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Abstract
The aim of this paper is to deal with the uniqueness problem on meromorphic functions
in Cm sharing small functions with their difference polynomial, and the results obtained
can be seen as some extensions of previous results from one complex variable to several
complex variables.
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1. Introduction and main results
Let f be a non-constant meromorphic function in the complex domain. In this paper,

we assume that the reader is familiar with the standard notions in Nevanlinna’s value
distribution theory, such as the proximation function m(r, f), the (integrated) counting
function N(r, f), and the Nevanlinna characteristic function T (r, f) (see e.g., [2, 14, 26]).
A meromorphic function α(z) is called a small function with respect to f if T (r, α) =
o(T (r, f)) as r → ∞ outside a possible exceptional set of finite logarithmic measure. The
family of all small function of f is denoted by S(f), and let Ŝ(f) = S(f) ∪{∞}. We recall
the following definition.
Definition 1.1 ([12,26]). For α ∈ S(f)∩S(g), we say that f and g share α CM (IM) pro-
vided that f −α and g−α have the same zeros counting multiplicity (ignoring multiplicity).
If 1/f and 1/g share 0 CM (IM), then we say that f and g share ∞ CM (IM).

The well-known five-value theorem [20] says that two non-constant meromorphic func-
tions f and g on the complex plane C must be equal if they have the same inverse images
(ignoring multiplicities) for five distinct values in P1(C). Li and Qiao [16] proved that
the five-value theorem remains valid if five values are replaced with five small functions.
Rubel and Yang [22] considered the uniqueness problem that for an entire function f , if f
shares two finite values CM with f ′, then f = f ′. The result was considered into the case
of meromorphic functions by Mues and Steinmetz [19] and Gundersen [8]. We restate it
as follows:
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Theorem 1.2 ([8,19]). If a meromorphic function f and its derivative f ′ share two distinct
finite values a1, a2 CM, then f = f ′.

Variations and generations for Theorem 1.2 have been studied through out the last
decades(see e.g., [15,23]). In 1993, Rüssmann [23] considered the case of the linear differ-
ential polynomial and proved the following result:

Theorem 1.3 ([23]). Let f be a meromorphic function and

L(f) := f (n) + an−1f (n−1) + · · · + a0f, n ≥ 2,

where aj(j = 0, · · · , n − 1) are polynomials. If f and L(f) share two distinct finite values
CM, then L(f) = f up to some exceptional cases which were also given.

Owing to the difference analogue of the logarithmic derivative lemma verified indepen-
dently by Halburd-Korhonen [9, 10] and Chiang-Feng [4], many authors have paid more
attention to the study of uniqueness problems for meromorphic functions sharing values
or small functions with their shifts or difference operators(see [3, 5, 7, 11]). Heittokangas
et. al. [11] firstly considered a shift analogue of Theorem 1.2 and proved the following
result:

Theorem 1.4 ([11]). Let f(z) be a meromorphic function of finite order, and let η ∈ C.
If f(z) and f(z + η) share three distinct functions a, b, c ∈ Ŝ(f) with period η CM, then
f(z) = f(z + η) for all z ∈ C.

Cui and Chen [5] considered that a meromorphic function and its difference operator
share three distinct values CM, and proved the following result:

Theorem 1.5 ([5]). Let f(z) be a nonconstant meromorphic function of finite order, and
η be a nonzero finite complex constant. Let a, b be two distinct finite complex constants
and n be a positive integer. If ∆n

η f(z) and f(z) share a, b, ∞ CM, then ∆n
η f(z) ≡ f(z).

For the case of n = 1 in Theorem 1.5, one can also refer to [18]. And the version that
sharing small functions of Theorem 1.5 was obtained by Gao et. al. [7]. As we mentioned
above, a large number of research works on uniqueness problem have been studied in
complex plane(see e.g., [3, 5, 7, 8, 11, 16, 18, 22, 25, 26]). One may ask whether there exist
some corresponding uniqueness results for meromorphic functions sharing values with their
shifts or difference operators in the case of higher dimension? In 2018, Liu and Zhang [17]
gave an affirmative answer and showed some uniqueness results on meromorphic functions
f in several complex variables as follows in which f shared three small functions with the
general difference polynomial in f .

Define the difference polynomial in f as

P (f) = a0(z)f(z) + a1(z)f(z + η) + ... + an(z)f(z + nη) (n ∈ N),

where z ∈ Cm, η ∈ Cm\ {0} and ak(z)(0 ≤ k ≤ n) are small functions of f which are
not all zero and such that

∑n
k=0 ak(z) = 0. Obviously, P (f) denotes the more general

difference polynomial. Especially, if ak(z) = Ck
n(−1)n−k(0 ≤ k ≤ n), then P (f) = ∆n

η f .

