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Abstract— The maximum independent set problem is an NP-complete problem in graph theory. The Karci 

Algorithm is based on fundamental cut-sets of given graph, and node/nodes with minimum independence values 

are selected for maximum independent set. In this study, the analytical verification of this algorithm for some 

special graphs was analysed, and the obtained results were explained. The verification of Karci’s Algorithm for 

maximum independent set was handled in partial. 
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1. Introduction 

The graph concept was introduced to scientific world for the first time due to the studies of Euler on 

Konigsberg bridge. The graphs are mathematical models to simulate the entities of and their relationships for 

solving engineering/scientific problems, and modelling computer networks, mathematical equations, object-

oriented design, social networks, etc. A graph can be defined as in Definition 1. 

 

Definition 1: A graph G = (V,E) consists of a set V of vertices and a set E of edges. A graph, which does not 

consist of parallel and loop edges, called simple graph. 

 

The main focus of this study is to solve maximum independent set problem in graphs with efficient algorithms. 

The maximum independent set problem can be defined as in Definition 2. 

 

Definition 2: G=(V,E) is a simple graph and |V|=v, |E|=m. Assume that IV is a set of nodes and if ∀𝑣𝑖 , 𝑣𝑗 ∈

𝐼, (𝑣𝑖 , 𝑣𝑗)𝐸, I called independent. The set I of maximum size is called maximum independent set (MIS). 

 

Assume that G=(V,E) is a simple graph where V is a set of nodes (vertices) and E is a set of edges (EVxV).  

A node vi is said to be neighbour of vj if (vi,vj)E. IV, vi,vjI, viN(vj) where N(vj) is the set of nodes which 

are neighbours of vj, I is called as independent set for graph G. Assume that I2V, vi,vjI2, viN(vj), if there is 

no such II2, I is called maximal independent set. In another word, independent set (stable set, co-clique, 

anticlique) is a set of nodes in the corresponding graph (so called G), no two of which are adjacent. 

The MIS problem is an NP-hard problem, and there are many studies on this problem. Some of these studies 

can be given as follow in brief. The vertex support algorithm was proposed by Baraji and his/her friends for solving 

MIS problem (Baraji et al, 2010). Brandstadt and Mosca (Brandstadt and Mosca, 2018) used dynamic 

programming approach to show that the maximum weight independent set can be solved in polynomial time for  

claw-free graphs.  Laflamme and his/her friends (Laflamme and et al, 2019) tried to show that Kn-free graph and 

minimal r=r(G,m) where mN, independent set meets at least m colour classes in a set of size |V| for any balanced 

r-colouring of the vertices of graph G. Lin et al obtained the number of independent sets and number of maximum 

independent set for path-tree bipartite graphs (Lin, 2018a), and Oh studied on the number of maximum independent 

sets for complete rectangular grid graph (Oh, 2017). Wan and his/her friends studied on independent sets and 

matchings of some special graphs (Wan et al, 2018). Another study is on bipartite permutation graph to obtain the 
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independent sets, maximal independent sets and independent perfect dominating sets (Lin and Chen, 2017).  Lin 

(Lin, 2018b) developed linear-time algorithms for counting independent sets and their two variants, and 

independent dominating sets, independent perfect dominating sets for distance-hereditary graphs. The intersections 

of maximum and critical independent sets of a graph concluded in König-Egevary graphs (Jarden et al, 2018). 

There are limitations on cardinality of independent sets for given graphs without isolated nodes (Sah et al, 2019). 

The cubic graph of girth at least 5 has got an upper bound on the number of independent sets which was studied 

by (Peramau and Perkins, 2018). The graph entropy was used to determine the number of independent sets and 

matchings (Wan et al, 2020). 

An acyclic graph does not include cycle and a connected acyclic graph is called tree, otherwise it is called 

forest (forest is outside of scope of this study). A spanning tree of a connected graph G is a tree of having the all 

nodes of graph G (Definition 3). 

 

Definition 3: A spanning tree is a subset of graph G, which has all the vertices covered with minimum 

possible number of edges without cycle. 

