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ABSTRACT. In this work we illustrade that the forgetful functor mapping a
quadratic module of Lie algebra to a nil(2)-module of Lie algebra is a fibration.

1. INTRODUCTION

Whitehead introduced crossed modules of groups in [1] as an algebraic models
for homotopy 2-types. Using the simplicial methods given by Kan in [2], Conduché
defined 2-crossed modules in [3]. Crossed modules over Lie algebras firstly given
by Gertenhaber in [15]. The Lie algebraic version of a 2-crossed module is given by
Ellis in [4].

Grothendieck defined the notion of fibred category in [5]. Quadratic module of
groups introduced in [7] is algebraic model for homotopy 3-types. Lie algebraic vari-
ation of a quadratic module is given by Ulualan and Uslu in [10]. Baues cofibration
for a quadratic module of Lie algebra defined in [13]. The relations amongsimplicial
Lie algebras and 2-crossed modules are given in [8] by using simplicial properties.

Another model for homotopy 3-type is crossed squares defined in [6]. The cat-
egorical equivalency of crossed squares and quadratic modules is given in [9] for
commutative algebras. Pullback and fibration for quadratic modules given in[11]
and for crossed squares given in [14] [12]. In this work we give the Lie algebra adap-
tation of a fibration of quadratic modules. In section 3 to show that the forgetful
functor ® : QMeie — Nil(2)eic is fibred we construct the pullback of quadratic
modules of Lie algebras with a homomorphism of Nil(2)-module of Lie algebras.

2. PRELIMINARIES

Definition 2.1. [13] The diagram of Lie algebra homomorphisms
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cCxC
Cy 5 Cy 5 Co

which satisfies:
QML1. 9:Cy — Cy is a nil(2)-module of Lie algebras and the quotient map

Gy — C= /e, (C7)]

is defined as ¢; — [c1], in which [¢;] € C' denotes the class represented by ¢; € Cj.
QML2. For ¢z € Co, 35(c2) =1 and for ¢1,¢) € Cy

dow(ler] @ [c]]) = w(ler] @ [¢]]) = D(er) - & — [en, 4]

QML3. For cs € Co,co € Cy
d(co) - c2 = w([0c2] @ [co] + [co] @ [de2]).

QMLA4. For ¢y, ch € Co
w([des] ® [dcs]) = [e2, ).
is called a quadratic module of Lie algebras.
If ¢ : (f2, f1, fo) : (w,0,0) — (w',d',¢") is a morphism of quadratic module of
Lie algebras then

1.

1%} 0

C®C 20, Cy Co

] W

COC——=>C—=>0 Co

5

the diagram is comutative.
ii. fo and f; are fp-equivarant, (f1,fo) is a pre-crossed module morphism.
iii. *: C' — C is induced from (f1,fo).
We will denote this category with Q9e;..

Example 2.2. [10] Let

{_7_} 02

M x M L o

M N

be a 2-crossed module of Lie algebras. Take
Co=L/P, Ci=M/P, Cy=N

where Pj is an ideal of M with generators (mq, (mg, ms)) and ({(my, ma), ms) for
my,ma,m3 € M and P, is an ideal of L with generators {(m,ms) ,ms} and {my, (ma, m3)}.
Then,

cedl
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is an object in QM e;. with
csr
[Cf", O]
,0:Cy — Cq is given by 6(ca + Py) = 0ol + Py and 9 : C; — C is given by
O(c1 + P1) = 01(c1), for all ¢; € C1,ca € Cy. The quadratic map

C:

w:CC — CQ
is defined as
w([gie1] @ [q1cl]) = g2{er, €}
for all ¢1,¢} € C1. Here 1 : M — Cy and ¢o : L — Cy are quotient maps.
Definition 2.3. [10] Let 6 : C; — Cy be a pre-crossed module, P;(§) = C; and
P5(9) be the Peiffer Lie ideal of C' with generators
<Co,81> = 5(00) cC — [00701]

called Peiffer elements for ¢, c; € Cy. If P3(§) = 0, where P5(9) is the ideal of the
Lie algebra C; with generators (¢, ca,c3) of length 3 then a pre-crossed module
0: Cy — Cp is called a nil(2)-module.

Definition 2.4. [11] Let § : € — D be a functor. A morphism o :Y — Z in € over
j = ®(0) is called cartesian if and only if forallk: K - Jin® and a: X — Z
satisfying ®(a) = jk there exists a unique morphism 6 : X — Y satisfying §(0) = k
and o = 0.

[e3

X oY —> 7
ik

3. QUADRATIC MODULES OF LIE ALGEBRAS FIBRED OVER NIL(2)-MODULES
OF LIE ALGEBRA

Proposition 1. The forgetful functor
Py : mil(2)£ie — Lie
is fibred.

Proof. Constructing a pullback object in 91il(2)¢i. with a homomorphism of Lie
algebras has as a necessary condition for proving ®; is fibred. Let 0 : M — @
be an object in nil(2)-module of Lie algebras and o : K — @ be a Lie algebra
morphism. Let us define * (M) as the sub-Lie algebra of K x M of elements (k, m)
such that o(k) = d(m). Let o1 : (k,m) — m and By : (k,m) — k. Then we have a
commutative diagram

M

|

Q.

o (M) >

B1
K———->
o
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B1 is a nil(2)-module of Lie algebras with base K by defining the action of ¥’ € K
on (k,m) € o*(M) as k' - (k,m) = (K - k,0(k') - m). B1 is the pullback of O :
M — @ along o. In this pullback diagram, (o1, 0) is also cartesian morphism over
Dy (01,0) = o in Nil(2)¢i,. Thus P, is a fibration of categories. O
There exits a forgetful functor;
O QOMeie — mi[(Q)Sie

which maps a quadratic modules of Lie algebra

CedC
Cs 5 Ch 5 Co

to its base (C; 2, Co) .