For the difference polynomial P (f) in f with constant coefficients, Liu and Zhang [17]
proved the following result:

Theorem 1.6 ([17]). Let f : Cm → P1 be a nonconstant meromorphic function of finite
order and let a(z), b(z)(̸≡ 0) ∈ S(f) be two periodic meromorphic functions with period η,
where z, η ∈ Cm. If f(z) − a(z), P (f) − b(z), and ∆η ◦ P (f) − b(z) share 0, ∞ CM, then
P (f) = ∆η ◦ P (f).
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In this paper, we make further study on uniqueness problems of meromorphic functions
sharing small functions with their difference polynomial P (f) in several complex variables.
One first shows a difference analogue of Theorem 1.3 for meromorphic functions in several
complex variables as follows.

Theorem 1.7. Let f : Cm → P1 be a nonconstant meromorphic function of finite order
such that P (f) ̸≡ 0 and let a(z), b(z) ∈ S(f) be two distinct periodic meromorphic functions
with period η, where z ∈ Cm. If f(z) and P (f) share a(z), b(z), ∞ CM, then P (f) ≡ f(z).

The following corollary can be derived immediately from Theorem 1.7, which can be seen
as an extension of Theorem 1.5 from one complex variable to several complex variables.

Corollary 1.8. Let f : Cm → P1 be a nonconstant meromorphic function of finite order
such that ∆n

η f(z) ̸≡ 0 and let a(z), b(z) ∈ S(f) be two distinct periodic meromorphic
functions with period η, where z ∈ Cm. If f(z) and ∆n

η f(z) share a(z), b(z), ∞ CM, then
∆n

η f(z) ≡ f(z).

Furthermore, if ∞ is replaced by a small function c(z) ∈ S(f) in Theorem 1.7, we obtain
the following theorem:

Theorem 1.9. Let f : Cm → P1 be a nonconstant meromorphic function of finite order
such that P (f) ̸≡ 0 and let a(z), b(z), c(z) ∈ S(f) be three distinct periodic meromorphic
functions with period η, where z ∈ Cm. If f(z) and P (f) share a(z), b(z), c(z) CM, then
P (f) ≡ f(z).

For the case ak(z) = Ck
n(−1)n−k(0 ≤ k ≤ n), Theorem 1.9 can be written as follows.

Corollary 1.10. Let f : Cm → P1 be a nonconstant meromorphic function of finite order
such that P (f) ̸≡ 0 and let a(z), b(z), c(z) ∈ S(f) be three distinct periodic meromorphic
functions with period η, where z ∈ Cm. If f(z) and ∆n

η f(z) share a(z), b(z), c(z) CM, then
∆n

η f(z) ≡ f(z).

By Theorem 1.7 and Theorem 1.9, one gets directly the following result. We omit the
details of the proof.

Theorem 1.11. Let f : Cm → P1 be a nonconstant meromorphic function of finite
order such that P (f) ̸≡ 0 and let a(z), b(z) ∈ S(f), c(z) ∈ Ŝ(f) be three distinct periodic
meromorphic functions with period η, where z ∈ Cm. If f(z) and P (f) share a(z), b(z), c(z)
CM, then P (f) ≡ f(z).

The following examples show that the conditions and the conclusion in Theorem 1.11
can be satisfied and that some conditions are necessary.

Example 1.12. Let m = 2, η = (ln 2, 0), z = (z1, z2), and f(z) = ez1+z2 . Let n = 2 and
P (f) = a0(z)f(z) + a1(z)f(z + η) + a2(z)f(z + 2η). Obviously, f(z + kη) = 2kez1+z2(k =
0, 1, 2) and P (f) = (a0(z) + 2a1(z) + 4a2(z))ez1+z2 .

• Let a0(z) = 2(z1 + z2) + 3, a1(z) = −3(z1 + z2) − 5, a2(z) = z1 + z2 + 2. One thus
knows f = P (f) = ez1+z2 .

• Let ak(z) = Ck
n(−1)n−k(k = 0, 1, 2), then P (f) = ∆n

η f = ez1+z2 = f.