 

There are recently published papers illustrate that new approaches exist to determine the maximum 

independent sets and dominating sets in given graphs based on special spanning trees of graphs and fundamental 

cut-sets corresponding to that special spanning tree of given graph. These studied were done by Karci for the first 

time (Karci and Karci, 2020; Karci, 2020a; Karci, 2020b; Karci, 2020c), the fundamental cut-sets of the given 

graph was used in any algorithm for the first time. Section 2 includes the details of Karci algorithms. 

The motivation of this study is to verify that the proposed algorithm by Karci is optimal for special graphs 

such as their spanning trees are single ring with multiples chords without pendant nodes. 

 

2. Karci Algorithm for Maximum Independent Set 

In this study, we will prove that Karci’s algorithm is to obtain maximum independent set for given graph, 

analytically. This algorithm (Karci and Karci, 2020; Karci, 2020a; Karci, 2020b; Karci, 2020c)) is based on a 

special spanning tree of given graph whose construction is based on breadth first search technique with exceptional. 

The cut-sets of given graph are used to find the minimum dominating sets and maximum independent sets by Karci 

for the first time (Karci and Karci, 2020; Karci, 2020a; Karci, 2020b; Karci, 2020c)). This tree is used to construct 

fundamental cut-sets. 

Breadth-first search is a search technique in artificial intelligence for investigation of solution/goal. Breadth-

first search consists of searching through a tree one level at a time, and then going to next down level for searching, 

and so on. 

G=(V,E) is a given graph where V={v1,v2,…,vn}. The set V is sorted with respect to the node degrees of nodes 

in V in ascending order. Any node with minimum degree (assume it is vi) is selected as root node for spanning tree 

T of given graph G. The node in N(vi) are added to spanning tree T as children of vi. The children of vi are expanded 

from minimum remaining degree to maximum remaining degree. The obtained tree is called as Kmin Tree (Karci 

Minimum Spanning Tree). The remaining degree is the number of neighbours not included in tree yet, of a node 

in tree.  

Algorithm 1 was developed to construct Kmin tree for given graph. In the case of equality of remaining degrees 

of nodes, the node near to root has got priority to be selected. 

In algorithm 1, one of the minimum degree nodes in the graph is selected as the root node of the Kmin tree and 

its neighbour nodes are added to a queue (QL and NL are arrays of linked lists for neighbours of selected node, 

NL is the array of linked lists of neighbours of selected nodes), then the neighbour node degrees are reduced by 

one. Via Level_Wise_minimum, one of the nodes with the minimum remaining degree from the nodes in the queue 

is selected as the next node to be expanded, and selected nodes are deleted directly from the queue. If there are 

more than one node of minimum remaining degrees in the queue, the node selection is made according to queue 

order. However, if the tree levels of nodes with minimum remaining degrees with the same degrees are same, 

priority is given to the node near to root in the tree. Algorithm 1 gives two outputs such as AT and NL; AT is 

adjacency matrix of spanning tree Kmin, and NL is the array of linked lists constituted by using neighbours of 

nodes added to spanning tree as linked lists. 
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Algorithm 1: Kmin_Tree(G,A,AT,D) // output=AT, NL 

1. QV 

2. rmin(D) // D is degree matrix 

3. while Q 

4.       QQ-{r} 
5.       Add(QL,Level, r,N(r)) //QL is array of linked list 

6.       i1,…,|N(r)| 
7.             Make_List(NL,r,vi) 

8.            A(r,vi) 0, A(vi,r) 0 

9.            AT(r,vi) 1, AT(vi,r) 1 

10.          QQ-{vi} 

11.          vj,vkN(r), A(vj,vk) 0, A(vk,vj) 0 

12.          DCompute(A), LevelLevel+1 

13.          rLevel_Wise_min(D,QL)  

 
After the Kmin spanning tree is constructed, fundamental cut-sets must be obtained by using this spanning 

tree. Algorithm 2 is used to satisfy this aim. The neighbourhood in Algorithm 2 is determined by using AT matrix 

of spanning tree Kmin (T=(V,E1)). 

