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1. Introduction

In the literature, the Roman factorial in the real case is one of the generalizations of the classical
factorial for negative integers. This concept has been used by Steve Roman [1] to study the formal
series and the harmonic logarithm. It has also been studied by Loeb and Rota in [2], and [3]. The
above authors have used the notation bme! to define the Roman factorial of an integer m ∈ Z.
The p-adic domain has an important applications in a cryptography, number theory, algebraic geom-
etry, and arithmetic dynamics. However, the definition of the p-adic factorial of a positive integer was
considered by Alain Robert in [4] as restricted factorial, and denoted by

n!∗ =
∏

1≤j≤n,p-j

j

Another notation for the p-adic factorial (n!)p was adopted by Menken and Çolakoğlu [5]. Both of
Robert and Menken have used the p-adic factorial only to define the p-adic gamma function, without
giving its properties. Furthermore, Aidagulov and Alekseyev in [6] have also used the so-called modified
(p-adic) factorial, with the notation n!p, to study the modified (p-adic) binomial coefficients. It can
be remarked that the previous authors have given the definition of p-adic factorial without giving the
properties.
Taken into previous considerations, in the present paper, we firstly demonstrate some properties of
p-adic factorial (see Lemma 2.3, Theorem 2.4, Proposition 2.7, Proposition 2.8, Corollary 2.9, and
Corollary 2.10). Secondly, we propose a definition of p-adic analogue of Roman factorial named p-adic
Roman factorial (see Definition 3.1). Next, we demonstrate some combinatorial properties of this
factorial, using the concept of p-adic gamma function (see Lemma 3.2, Theorems 3.4-3.6, Corollaries
3.7-3.8, Theorems 3.9-3.11). Finally, some numerical examples are given (Examples 2.5 and 3.12).
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2. Preliminary

Throughout this paper, p is a prime number, Z is the set of all the real integers, Z− (resp. Z+) is
the set of all the negative real integers (resp. all the positive real integers), N is the set of all the
non-negative integers, Q is the field of rational numbers, and R is the field of real numbers. We use
|.| to denote the ordinary absolute value, [.] the real integer part, νp the p-adic valuation, and |.|p the
p-adic absolute value. The field of p-adic numbers Qp is the completion of Q with respect to the p-adic
absolute value. The ring of p-adic integers Zp is such that |x|p ≤ 1.

2.1. Roman Factorial in Real Domain

Roman in [1] proposed the factorial of negative integer n ∈ Z− as bne! =
(−1)−n−1

(−n− 1)!
. So, for n ∈ Z+

we have bne! = n!. Also, the Roman factorial satisfies a characteristic functional equation bne! =
bne · b(n− 1)e!, where bne = n if n 6= 0, and b0e = 1 is called Roman n.

For example, we give the Roman factorial of some integers in table1:

Table 1. oman factorial of some integers

n 0 1 2 3 4 5 6 7

bne! 1 1 2 6 24 120 720 5040

−n 0 −1 −2 −3 −4 −5 −6 −7

b−ne! 1 1 −1 1
2 − 1

6
1
24 − 1

120
1

720

The complement formula of the factorial function, known as Knuth’s theorem [7], is as follows:

bne! b−ne! = (−1)n |n|

and the Roman factorial can be rewritten using the gamma function Γ as follows:

bne! =


Γ(n+ 1), for n ≥ 0

(−1)−n−1

Γ(−n)
, for n < 0

(1)

2.2. p-adic Factorial and p-adic Gamma Function

In this subsection, we provide definitions of p-adic analogue of factorial function and gamma function
and some of their basic properties, to be needed in the next section.

Definition 2.1. [4] The p-adic factorial of n ∈ N is defined by 0!p = 1 and for n > 0

n!p =
n∏
j=1

(p,j)=1

j (2)

Remark 2.2. If 1 ≤ n ≤ p− 1, then (p, j) = 1, for all 1 ≤ j ≤ n. Then, n!p = n!.