Example 1.13. Let m = 2, η = (ln 3, 0), z = (z1, z2), and f(z) = ez1+z2 . Let n =
2, a0(z) = 3(z1 + z2) + 2, a1(z) = −4(z1 + z2) − 3, a2(z) = z1 + z2 + 1. Then, f(z + kη) =
3kez1+z2(k = 0, 1, 2) and P (f) = 2ez1+z2 . Obviously, f(z) and P (f) share 0, ∞ CM, but
P (f) ̸≡ f(z).
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2. Basic notions and auxiliary lemmas
We firstly recall some basis notions in several complex variables (see [21,24]). For a point

z0 ∈ Cm, the entire function f(z) on Cm can be written as f(z) =
∑∞

i=0 Qi(z − z0), where
the term Qi(z−z0) is either identically zero or a homogeneous polynomial of degree i. For a
divisor ν on Cm, we denote the zero-multiplicity of f at z0 by νf (z0) = min{i | Qi(z−z0) ̸=
0}. Therefore, we can define a divisor νf such that νf (z0) equals the zero multiplicity of
νf at z0 in the sense of [6, Definition 2.1] whenever z0 is a regular point of an analytic
set |νf | = {z ∈ Cm| νf (z) ̸= 0}. Let f(z) be a nonzero meromorphic function on Cm. For
each z0 ∈ Cm, we can choose non-zero holomorphic functions f1 and f2 on a neighborhood
U of z0 such that f = f1

f2
on U and dim{z ∈ Cm | f1(z) = f2(z) = 0} ≤ m − 2. Define

νf = νf1 and ν 1
f

= νf2 , which are independent of the choices of f1 and f2.

Let z = (z1, z2, · · · , zm) ∈ Cm and r > 0, we set ∥z∥ =
√

|z1|2 + · · · + |zm|2, and

Sm(r) = {z ∈ Cm| ∥z∥ = r}, Bm(r) = {z ∈ Cm| ∥z∥ < r}.

Define the differential operators ∂ =
∑m

j=1
∂

∂zj
dzj and ∂ =

∑m
j=1

∂
∂zj

dzj . We set d =

∂ + ∂, dc =
√

−1
4π (∂ − ∂), and write

ηm(z) :=
(
ddc∥z∥2

)m−1
, σm(z) := dc log ∥z∥2 ∧

(
ddc log ∥z∥2

)m−1

for z ∈ Cm\{0}. Set

n(t, νf ) =


∑
|z|≤t

νf (z), if m = 1,

∫
|ν|∩Bm(t)

νf (z)ηm(z), if m ≥ 2.

The counting functions of νf and the proximity function of f can be define respectively
by

N(r, νf ) =
∫ r

1

n(t, νf )
t2m−1 dt, (1 < r < ∞),

m(r, f) =
∫

Sm(r)
log+ |f(z)|σm(z).

Then the Nevanlinna characteristic function of f is defined as T (r, f) = m(r, f) + N(r, f).

The following lemmas can be used in the latter proofs of main results in this paper
frequently.

Lemma 2.1. ([13, Theorem 3.1]). Let f : Cm → P1 be a non-constant meromorphic
function such that f(0) ̸= 0, ∞, and let c ∈ Cm, ϵ > 0. If the hyper-order ς(f) = ς < 2/3,
then ∫

∂Bm(r)
log+

∣∣∣∣f(z + c)
f(z)

∣∣∣∣σm(z) = o

(
T (r, f)
r1− 3

2 ς−ϵ

)
where r → ∞ outside of a possible exceptional set E ⊂ [1, +∞) of finite logarithmic
measure

∫
E 1/dt < ∞.

Lemma 2.2. ([13, Theorem 4.3]). Let f : Cm → P1 be a meromorphic function, let
c ∈ Cm, ϵ > 0. If hyper-order ς(f) = ς < 2/3, then

T (r, f(z + c)) = T (r, f) + o

(
T (r, f)
r1− 3

2 ς−ϵ

)
where r → ∞ outside of an exceptional set of finite logarithmic measure.
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Lemma 2.3. Let f be a non-constant meromorphic function of finite order on Cm, η ∈
Cm\ {0}. Then for any periodic small function a(z) of f with period η,

m

(
r,

P (f)
f(z) − a(z)

)
= o(T (r, f))

where r → ∞ outside of a possible exceptional set E ⊂ [1, +∞) of finite logarithmic
measure

∫
E 1/dt < ∞.

Proof. By
∑n

k=0 ak = 0 and Lemma 2.1 we have

m

(
r,

P (f)
f(z) − a(z)

)
= m

(
r,

∑n
k=0 ak(z)(f(z + kc) − a(z))

f(z) − a(z)

)
≤

n∑
k=0

m

(
r,

f(z + kc) − a(z))
f(z) − a(z)

)
+ o(T (r, f))

= o(T (r, f − a)) + o(T (r, f)) = o(T (r, f)).