 

Algorithm 2: Fundamental_Cut_Sets(G,AT,B,C) //Output=C 

1. 𝑇𝐷 ←
→

  ∑ 𝐴𝑇  //row-wise summation 

2. i1,2,…,|V| 

3.        V1, V3 
4.       if TD(i)=1 

5.           C(i,:) B(i,:)    //leaf cut-set 
6.       else if AT(i,j)=1 and TD(i)>1 and TD(j)>1 

7.            V1V1{vi} 

8             V3V3N(vi) 

9.            while V3 

10.              V1V1{first(V3)} 

11.              V3V3-{first(V3)} 

12.              V3V3N(first(V3)) 

13.          V2V-V1 

14.          vk,vjV, vjV1, vkV2, C(i,(vk,vj)) B(i,(vk,vj)) //internal cut-set 

 
Algorithm 2 gives the cut-set matrix as C by using Kmin spanning tree. There are two types cut-sets such as 

leaf cut-sets and internal cut-sets.  

 

Algorithm 3: Computing_Independence_Value(G,B,C,D) 

1. I,  Gr 

2. while V(IGr) 

3.       𝐸 =
→
Σ

𝐵 ∗ 𝐶𝑇 +
→
Σ

𝐷  // E is a column vector. 

4.      𝐼 ← 𝐼 ∪ {𝑣𝑖  |Ind(𝑣𝑖) is minimum in E} //corresponding cut is j. 

5.      GrGrN(vi) 

5.      vkV, and (vi,vk)E1, C(j,:)0 

 

The meaning of 
→
Σ

 is row-wise summation of corresponding matrix. 

 
3. Verifying the Optimality of Karci Algorithm on Special Graphs 

Assume that G=(V,E) is a graph without isolated and pendant nodes and the Kmin spanning tree of G with 

chords is a ring.  Each row of E corresponds to a node and its value corresponds to the effectiveness of related 

node. 

Theorem 1: Assume that G=(V,E) is graph without pendant nodes. Karci Algorithm obtains maximum 

independent set in case of |V|=|E|. 
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Proof: Assume that G=(V,E) is a graph without pendant node(s) and |V|=n, |E|=n. In this case, G is a ring and 

Kmin is serial connected tree. There is only one chord. Figure 1 illustrates Kmin of G and chord is illustrated on Kmin. 

 

1 2 3 4

k

k+1
n-1

n

.

.

.

…..

branches

chord

 
Figure 1. G=(V,E) is a ring and its corresponding Kmin (chord is illustrated on Kmin). 

 

Assume that chord c=(1,n), and the remaining edges are included in Kmin. B is the incidence matrix of G. 

There are n-1 fundamental cut-sets, and the corresponding cut-set matrix C has n-1 rows (each row is 

corresponding to a cut-set). Eq.1 illustrates the effectiveness of each node (the arrow on sigma letter demonstrates 

the row-wise summation). 

 

𝐸 =
→
Σ

𝐵 ∗ 𝐶𝑇 +
→
Σ

𝐷 (1) 

 

Each row of E is illustrated as Ind(vi) and this value is called as the effectiveness of corresponding node. Ind(2)= 

Ind (3)=…= Ind(n-1)=2. Ind(1)= Ind(n)=n. The independent set can be computed in two cases: 

Case 1: n is even. 

𝐼 = {
𝑛

2
,
𝑛

2
− 2,

𝑛

2
+ 2,

𝑛

2
− 4,

𝑛

2
+ 4, … . ,

𝑛

2
− 𝑘,

𝑛

2
+ 𝑘 } 

and  

𝐺𝑟 = {
𝑛

2
− 1,

𝑛

2
+ 1,

𝑛

2
− 3,

𝑛

2
+ 3,

𝑛

2
− 5,

𝑛

2
+ 5, … . ,

𝑛

2
− 𝑘 − 1,

𝑛

2
+ 𝑘 + 1 } 

If 
𝑛

2
 is odd, then

𝑛

2
+ 𝑘 + 1 = 𝑛 ⟹ 𝑘 =

𝑛

2
− 1. So, |I|=n/2. 

