see the rejection ratio of the null hypothesis "Ho: Model 
is appropriate", trials are repeated 100 times and total 

number of rejections are divided by 100. Furthermore, 
to observe the effect of the sample size and number of 
lags, different numbers of observations and lags are 
taken. 

 
Table 4. Rejection Ratios of Null Hypothesis forφ =0.5 and θ =0.6 

(n: Number of Observation, m: Number of Lag) 
 

             Residuals    
n and m  

Conditional 
Residuals 

Normalized 
Residuals 

n=25, m=10 0.03 0.03 
n=25, m=5 0.01 0.01 
n=25, m=3 0.05 0.05 
n=25, m=2 0.02 0.02 
n=50, m=10 0.12 0.12 
n=50, m=5 0.09 0.09 
n=50, m=3 0.05 0.05 
n=50, m=2 0.08 0.08 
n=100, m=10 0.09 0.09 
n=100, m=5 0.05 0.05 
n=100, m=3 0.03 0.03 
n=100, m=2 0.05 0.05 

 
 

Table 5. Rejection Ratios of Null Hypothesis forφ =0.2 and θ =0.9 
(n: Number of Observation, m: Number of Lag) 

 
             Residuals    
n and m  

Conditional 
Residuals 

Normalized 
Residuals 

n=25, m=10 0.15 0.06 
n=25, m=5 0.12 0.06 
n=25, m=3 0.11 0.07 
n=25, m=2 0.14 0.05 
n=50, m=10 0.14 0.09 
n=50, m=5 0.09 0.05 
n=50, m=3 0.13 0.05 
n=50, m=2 0.07 0.03 
n=100, m=10 0.12 0.10 
n=100, m=5 0.08 0.07 
n=100, m=3 0.08 0.07 
n=100, m=2 0.09 0.06 

 
 
In Table 4 and 5,  the rejection ratios of the null 
hypothesis "Ho: Model is appropriate" could be seen for 
different number of observations and lags. According to 
simulation study,  when the parameter values are 
φ =0.5 and θ =0.6,  the residual types have the same 
rejection ratios. But when the model parameters are 

close to non-invertibility as φ =0.2 and θ =0.9, the 
residual types have different rejection ratios. This 
situation could be generalized for different number of 
observations and different number of lags as seen in 
Table 4 and 5. 
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Figure 1. Rejection Ratios for Conditional and Normalized residuals 

(φ =0.5,θ =0.6, Lag=5) 
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Figure 2. Rejection Ratios for Conditional and Normalized residuals  

 (φ =0.2,θ =0.9, Lag=5) 
 

The results in Table 4 and 5 could be summarized with 
Figure 1 and Figure 2 for Lag=5. Similarly Table 4 and 
5, in Figure 1, when the model parameter values are 
taken to be φ =0.5,θ =0.6, there is no difference 
between the rejection ratios of the two residual types for 
any number of observations. In contrast, in Figure 2 (for 
φ =0.2,θ =0.9), when the model parameters are taken 
such that the model is close to non-invertibility, in other 
words, when roots of a model contain moving average 
near the unit circle, the residuals have different rejection 
ratios. However this situation vanishes as the number of 
observations increases. These results could be seen 
better in the figures. Figure 1-2 are drawn for Lag=5, 
but the similar situations could be seen in Table 4-5 for 
the other different number of lags. Figure 1-2 are just 
given for the provision of convenience as the visual. 
 
Different rejection ratios are caused by different 
calculated Ljung-Box test statistic values. Genarally 
speaking calculated test statistics are different for 

conditional residuals than for normalized residuals. 
Obviously, the different rejection ratios occur due to 
differences between the residuals. As mentioned in this 
study, MA parameters and number of observations 
effect the residual types’ values. So, in parallel with 
Mauricio (2008), we concluded that when the model is 
close to non-invertibility and the number of 
observations is small, different types of residuals could 
cause different decision making in diagnostic checking. 

 
4. CONCLUSION 

 
In this study, we investigated the residual types in time 
series. Basic computational information about the 
different types of residuals is given. Besides, some 
calculation results are given to indicate some features 
about the residuals in literature. A simulation study is 
conducted for comparing the conditional and 
normalized residuals in diagnostic checking. This study 
can be summarized briefly as follows: 
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If we consider the matrix F, which is obtained from the 
decomposition of 'w LFL∑ = , its diagonal elements 
converge to one from above. Moreover,  for the matrix 
P, which is obtained from the decomposition of 

0 ' 'I Z Z PP∑ = + Ω =
 
, the diagonal elements of 

P-1  converge to one from below. It is also seen that the 

last diagonal elements F  and 1P−  matrices show 
better covergence rate to one as the number of 
observations increases. Another investigation for 
practical purposes is that, the mean absolate difference 
between calculated residual values tend to decrease as 
the number of observations increases as seen in Table 3. 
It is also concluded that when the model is close to non-
invertibility and the number of observations is small, 
different types of residuals could cause different 
decision making in diagnostic checking. 
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