□

Lemma 2.4. ([1, Corollary 4.5]). Let a1(z), a2(z), · · · , an(z) be n meromorphic functions
in Cm and g1(z), g2(z), · · · , gn(z) be n entire functions in Cm satisfying

n∑
i=1

ai(z)egi(z) ≡ 0.

If for all 1 ≤ i ≤ n

T (r, ai) = o(T (r, egj−gk)), j ̸= k,

then ai(z) ≡ 0 for 1 ≤ i ≤ n.

Lemma 2.5. ([17]). Let α(z) be a polynomial in z, z = (z1, z2, · · · , zm) ∈ Cm. If α(z) is
of degree n(≥ 1), then deg (α(z + c) − α(z)) < n holds for any c = (c1, c2, · · · , cm) ∈ Cm.

Lemma 2.6. ([12, Theorem 1.101]). Suppose that f1(z), f2(z), · · · , fn(z) are linearly in-
dependent meromorphic functions in Cm such that

f1 + f2 + · · · + fn ≡ 1.

Then for 1 ≤ j ≤ n, R > ρ > r > r0,

T (r, fj) ≤ N(r, fj) +
n∑

k=1

{
N(r,

1
fk

) − N(r, fk)
}

+ N(r, W )

− N(r,
1

W
) + l log

{
(ρ

r
)2m−1 T (R)

ρ − r

}
+ O(1),

where W = Wν1···νn−1(f1, f2, · · · , fn) ̸≡ 0 is a Wronskian determinant,

n − 1 ≤ l = |ν1| + · · · + |νn−1| ≤ n(n − 1)
2

,

and where

T (r) = max
1≤k≤n

{T (r, fk)} .
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3. Proof of Theorem 1.7
Since f(z) and P (f) share a, b, ∞, there exist two polynomials α(z), β(z), z ∈ Cm such

that
P (f) − a(z)
f(z) − a(z)

= eα(z),
P (f) − b(z)
f(z) − b(z)

= eβ(z). (3.1)

If eα(z) ≡ 1 or eβ(z) ≡ 1 or eα(z) ≡ eβ(z), then by (3.1), we get P (f) ≡ f(z). We now
suppose to the contrary that P (f) ̸≡ f(z), which means

eα(z) ̸≡ 1, eβ(z) ̸≡ 1, eα(z) ̸≡ eβ(z).

By Lemma 2.3, by the first equation in (3.1) one has

T (r, eα) = m (r, eα) ≤ m

(
r,

P (f)
f(z) − a(z)

)
+ m

(
r,

a(z)
f(z) − a(z)

)
+ O(1)

≤ T (r, f) + S(r, f). (3.2)

Similarity,

T (r, eβ) ≤ T (r, f) + S(r, f), (3.3)

where r → ∞ outside of a possible exceptional set E ⊂ [1, +∞) of finite logarithmic
measure

∫
E 1/dt < ∞. On the other hand, we get from (3.1) that,

f = beβ − aeα + a − b

eβ − eα
= (b − a)(eβ − 1)

eβ − eα
+ a, (3.4)

P (f) = eα(b − a)(eβ − 1)
eβ − eα

+ a. (3.5)

It follows from (3.2)-(3.4) that

T (r, f) ≤ T (r, eβ) + T (r, eβ − eα) + S(r, f)

≤ T (r, eα) + 2T (r, eβ) + S(r, f)
≤ 3T (r, f) + S(r, f),

which implies that
T (r, f) = O(T (r, eα) + T (r, eβ)) (3.6)

For η ∈ Cm, f : Cm → P1, α : Cm → P1, β : Cm → P1 and k ∈ {0, 1, 2, · · · , n} , we use
the short notations for brevity:

f̄k = f(z + kη), ᾱk = α(z + kη), β̄k = β(z + kη),

Āk = ᾱk − α, B̄k = β̄k − β.

By (3.4) and the definition of P (f), we have

P (f) =
n∑

k=0
akf̄k =

n∑
k=0

ak

(
f̄k − a

)
=

n∑
k=0

ak

(b − a)
(
eβ̄k − 1

)
eβ̄k − eᾱk

.

Together with (3.5),

n∑
k=0

ak

(b − a)
(
eβ̄k − 1

)
eβ̄k − eᾱk

= eα(b − a)(eβ − 1)
eβ − eα

+ a.