If 
𝑛

2
 is even, then 

𝑛

2
+ 𝑘 = 𝑛 ⟹ 𝑘 =

𝑛

2
. So, |I|=n/2. 

 

Case 2: n is odd. 

𝐼 = {⌈
𝑛

2
⌉ , ⌈

𝑛

2
⌉ − 2, ⌈

𝑛

2
⌉ + 2, ⌈

𝑛

2
⌉ − 4, ⌈

𝑛

2
⌉ + 4, … . , ⌈

𝑛

2
⌉ − 𝑘, ⌈

𝑛

2
⌉ + 𝑘 } 

and  

𝐺𝑟 = {⌈
𝑛

2
⌉ − 1, ⌈

𝑛

2
⌉ + 1, ⌈

𝑛

2
⌉ − 3, ⌈

𝑛

2
⌉ + 3, ⌈

𝑛

2
⌉ − 5, ⌈

𝑛

2
⌉ + 5, … . , ⌈

𝑛

2
⌉ − 𝑘 − 1, ⌈

𝑛

2
⌉ + 𝑘 + 1 } 

If ⌈
𝑛

2
⌉ is odd, then⌈

𝑛

2
⌉ + 𝑘 = 𝑛 ⟹ 𝑘 = ⌊

𝑛

2
⌋. So, |𝐼| = ⌊

𝑛

2
⌋. 

If ⌈
𝑛

2
⌉ is even, then ⌈

𝑛

2
⌉ − 𝑘 = 1 ⟹ 𝑘 = ⌈

𝑛

2
⌉ − 1. So, |𝐼| = ⌈

𝑛

2
⌉ − 1 ▀ 

 

Theorem 2: Assume that G=(V,E) is graph without pendant nodes. Karci Algorithm obtains maximum 

independent set in case of |V|+1=|E| (There are two chords of G on Kmin). 

 

Proof: In this case, G is a union of two rings with two nodes in common. One ring has got 3 nodes and the 

other has got n-1 nodes. In order to verify this claim, there will be more |V| cases. This theorem can be proved by 

using mathematical induction phenomena. 

Case 1: The first ring with three nodes is related to K3. The second ring contains n-1 nodes. The proof of 

Theorem 1 can be applied to the second ring, since the nodes in the first ring are neighbours. One of them can be 

selected to independent set (Fig.1 illustrates this case). 

 



24 

 

 

 

 

1 2 3 4

k

k+1
n-1

n

.

.

.

 ..

branches

chords

 
Figure 2: G=(V,E) and its corresponding Kmin (chords are illustrated on Kmin). 

 

Case 2: Assume that |V|=n and there are two rings such as R1 of size 4 and R2 of size n-2. The verification 

step must be applied to R2 at first, and assume that the two common nodes in R1 and R2 are v and u. 

 

a) n-2 is even. 

𝐼𝑅2 = {
𝑛 − 2

2
,
𝑛 − 2

2
− 2,

𝑛 − 2

2
+ 2,

𝑛 − 2

2
− 4,

𝑛 − 2

2
+ 4, … . ,

𝑛 − 2

2
− 𝑘,

𝑛 − 2

2
+ 𝑘 } 

and  

𝐺𝑟 = {
𝑛 − 2

2
− 1,

𝑛 − 2

2
+ 1,

𝑛 − 2

2
− 3,

𝑛 − 2

2
+ 3,

𝑛 − 2

2
− 5,

𝑛 − 2

2
+ 5, … . ,

𝑛 − 2

2
− 𝑘 − 1,

𝑛 − 2

2
+ 𝑘 + 1 } 

If 
𝑛−2

2
 is odd, then

𝑛−2

2
− 𝑘 = 1 ⟹ 𝑘 =

𝑛−4

2
. One of v and u will be element of I, and one node of R1 except u and 

v will be element of I. So, |𝐼| =
𝑛−2

2
+ 1 =

𝑛

2
. 