Lemma 2.3. For p = 2, then we have (2k)!2 = (2k − 1)!2.

Proof. The result comes from the fact that if p = 2, we have n!2 =
n∏
j=1

j is odd

j.
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As in the real case, we define the p-adic Roman of a positive integer n as

bnep =


n, if |n|p = 1

1, if |n|p < 1
(3)

Therefore, the first property similar to that of the real factorial is given by the following

Theorem 2.4. Let n ∈ N, with n ≥ 1. Then n!p = bnep (n− 1)!p.

Proof. Two cases are considered.
1) We suppose |n|p = 1, so (p, n) = 1. Thus

n!p =
n∏
j=1

(p,j)=1

j = n
n−1∏
j=1

(p,j)=1

j = bnep (n− 1)!p

2) We suppose |n|p < 1, so (p, n) 6= 1. Thus

n!p =

n∏
j=1

(p,j)=1

j = 1 ·
n−1∏
j=1

(p,j)=1

j = bnep (n− 1)!p

Example 2.5. In Tables 2-5, we calculate some p-adic factorials of some positive integers. For
p = 2, 3, 5, 7.

Table 2. The 2-adic factorial

n 0 1 2 3 4 5 6 7 8 9 10 11

n!2 1 1 1 3 3 15 15 105 105 945 945 10395

Table 3. The 3-adic factorial

n 0 1 2 3 4 5 6 7 8 9 10 11

n!3 1 1 2 2 8 40 40 280 2240 2240 22400 246400

Table 4. The 5-adic factorial

n 0 1 2 3 4 5 6 7 8 9 10 11

n!5 1 1 2 6 24 24 144 1008 8064 72576 72576 798336

Table 5. The 7-adic factorial

n 0 1 2 3 4 5 6 7 8 9 10 11

n!7 1 1 2 6 24 120 720 720 5760 51840 518400 5702400

The next theorem represents a generalization of the Wilson congruence; it’s the key of some results
in this section.

Theorem 2.6. [4] Let a ∈ Z and s ∈ Z+. Then

1) For p ≥ 3 and s ≥ 1, we have
a+ps−1∏
j=a

(p,j)=1

j ≡ −1 (mod ps).
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2) For p = 2 and s ≥ 3, we have
a+2s−1∏
j=a
jodd

j ≡ 1 (mod 2s) .

From this generalization of the classical Wilson theorem, we obtain the following congruences:

Proposition 2.7. Let n ∈ N and s ∈ Z+.

1) If p ≥ 3 and s ≥ 1, then
(n+ ps)!p

n!p
≡ −1 (mod ps).

2) If p = 2 and s ≥ 3, then
(n+ 2s)!2

n!2
≡ 1 (mod 2s).

Proof. We have

(n+ ps)!p
n!p

=

n+ps∏
j=n+1
(p,j)=1

j

From the case 1 of Theorem 2.6 with a = n+ 1, we obtain the congruence for p ≥ 3 and s ≥ 1. From
the case 2 of the same Theorem with a = n+ 1, we obtain the congruence for p = 2 and s ≥ 3.

More generally, we have the following theorem:

Proposition 2.8. Let n ∈ N, and m, s ∈ Z+.

1) If p ≥ 3 and s ≥ 1, then
(n+mps)!p

n!p
≡ (−1)m (mod ps).

2) If p = 2 and s ≥ 3, then
(n+m2s)!2

n!2
≡ 1 (mod 2s).

Proof. The proof is done by induction on m.