Meromorphic functions sharing small functions 79

Multiplying by
∏n

k=0

(
eβ̄k − eᾱk

)
on both sides of the above equation yields

n∑
k=0

ak(b − a)
(
eβ̄k − 1

) n∏
j=0,j ̸=k

(
eβ̄j − eᾱj

)

= eα(b − a)(eβ − 1)
n∏

k=1

(
eβ̄k − eᾱk

)
+ a

n∏
k=0

(
eβ̄k − eᾱk

)
. (3.7)

Let’s divide into three cases as follows.

Case 1. deg(α) > deg(β) ≥ 0. In this case, deg(α) ≥ 1, T (r, eβ) = o(T (r, eα)). By
(3.2) and (3.6), one further has

T (r, eβ) = S(r, f), T (r, f) = O(T (r, eα)).

Then for k ∈ {0, 1, · · · , n}, a, b, ak ∈ S(eα). In view of Lemma 2.5, deg(Āk) < deg(α) and
thus T (r, eĀk) = o(T (r, eα)).

For (3.7), we rewrite it as the following form:
n∑

k=0
ak(b − a)

(
eβ̄k − 1

) n∏
j=0,j ̸=k

(
eβ̄j − eĀj

eα
)

= eα(b − a)(eβ − 1)
n∏

k=1

(
eβ̄k − eĀk

eα
)

+ a
n∏

k=0

(
eβ̄k − eĀk

eα
)

. (3.8)

The above equality can be seen as the polynomial in eα with small function coefficients as
follows:

Dn+1e(n+1)α + Dnenα + · · · + D1eα + D0 = 0, (3.9)

where Ds are polynomials in a, b, eĀk , eβ̄k , ak(k = 0, 1, · · · , n) and are also small functions
of eα, namely,

T (r, Ds) = o (T (r, eα)) (s = 0, 1, · · · , n + 1).
Applying Lemma 2.4 to (3.9), one deduce that Ds = 0(s = 0, 1, · · · , n + 1). On the other
hand,

Dn+1 = (a − b)(eβ − 1)
n∏

k=1

(
−eĀk

)
− a

n∏
k=0

(
−eĀk

)
=
(
(b − a)(eβ − 1) − a

) n∏
k=0

(
−eĀk

)
.

Thus by Dn+1 = 0, one has (b−a)(eβ −1)−a = 0. If a = 0, then eβ = 1 which contradicts
the assumption that eβ(z) ̸≡ 1. If b = 0, eβ = 0 which is impossible. So, ab ̸= 0 and
eβ = b

b − a
. From (3.8), the term D0 can be written as

D0 =
n∑

k=0
ak(b − a)

(
eβ̄k − 1

) n∏
j=0,j ̸=k

eβ̄j − a
n∏

k=0
eβ̄k

.

Substituting eβ = b

b − a
into the above equality, one deduces

D0 = − abn+1

(b − a)n+1 ̸= 0,

which is a contradiction.



80 M. Wang, Z. Liu

Case 2. deg(β) > deg(α) ≥ 0. By the similar method as in Case 1, from (3.3) and
(3.6) one deduces that

T (r, eα) = S(r, f), T (r, f) = O(T (r, eβ)),

and a, b, ak(k = 0, 1, · · · , n) are all small functions with respect to eβ. By Lemma 2.5, one
also has deg(B̄k) < deg(β) and T (r, eB̄k) = o(T (r, eβ)) for k ∈ {0, 1, 2, · · · , n} . For (3.7),
one has the following form:

n∑
k=0

ak(b − a)
(
eB̄k

eβ − 1
) n∏

j=0,j ̸=k

(
eB̄j

eβ − eᾱj
)

= eα(b − a)(eβ − 1)
n∏

k=1

(
eB̄k

eβ − eᾱk
)

+ a
n∏

k=0

(
eB̄k

eβ − eᾱk
)

.

The above equality can be further rewritten as

Dn+1e(n+1)β + Dnenβ + · · · + D1eβ + D0 = 0,

where Ds ∈ S(eβ). It thus follows from Lemma 2.4 that Ds = 0 for s = 0, 1, · · · , n + 1.
By utilizing

∑n
k=0 ak = 0, one has for the term Dn+1,

Dn+1 =
n∑

k=0
ak(b − a)eB̄k

n∏
j=0,j ̸=k

eB̄j − eα(b − a)
n∏

k=1
eB̄k − a

n∏
k=0

eB̄k

= − (a + (b − a)eα)
n∏

k=0
eB̄k

.