If 
𝑛−2

2
 is even, then 

𝑛−2

2
+ 𝑘 = 𝑛 − 2 ⟹ 𝑘 =

𝑛−2

2
. So, |𝐼| =

𝑛

2
. 

 

b) n-2 is odd, and one v and u will be element of independent set (vI or uI, u,vI). 

𝐼𝑅2 = {⌈
𝑛 − 2

2
⌉ , ⌈

𝑛 − 2

2
⌉ − 2, ⌈

𝑛 − 2

2
⌉ + 2, ⌈

𝑛 − 2

2
⌉ − 4, ⌈

𝑛 − 2

2
⌉ + 4, … . , ⌈

𝑛 − 2

2
⌉ − 𝑘, ⌈

𝑛 − 2

2
⌉ + 𝑘 } 

for R2.and Maximum independent set contains 𝐼𝑅2 and one element of R1 except u and v. 

𝐺𝑟 = {⌈
𝑛 − 2

2
⌉ − 1, ⌈

𝑛 − 2

2
⌉ + 1, ⌈

𝑛 − 2

2
⌉ − 3, ⌈

𝑛 − 2

2
⌉ + 3, ⌈

𝑛 − 2

2
⌉ − 5, ⌈

𝑛 − 2

2
⌉ + 5, … . , ⌈

𝑛 − 2

2
⌉ − 𝑘

− 1, ⌈
𝑛 − 2

2
⌉ + 𝑘 + 1 } 

If ⌈
𝑛−2

2
⌉ is odd, then⌈

𝑛−2

2
⌉ + 𝑘 = 𝑛 − 2 ⟹ 𝑘 = 𝑛 − 2 − ⌈

𝑛−2

2
⌉ −

1

2
=

𝑛−3

2
. So, |𝐼| = ⌊

𝑛

2
⌋. 

If ⌈
𝑛−2

2
⌉ is even, then ⌈

𝑛−2

2
⌉ + 𝑘 + 1 = 𝑛 − 2 ⟹ 𝑘 = 𝑛 − 3 −

𝑛−2

2
−

1

2
=

𝑛−5

2
. So, |𝐼| = ⌊

𝑛

2
⌋ . 

 

Case 3: Assume that |V|=n and there are two rings such as R1 of size n-k+1 and R2 of size k+1. The verification 

step must be applied to R2 at first, and assume that the two common nodes in R1 and R2 are v=1 and u=k+1. Fig.3, 

depicts this case. The verification process takes place for rings R1 and R2 as the situation used in the first two steps 

in this theorem. 

 

1 2 3 4

k

k+1
n-1

n

.

.

.

 ..

branches

chords

R2

R1

 
Figure 3: Kmin with two chords and there are two rings such as R1 and R2 with common nodes 1, k+1. 

Theorem 3: Assume that G=(V,E) is graph without pendant nodes. Karci Algorithm obtains maximum 

independent set in case of |V|+k=|E| (There are three chords of G on Kmin). 
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Proof: Assume that |V|=n and there are three. If Kmin is a serial connected graph, the following cases can be 

taken in consideration. 

 

a) n is even. 

𝐼 = {
𝑛

2
,
𝑛

2
− 2,

𝑛

2
+ 2,

𝑛

2
− 4,

𝑛

2
+ 4, … . ,

𝑛

2
− 𝑘,

𝑛

2
+ 𝑘 } 

and  

𝐺𝑟 = {
𝑛

2
− 1,

𝑛

2
+ 1,

𝑛

2
− 3,

𝑛

2
+ 3,

𝑛

2
− 5,

𝑛

2
+ 5, … . ,

𝑛

2
− 𝑘 − 1,

𝑛

2
+ 𝑘 + 1 } 

If 
𝑛

2
 is odd, then

𝑛

2
− 𝑘 = 1 ⟹ 𝑘 =

𝑛

2
− 1. One of v and u will be element of I, and one node of R1 except u and v 

will be element of I. So, |𝐼| =
𝑛

2
. 