Example 3.1. A nil(2)-module of Lie algebras 0 : C; — Cj yields a quadratic
module of Lie algebras given by

cCeC
e
cCeC 01 CO

17}

Since 0 : €1 — Cp is a nil(2)-module of Lie algebras and w{c; ® ¢}} = 1 for
1 ®¢) € C® C the conditions in definition.2.1 are satisfied.

Therefore there exits a functor from nil(2)-module of Lie algebras to quadratic
module of Lie algebras. We denote this functor as

D : mi[(Q)gie — Qgﬁgie.

This functor maps a nil(2)-module of Lie algebras, 9 : C; — Cp, to a quadratic
module of Lie algebras given as

CeC
Pt
CeC o Ch 3 Co.

Proposition 2. The forgetful functor
P . ngic — mi[(2)gie
is fibred and has a left adjoint.

Proof. The left adjoint functor is given in example3.1. We construct the pullback
object in QMe;.] to prove that ® is fibred. Let

ceC
o CQ 01 CO
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be an object in QM g, and u := (u1,ug) be a morphism in Jl(2) ¢i, illustrated as:

u
Cf ——C

T

/
CO ?0 C().
The base nil(2)-module of Lie algebras of the candidate pullback quadratic module
of Lie algebras should be 91 : C] — C{. Let us define
u*(C2) = {(c}, c2) : 7 € kerd;,ui(c}) = Oa2(c2)} C Cf x Ca.

Then we get the following commutative diagram

u*(C'Q) L> CQ

s |

i ——C
1" 1

W e

Co—>Co
where (¢}, c2) = ¢ and 95(c),c2) = ¢ for (¢),c2) € u*(Cy). Let us define the
quadratic map as
W00 — (O
J'({are{di}) = (e, di),w{ui(e)} @ {u(dr)}).
and the action of C on u*(C>) as
co - (chyc2) = (¢ - ¢y uo(cp) - €2)
for ¢ € Cf, (c,¢c2) € u*(Cs) and ¢},d; € Cf. Then being 9] is a pre-crossed
module and
ua(cp - €h) = uo(cp) - ur(ch) = uo(cp) - P2(ca) = D2 (uo(cp) - c2)

¢y € kerd] implies ¢ - ¢} € kerd; and (¢, - ¢}, uo(cp) - c2) € u*(Cq). With these
data, we claim that

Cl ® C/
w*(Cy) ol o

9
is an object in QMe;,.
QML1. 9 : Cf — C{ is a nil(2)-module of Lie algebras. Since ¢} € kerd; we
get
9105(ch, e2) = 0y(ch) =1
for (¢}, c2) € u*(Cs) that is the bottom row

o, o,
u*(L) — O ——=Cj

is a complex of Lie algebras.
QML2. For ¢},d; € C}
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(A S ) = Oy )l ()] i)
Bi(ch) - df — [ch. di]
QML3. For (¢}, c2) € u*(Ce) and d} € C] :

w'([03(ch, e2)] @ [di] + [di] @ [05(ch, c2)]) = w'([ch] @ [dy] + [d] @ [c]])
= ({c1,dy), wlui(e)] @ [ul(d1)]+<1’c1>’w[1(d'1)] [u1(ch)])
= ((ch,dy) +(di,ch), [32(02)]@9[ 1(d1)] + [ua(dy)] @ [02(c2)]
= (01(er) -dy = [c1, di] + 01 (dY) - &) — [dy, ei], ua(dy) - c2)
= (91(c}) - cl,ul(d’) 2) (since ¢1 € kerd})
= 0i(c1) - (c1,c2)
QMLA4. For (c},c2), (d], ch) € u*(Ca)
w'([03(ch, e2)] ® [05(dy, c3)]) = w'([e}] @ [dy])
= ({c1, dy), wlui(c))] ® wlui(dy)])
= (01(ch) - dy = [e1, di], w [02(c3)] @ w [D2(ch)]
= ([, d1], [e2, c5))
= [(ch,c2), (d1, c3)]

From the assumption (u1,ug) is a pre-crossed module morphism and from the def-
inition of u*(Cs) we have ui(c)) = 02(c2). Then it is clear that (p,ui,ug) is a
morphism in QM e;. .

Next we will show that (p, u1,ug) is the cartesian morphism over ®(p, u1,up) =
(u1,up) in QMeie. Let (v1,v0) : 8Y — 91 be morphism in MNil(2) ¢i illustrated as:

v
K141>C{

oy l J{a;

/
Ko =5 Co

Let
C// ® C//
Z o7 K o Ky

be an object and
(0, uy, up) = (W",05,07) — (w,0,01)

be a morphism in QM e;, satisfying ugvg = uj and uiv; = uj.

6
,,,,,,,, * —_—

A 'l/)> u (02) 2 CQ
8;’ o4 )
Uy
Ky = — C
oy 0] o1
Ug
Ky ——C} — Co
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The unique morphism (¢, v1,vp) in QMg is defined as (z) = (v105(2),0(z)),
for z € Z which implies (¢, u1,ug) is cartesian over ®(p,uy,ug) = u = (u1,up) in
QMei.. The quadratic module of Lie algebras

C'ecC
u(Ch) e Cf —— = C}
is called the pullback of
ceC
o CQ 9 Cl o Co

with a morphism u := (u1,ug) between nil(2)-module of Lie algebras.

4. CONCLUSION

In this work we show that the functor ® : QM e;, — Mil(2) ¢, is fibred and has
a left adjoint D : Jl(2)g;, — QMgi.. Since the category of 2-crossed modules,
quadratic modules and crossed squares over Lie algebras are equivalent categories
analagous constructions can also be obtained for these two categories. (]
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