Then Dn+1 = 0 yields a + (b − a)eα = 0. By some simple discussion, one gets the
contradiction for the case that a = 0 or b = 0. Hence, ab ̸= 0 and eα = a

a − b
. Furthermore,

D0 turns into

D0 = −
n∑

k=0
ak(b − a)

n∏
j=0,j ̸=k

(
−eᾱj

)
+ eα(b − a)

n∏
k=1

(
−eᾱk

)
− a

n∏
k=0

(
−eᾱk

)

= − ban+1

(b − a)n+1 .

Since a, b are two distinct functions, D0 ̸= 0, which contradicts the fact that Ds = 0 for
s = 0, 1, · · · , n + 1.

Case 3. deg(β) = deg(α) ≥ 0.

Subcase 3.1. deg(β) = deg(α) = 0. In this case, eα and eβ are nonzero constants.
Together with (3.4), f(z) is a periodic function of period η. By the definition of P (f), we
have

P (f) =
n∑

k=0
akf̄k =

n∑
k=0

akf = 0,

which contradicts to the assumption that P (f) ̸≡ 0.

Subcase 3.2. deg(β) = deg(α) ≥ 1. Obviously, T (r, eβ) = O(T (r, eα)). By (3.6), one
has

T (r, f) = O(T (r, eα)), T (r, f) = O(T (r, eβ)),

and a, b, ak, eĀk
, eB̄k(k = 0, 1, · · · , n) are all small functions of eα and eβ. Set γ(z) =

β(z) − α(z), then γ(z) is a polynomial in z ∈ Cm such that deg(γ) ≤ deg(α) = deg(β).
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If deg(γ) < deg(α), T (r, eγ) = o(T (r, eα)). Then (3.7) becomes
n∑

k=0
ak(b − a)

(
eB̄k

eγeα − 1
) n∏

j=0,j ̸=k

(
eB̄j

eγeα − eĀj
eα
)

= eα(b − a)(eγeα − 1)
n∏

k=1

(
eB̄k

eγeα − eĀk
eα
)

+ a
n∏

k=0

(
eB̄k

eγeα − eĀk
eα
)

.

The above equality can be rewritten as the following form:

Dn+2e(n+2)α + Dn+1e(n+1)α + Dnenα = 0,

where Ds satisfies T (r, Ds) = o(T (r, eα))(s = n, n + 1, n + 2). One thus gets Ds ≡ 0(s =
n, n + 1, n + 2) by Lemma 2.4. On the other hand,

Dn+2 = (b − a)eγ
n∏

k=1

(
eB̄k

eγ − eĀk
)

= (b − a)eγ−nα
n∏

k=1

(
eβ̄k − eᾱk

)
,

which yields Dn+2 ̸= 0 for eα ̸= eβ, a contradiction.

If deg(γ) = deg(α), one rewrite (3.7) as
n∑

k=0
ak(b − a)

(
eB̄k

eβ − 1
) n∏

j=0,j ̸=k

(
eB̄j

eβ − eĀj
eα
)

= eα(b − a)(eβ − 1)
n∏

k=1

(
eB̄k

eβ − eĀk
eα
)

+ a
n∏

k=0

(
eB̄k

eβ − eĀk
eα
)

,

and we get
χ∑

k=0
Dkelkα+skβ = 0, (3.10)

where 0 ≤ lk ≤ n + 1, 0 ≤ sk ≤ n + 1 and Dk(k = 0, 1, · · · , χ) are all small functions
of eα and eβ. Notice that Dk are not all zeros. For the term e(n+1)α+β, its coefficient
(b − a)

∏n
k=1(−eĀk) is not zero since b − a ̸= 0, and the coefficient(b − a)

∏n
k=1 eB̄k of the

term eα+(n+1)β is not zero.

Assume that deg(liα + siβ − ljα − sjβ) = deg(α) = deg(β) for all 0 ≤ i ≤ χ, 0 ≤ j ≤ χ.
Set

φk = Dkelkα+skβ, k = 0, 1, · · · , χ.

From (3.10),
∑χ

k=0 φk = 0. We deduce from the basic linear algebra that there exist
j ∈ {0, 1, 2, · · · , χ} and some nonzero complex numbers λk such that

φj =
∑
k∈κ

λkφk, κ ⊂ {0, 1, · · · , j − 1, j + 1, · · · , χ} ,

where {φk|k ∈ κ} are linearly independent. Divide both of the two sides of the above
equality by φj , we have

1 =
∑
k∈κ

λk
φk

φj
=
∑
k∈κ

λk
Dk

Dj
e(lk−lj)α+(sk−sj)β.