If 
𝑛

2
 is even, then 

𝑛

2
+ 𝑘 = 𝑛 ⟹ 𝑘 =

𝑛

2
. So, |𝐼| =

𝑛

2
. 

 

b) n is odd. 

𝐼 = {⌈
𝑛

2
⌉ , ⌈

𝑛

2
⌉ − 2, ⌈

𝑛

2
⌉ + 2, ⌈

𝑛

2
⌉ − 4, ⌈

𝑛

2
⌉ + 4, … . , ⌈

𝑛

2
⌉ − 𝑘, ⌈

𝑛

2
⌉ + 𝑘 } 

and  

𝐺𝑟 = {⌈
𝑛

2
⌉ − 1, ⌈

𝑛

2
⌉ + 1, ⌈

𝑛

2
⌉ − 3, ⌈

𝑛

2
⌉ + 3, ⌈

𝑛

2
⌉ − 5, ⌈

𝑛

2
⌉ + 5, … . , ⌈

𝑛

2
⌉ − 𝑘 − 1, ⌈

𝑛

2
⌉ + 𝑘 + 1 } 

If ⌈
𝑛

2
⌉ is odd, then⌈

𝑛

2
⌉ + 𝑘 = 𝑛 ⟹ 𝑘 = ⌊

𝑛

2
⌋. So, |𝐼| = ⌊

𝑛

2
⌋. 

If ⌈
𝑛

2
⌉ is even, then ⌈

𝑛

2
⌉ − 𝑘 = 1 ⟹ 𝑘 = ⌈

𝑛

2
⌉ − 1. So, |𝐼| = ⌈

𝑛

2
⌉ − 1 . 

 

The proof of this theorem illustrated that if Kmin is a serial connected graph, the results of Karci Algorithm is 

same. Kmin is serial connected graph ▀ 

 

1 2 3 4
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k+1
n-1

n
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.

 ..

brancheschords

 
Figure 4: G=(V,E) and its corresponding Kmin (chords are illustrated on Kmin). 

 

Theorem 4: Assume that G=(V,E) is a simple graph where |V|=n, |𝐸| =
𝑛(𝑛−1)

2
− 1. Karci Algorithm obtains 

maximum independent set. 

 

Proof: The proof was handled based on graph seen in Fig.5 and (v1,vn)E. Assume that G=(V,E) where |V|=n 

and |E|==
𝑛(𝑛−1)

2
− 1. The independence value of each node is denoted as Ind(v). So,  

 

Ind(v1)=n-2+n-2=2n-4 

Ind(v3)=…=Ind(vn-1)=n-1+n-4+1+2+n-1=3n-3 

Ind(v2)=n-3+n-2+1+n-1=3n-5 

Ind(vn)=n-2+n-3+n-3+n-2=4n-10. 

 

The node v1 has minimum independence value, and so, Maximum Independent Set I={v1}, and 

N(v1)={v2,v3,v4,…,vn-1}. Removing v1 with its neighbours from graph, vn will be a pendant node. Thus, I={v1,vn} 

▀ 
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Figure 5: Kmin of G=(V,E) is a simple graph where |V|=n, |𝐸| =
𝑛(𝑛−1)

2
− 1. 

 

Theorem 5: Assume that G=(V,E) is a simple graph where |V|=n, |𝐸| =
𝑛(𝑛−1)

2
− 2. Karci Algorithm obtains 

maximum independent set. 

 

v1

v2 v3 v4 vn-1

vn

 ..

Branches

Chords

 ..vi vj

 

Figure 6: Kmin of G=(V,E) is a simple graph where |V|=n, |𝐸| =
𝑛(𝑛−1)

2
− 2. 

 

Proof: The proof was handled based on graph seen in Fig.6 and (v1,vn),(vi,vj)E. Assume that G=(V,E) where 

|V|=n and |E|==
𝑛(𝑛−1)

2
− 2. The independence value of each node is denoted as Ind(v). So,  

 

Ind(v1)=n-2+n-2=2n-4 

If vkv1,v2,vi,vj,vn, then 

Ind(vk)=n-1+n-1+n-4+1+2=3n-3 

Ind(v2)=n-3+n-2+n-1+1=3n-5 

Ind(vi)=Ind(vj)=n-2+n-2+n-4+2=3n-8 

Ind(vn)=n-2+n-3+n-3+n-2=4n-10. 