Corollary 2.9. For p ≥ 3, n ∈ N and s ∈ Z+, we have |n!p|p = 1 and

|(n+ ps)!p + n!p|p ≤
1

ps

Corollary 2.10. For p = 2, n ∈ N and s ∈ Z+ with s ≥ 3, we have |n!2|2 = 1 and

|(n+ 2s)!2 − n!2|2 ≤
1

2s

In dynamic system and string theory, the p-adic gamma function has been well used. This function
studied by [8], [9] and [10], to give some properties of polynomials.
The function n! cannot be extended by continuity on Zp, because lim

n→+∞
n! = 0 in Zp. So, we have the

definition of p-adic gamma function as follows:

Definition 2.11. [11] The p-adic gamma function is defined by Morita as the continuous function

Γp : Zp −→ Zp

as an extension of the following sequence, with n ∈ Z+

Γp(n) = (−1)n
n−1∏

j=1,(p,j)=1

j (4)

Furthermore,

Γp(z) = lim
n →
in Zp

z
Γp(n) = lim

n →
in Zp

z
(−1)n

n−1∏
j=1

(p,j)=1

j
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Here, we cite some properties of Γp that we need to prove the theorems in the next section.

Proposition 2.12. [4] The function Γp satisfies the following properties:

1) Γp(0) = 1 , Γp(1) = −1, Γp(2) = 1

2) Γp(n+ 1) = (−1)n+1n!p, ∀n ∈ N

Other some important arithmetic formulas are given in the following proposition:

Proposition 2.13. [4] Let n ≥ 1, its p-adic expansion be
∑̀
i=0

nip
i, and the sum of digits be Sn =

∑̀
i=0

ni. Then,

1) Γp(n+ 1) =
(−1)n+1 n![
n
p

]
!× p

[
n
p

] . In particular, Γp(p
n) =

(−1)p pn!

pn−1!× ppn−1 .

2) Γp(np+ k + 1) =
(−1)np+k+1 (np+ k)!

n!× pn
, for 0 ≤ k < p.

3) n! = (−1)n+1−` (−p)
n−Sn
p−1

∏̀
i=0

Γp

([
n
pi

]
+ 1
)

.

3. Main Results and Proofs

Inspired by the works of Roman [1], Loeb and Rota [2], we will establish a p-adic analogue of the
Roman factorial, so-called the p-adic generalized factorial, or the p-adic Roman factorial. We define
of this new concept and demonstrate some of its properties.

Definition 3.1. For n ∈ Z, we define the p-adic Roman factorial of n as

bne!p =


n!p, for n ≥ 0

(−1)−n−1

(−n− 1)!p
, for n < 0

(5)

Remark 3.2. It can be remarked that

1) If 0 ≤ n ≤ p− 1, the we have n!p = n!. Then, bne!p = bne! = n!.

2) If −p ≤ n ≤ −1, the we have (−n− 1)!p = (−n− 1)!. Then, bne!p = bne!.

Lemma 3.3. For p = 2, then

bne!p =


bn− 1e!p, for n = 2k ≥ 0

−bn− 1e!p, for n = −2k < 0

Proof. From Lemma 2.3, we have (2k)!2 = (2k− 1)!2, thus b2ke!p = b2k − 1e!p. For the second case,
we have (−2k − 1)!2 = (−2k)!2, thus b−2k − 1e!p = b−2ke!p
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We keep the notation of the p-adic Roman for a negative integer n ∈ Z− and define it as

bnep =


n, if |n|p = 1

−1, if |n|p < 1
(6)

So, it can easily verified that b−nep = −bnep.

Therefore, the first property similar to that of the real Roman factorial is as follows:

Theorem 3.4. For all n ∈ Z, we have bn+ 1e!p = bn+ 1ep bne!p.

Proof. We consider the following three cases:
1) If n ≥ 0, then n+ 1 ≥ 1. Then, from Proposition 2.4 we have

bn+ 1e!p = (n+ 1)!p = bn+ 1ep n!p = bn+ 1ep bne!p

2) If n < −1, then n+ 1 < 0. Then, from Proposition 2.4 we have

bn+ 1e!p =
(−1)−n b−n− 1ep
b−n− 1ep (−n− 2)!p

=
(−1)−n−1 bn+ 1ep

(−n− 1)!p
= bn+ 1ep bne!p

3) If n = −1, then, we have in the left side bn+ 1e!p = 0!p = 1, and in the right side bn+ 1ep bne!p =
1 · b−1e!p = 1.