Note that the zeros and poles of
{

λk
Dk

Dj
e(lk−lj)α+(sk−sj)β

}
and their Wronskian determi-

nant come only from the zeros and poles of Dk(k ∈ κ) and Dj . Then by Lemma 2.6,

T

(
r, λk

Dk

Dj
e(lk−lj)α+(sk−sj)β

)
≤ O

∑
k∈κ

T (r, Dk) + T (r, Dj)

 = o(T (r, eα)).
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This is impossible since deg(liα + siβ − ljα − sjβ) = deg(α) = deg(β). Hence there exist
two distinct integers i, j ∈ {0, 1, 2, · · · , χ} such that deg(liα + siβ − ljα − sjβ) < deg(α) =
deg(β). Noting that (li, si) ̸= (lj , sj). If li − lj = 0, si − sj ̸= 0 or li − lj ̸= 0, si − sj = 0,
then deg(liα + siβ − ljα − sjβ) = deg(α) = deg(β). Hence, li − lj ̸= 0 and si − sj ̸= 0.

By simple computation, we have

eβ =
(
e(si−sj)β

)1/(si−sj)
=
(
e(lj−li)αe(si−sj)β−(lj−li)α

)1/(si−sj)

= e((si−sj)β−(lj−li)α)/(si−sj)e((lj−li)α)/(si−sj) = Hetα,

where H = e((si−sj)β−(lj−li)α)/(si−sj) and t = (lj − li) / (si − sj) . It follows from deg(liα +
siβ − ljα − sjβ) < deg(α) = deg(β) that H ∈ S(eα), H ∈ S(eβ). On the other hand,
deg(γ) = deg(α) = deg(β), we know that t ̸= 1. Without loss of generality, we assume
that |t| ≤ 1. Otherwise, we may consider eα =

(
eβ/H

)1/t
.

Suppose that t = q/p > 0, where p, q are positive co-prime integers and q < p. Denote
eα̃ = eα/p, T (r, eα) = pT (r, eα̃) and we know a, b, H, eĀk

, eB̄k
, ak(k = 0, 1, · · · , n) are all

small functions with respect to eα̃. Note that eβ = Hetα = Heqα̃, then (3.7) can be
rewritten as

n∑
k=0

ak(b − a)
(
eB̄k

Heqα̃ − 1
) n∏

j=0,j ̸=k

(
eB̄j

Heqα̃ − eĀj
epα̃
)

= epα̃(b − a)
(
Heqα̃ − 1

) n∏
k=1

(
eB̄k

Heqα̃ − eĀk
epα̃
)

+ a
n∏

k=0

(
eB̄k

Heqα̃ − eĀk
epα̃
)

.

For the above equality, one also gets

Ee(n+1)pα̃+qα̃ + P0(α̃) = 0, (3.11)

where E = (a − b)H
∏n

k=1

(
−eĀk

)
is a nonzero polynomial for a ̸= b and P0(eα̃) is a

polynomial in eα̃ of degree at most (n + 1)p with small coefficients. Obviously, T (r, E) =
o
(
T (r, eα̃)

)
. Applying Lemma 2.4 to (3.11) again, we deduce that E ≡ 0, a contradiction.

Suppose now that t = −q/p < 0, where p, q are positive co-prime integers and q ≤ p.
Denote eα̃ = eα/p, then eβ = Hetα = He−qα̃ and T (r, eα) = pT (r, eα̃). Therefrore,
a, b, H, eĀk

, eB̄k
, ak(k = 0, 1, · · · , n) are all small functions with respect to eα̃. From (3.7),

one gets
n∑

k=0

ak(b − a)
(

eB̄k

He−qα̃ − 1
) n∏

j=0,j ̸=k

(
eB̄j

He−qα̃ − eĀj

epα̃
)

= epα̃(b − a)
(

He−qα̃ − 1
) n∏

k=1

(
eB̄k

He−qα̃ − eĀk

epα̃
)

+ a

n∏
k=0

(
eB̄k

He−qα̃ − eĀk

epα̃
)

.

Multiplying by e(n+1)qα̃ on both sides of the above equation,
n∑

k=0
ak(b − a)

(
eB̄k

H − eqα̃
) n∏

j=0,j ̸=k

(
eB̄j

H − eĀj
e(p+q)α̃

)

= epα̃(b − a)
(
H − eqα̃

) n∏
k=1

(
eB̄k

H − eĀk
e(p+q)α̃

)
+ a

n∏
k=0

(
eB̄k

H − eĀk
e(p+q)α̃

)
.