 

The node v1 has minimum independence value, and so, Maximum Independent Set I={v1}, and 

N(v1)={v2,v3,v4,…,vn-1}. Removing v1 with its neighbours from graph, vn will be an isolated node. Thus, 

I={v1,vn}▀ 
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Theorem 6: Assume that G=(V,E) is a simple graph where |V|=n, |𝐸| =
𝑛(𝑛−1)

2
− 2 and N(v1)=n-3. Karci 

Algorithm obtains maximum independent set. 

 

Proof: The proof was handled based on graph seen in Fig.7 and (v1,vn),(v1,vn-1)E. Assume that G=(V,E) 

where |V|=n and |E|==
𝑛(𝑛−1)

2
− 2. The independence value of each node is denoted as Ind(v). So,  

 

Ind(v1)=n-3+n-3=2n-6 

If vkv1,v2,vn-1,vn, then 

Ind(vk)=n-1+n-1+n-3+2=3n-3 

Ind(v2)=n-3+n-1+n-4+2=3n-6 

Ind(vn)=Ind(vn-1)=n-2+n-2+n-4+1+n-4+n-4=5n-15. 

 

The node v1 has minimum independence value, and so, Maximum Independent Set I={v1}, and 

N(v1)={v2,v3,v4,…,vn-2}. Removing v1 with its neighbours from graph, vn will be a pendant node. Thus, I={v1,vn} 

or I={v1,vn-1} ▀ 

 

v1

v2 v3 v4 vn-1

vn-1

 ..

Branches

Chords

vn

 

Figure 7: Kmin of G=(V,E) is a simple graph where |V|=n, |𝐸| =
𝑛(𝑛−1)

2
− 2, N(v1)=n-3. 

 

 

Theorem 7: Assume that G=(V,E) is connected graph without pendant nodes. Karci Algorithm obtains 

maximum independent set in case of not serial connected Kmin tree. 

 

Proof: Assume that G=(V,E) is a connected graph such as |V|=n and |E|=m, and corresponding Kmin tree is T. 

The minimum degree in G is (G) and maximum degree in G is (G). The independence values are illustrated as 

Ind(vi) and the minimum effectiveness value is Ind(vi)=2(G). There are n-1 fundamental cut-sets. One of the node 

with minimum independence value is selected for independent set firstly. So, the remaining cut-sets number is n-

1- (T) and the remaining  node number is n-1-(T). If n-1-(T)>0, the node selection process will take place 

again. 

The remaining independence values satisfy the following inequality. 

 

(𝑛 − 1 − 𝛿(𝑇))𝛿(𝐺)

𝑛 − 1
≤ ∀𝑣𝑖 ∈ 𝑉, 𝐼𝑛𝑑(𝑣𝑖) ≤

(𝑛 − 1 − 𝛿(𝑇))(∆(𝐺) + 𝛿(𝐺))

𝑛 − 1
 

 

The selected node with its neighbours in T are removed from Kmin, and after that independence values are 

computed with respect to the modified Kmin tree, the node selection process will take place with respect to the 

following equation (Assume that the maximum independent set is I and the selected node in the first step is v1, 

I={v1}, N=N(v1)).  

I=I{vi| min(Ind(vi)), viV} and N= N N(vi). 
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vi is also removed from Kmin tree with incident edges. This process carries on until IN=V. At each step the node 

with minimum independence value is selected, so, it has minimum node in G=(V,E) 

 

4. Conclusions 

Karci’s Algorithm for maximum independent set is a polynomial algorithm, and so, its time complexity will 

be a polynomial not exponential. The proofs of algorithm to obtain the maximum independent set for given 

dense/sparse graphs were obtained in this study. The obtained results are analytical results, not just computational 

results. Due to this case, this study was regarded as partial proof not complete proof. 
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