The following congruences hold from the properties of p-adic factorial.

Theorem 3.5. Let n ∈ Z and s ∈ Z+. Then

1) If p ≥ 3 and s ≥ 1, then we have
bn+ pse!p
bne!p

≡ −1 (mod ps) , if n ≥ 0

bne!p
bn− pse!p

≡ −1 (mod ps) , if n < 0

2) If p = 2 and s ≥ 3, then we have
bn+ 2se!2
bne!2

≡ 1 (mod 2s) , if n ≥ 0

bne!2
bn− 2se!2

≡ 1 (mod 2s) , if n < 0

Proof. The case n ≥ 0 comes from the Proposition 2.8. It only remains to explain the case n < 0.
Indeed, we have

bne!p
bn− pse!p

= (−1)p
s (−n− 1 + ps)!p

(−n− 1)!p

The result comes from Proposition 2.8, for two cases p ≥ 3 and p = 2.

More generally, we have the following Theorem

Theorem 3.6. Let n ∈ Z and s,m ∈ Z+. Then,
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1) If p ≥ 3 and s ≥ 1, then we have
bn+mpse!p
bne!p

≡ (−1)m (mod ps) , if n ≥ 0

bne!p
bn−mpse!p

≡ (−1)m (mod ps) , if n < 0

2) If p = 2 and s ≥ 3, then we have
bn+m2se!2
bne!2

≡ 1 (mod 2s) , if n ≥ 0

bne!2
bn−m2se!2

≡ 1 (mod 2s) , if n < 0

Proof. Easy recursion on m.

The following corollaries follow from the two previous theorems.

Corollary 3.7. Let p ≥ 3, n ∈ Z and s,m ∈ Z+. Then, | bne!p|p = 1 and
| bn+mpse!p + bne!p|p ≤

1

ps
, if n ≥ 0

| bn−mpse!p + bne!p|p ≤
1

ps
, if n < 0

Corollary 3.8. Let p = 2, n ∈ Z, and s,m ∈ Z+ with s ≥ 3. Then, | bne!2|2 = 1 and
| bn+m2se!2 − bne!2|2 ≤

1

2s
, if n ≥ 0

| bn−m2se!2 − bne!2|2 ≤
1

2s
, if n < 0

Next, we give the p-adic complement formula for p-adic Roman factorial function, in other words,
the p-adic version of Knuth’s theorem

Theorem 3.9. (p-adic Knuth’s theorem)
For all n ∈ Z, we have

bne!p b−n− 1e!p =


(−1)n , for n ≥ 0

(−1)n+1 , for n < 0

Proof. If n ≥ 0, then −n − 1 < 0. From Definition 3.1, we have bne!p = n!p and the result comes
from

b−n− 1e!p =
(−1)n

n!p

For the case n < 0, we use the same reasoning.

As we have seen before for p-adic factorial, we can rewrite the p-adic Roman factorial using the
p-adic gamma function, as follows:
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Theorem 3.10. Let n ∈ Z. Then, the relationship between p-adic Roman factorial and p-adic gamma
function is given by

bne!p = (−1)δ(n)Γp(n+ 1)

where

δ(n) =


n+ 1, for n ≥ 0

n+ 1 +
[
−n+1

p

]
, for n < 0

Proof. For the case of n ≥ 0, the result comes from Proposition 2.12 (2). We show the theorem
only for negative integers. Indeed, we proof n < 0, so −n − 1 > 1. From Proposition 2.12, we have
(−n− 1)!p = (−1)−n Γp(−n). On the other hand, from the complement formula of the p-adic gamma
function (see [4]), we have

Γp(n+ 1)Γp(−n) = (−1)
−n−[−n+1

p
]

Hence, we obtain

bne!p =
−1

Γp(−n)

=
−Γp(n+ 1)

(−1)
−n−[−n+1

p
]

= (−1)
n+1+

[
−n+1

p

]
Γp(n+ 1)

In the following theorem, we give some properties related to the p-adic gamma function.

Theorem 3.11. Let n ∈ Z, and m ∈ N. Then

1) We have

bne!p =



bne![
n
p

]
!× p

[
n
p

] , for n ≥ 0

(−1)n bne!
[
−n+1

p

]
!× p

[
−n+1

p

]
, for n < 0

2) In particular, pm+1!p =
pm+1!

pm!× ppm
.

3) (mp+ k)!p =
(mp+ k)!

m! pm
, for 0 ≤ k < p.

4) n! = (−1)n (−p)
n−Sn
p−1

∏̀
i=0

(
(−1)

[
n

pi

] ⌊[
n
pi

]⌉
!p

)
, for n ∈ N given by its p-adic expansion

∑̀
i=0

nip
i

and with the sum of digits Sn =
∑̀
i=0

ni .

Proof. The proof is clear from Proposition 2.13 and Theorem 3.10.
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Example 3.12. We give p-adic Roman factorial of the first ten negative integers in Tables 6-9. For
positive numbers are the same that given in example 2.5.

Table 6. The 2-adic Roman factorial

n -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

−n− 1 0 1 2 3 4 5 6 7 8 9

(−n− 1)!2 1 1 1 3 3 15 15 105 105 945

bne!2 1 −1 1 − 1
3

1
3 − 1

15
1
15 − 1

105
1

105 − 1
945

Table 7. The 3-adic Roman factorial

n -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

−n− 1 0 1 2 3 4 5 6 7 8 9

(−n− 1)!3 1 1 2 2 8 40 40 280 2240 2240

bne!3 1 −1 1
2 − 1

2
1
8 − 1

40
1
40 − 1

280
1

2240 − 1
2240

Table 8. The 5-adic Roman factorial

n -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

−n− 1 0 1 2 3 4 5 6 7 8 9

(−n− 1)!5 1 1 2 6 24 24 144 1008 8064 72576

bne!5 1 −1 1
2 − 1

6
1
24 − 1

24
1

144 − 1
1008

1
8064 − 1

72576

Table 9. The 7-adic Roman factorial

n -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

−n− 1 0 1 2 3 4 5 6 7 8 9

(−n− 1)!7 1 1 2 6 24 120 720 720 5760 51840

bne!7 1 −1 1
2 − 1

6
1
24 − 1

120
1

720 − 1
720

1
5760 − 1

51840

4. Conclusion

In this article, we have given some properties of the p-adic factorial. Then, we have defined a gener-
alization of this factorial, so-called p-adic Roman factorial, with the proof of some properties and a
congruances modulo a power of a prime number. Also, a numerical examples have been given. This
concept will be used to define the p-adic binomial coefficients and its generalzation, in a future paper.

Author Contributions

The author read and approved the last version of the paper.

Conflicts of Interest

The author declares no conflict of interest.

Acknowledgements

This paper is supported by the Scientific Research Project N◦ C00L03UN180120180006, in University
Mohamed Seddik Benyahia of Jijel.



Journal of New Theory 39 (2022) 94-103 / A Generalization of p-Adic Factorial 103

References

[1] S. Roman, The Logarithmic Binomial Formula. The American Mathematical Monthly 99 (7)
(1992) 641–648.

[2] D. E. Loeb, G. C. Rota, Formal Power Series of Logarithmic Type. Advances in Mathematics 75
(1) (1989) 1–118.

[3] D. E. Loeb, A Generalization of the Binomial Coefficients. Discrete Mathematics 105 (1-3) (1992)
143–156.

[4] A. M. Robert, A Course in p-Adic Analysis, Springer-Verlag, Graduate Texts in Mathematics
198, 2000.
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