Furthermore, we obtain

Ee(n+1)(p+q)α̃ + P0(eα̃) + E0 = 0, (3.12)
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where

E = −b
n∏

k=0

(
−eĀk

)
, E0 = −a

n∏
k=0

(
eB̄k

H
)

and P0(eα̃) is a polynomial in eα̃ with small function coefficients such that 1 ≤ deg(P0(eα̃))
≤ (n + 1)p + nq. Obviously, E ∈ S(eα̃), E0 ∈ S(eα̃) Applying Lemma 2.4 to (3.12),
E = E0 = 0. One thus gets a = b = 0, a contradiction.

4. Proof of Theorem 1.9
Since a(z), b(z), c(z) are distinct, we may assume that a(z)c(z) ̸≡ 0. Let

g1(z) = f(z) − a(z)
f(z) − b(z)

· c(z) − b(z)
c(z) − a(z)

, g2(z) = P (f) − a(z)
P (f) − b(z)

· c(z) − b(z)
c(z) − a(z)

. (4.1)

Then g1(z) and g2(z) share the values 0, 1, ∞ CM. Hence, there exist two polynomials
α(z) and β(z), z ∈ Cm such that

g1(z)
g2(z)

= eα(z),
g1(z) − 1
g2(z) − 1

= eβ(z). (4.2)

Suppose that P (f) ̸≡ f(z). Then

eα(z) ̸≡ 1, eβ(z) ̸≡ 1, eα(z) ̸≡ eβ(z).

By Lemma 2.2, we deduce from (4.1) and (4.2) that
T (r, eα) ≤ (n + 2)T (r, f) + S(r, f), (4.3)

T (r, eβ) ≤ (n + 2)T (r, f) + S(r, f), (4.4)
where r → ∞ outside of an exceptional set of finite logarithmic measure. It follows from
(4.2) that

g1(z) = 1 − eβ(z)

1 − eβ(z)−α(z) , g2(z) = 1 − eβ(z)

eα(z) − eβ(z) . (4.5)

By (4.1), (4.3), (4.4), and (4.5) we have

T (r, f) = T (r, g1) + S(r, f) ≤ T (r, eα) + 2T (r, eβ) + S(r, f)
≤ (3n + 6)T (r, f) + S(r, f). (4.6)

Let d = c − b

c − a
, d ̸= 0, 1. We thus conclude from (4.1) and (4.5) that

f(z) = (b − a)d(eα − eβ)
(1 − d)eα − eα+β + deβ

+ b, (4.7)

P (f) = b − adeα + (ad − b)eβ

1 − (1 − d)eβ − deα
. (4.8)

As similar discussion as showed in Theorem 1.7, we use the short notations for brevity:
f̄k = f(z + kη), ᾱk = α(z + kη), β̄k = β(z + kη), Āk = ᾱk − α, B̄k = β̄k − β.

By (4.7) and the definition of P (f), we have

P (f) =
n∑

k=0
akf̄k =

n∑
k=0

ak

(
f̄k − b

)
=

n∑
k=0

ak
(b − a)d(eᾱk − eβ̄k)

(1 − d)eᾱk − eᾱk+β̄k + deβ̄k
.

Together with (4.8),
n∑

k=0
ak

(b − a)d(eᾱk − eβ̄k)
(1 − d)eᾱk − eᾱk+β̄k + deβ̄k

= b − adeα + (ad − b)eβ

1 − (1 − d)eβ − deα
. (4.9)
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Multiplying by
∏n

k=0

(
(1 − d)eᾱk − eᾱk+β̄k + deβ̄k

)
and

(
1 − (1 − d)eβ − deα

)
on both

sides of (4.9), it yields
n∑

k=0

ak(b − a)d(eᾱk

− eβ̄k

)
(
1 − (1 − d)eβ − deα

)
·

n∏
j=0,j ̸=k

[
(1 − d)eᾱj

− eᾱj+β̄j

+ deβ̄j
]

=
(
b − adeα + (ad − b)eβ

) n∏
k=0

(
(1 − d)eᾱk

− eᾱk+β̄k

+ deβ̄k
)

. (4.10)

We consider it in three cases.

Case 1. deg(α) > deg(β) ≥ 0. Obviously, deg(α) ≥ 1, T (r, eβ) = o(T (r, eα)). It follows
from (4.6) that

T (r, f) ≤ T (r, eα) + S(r, f) ≤ (3n + 6)T (r, f) + S(r, f),

which implies that T (r, f) = O(T (r, eα)). Thus, a, b, d, ak, Āk(k = 0, 1, · · · , n) are all small
functions of eα. From (4.10), we have

n∑
k=0

ak(b − a)d
(
eĀk

eα − eβ̄k
) (

1 − (1 − d)eβ − deα
)

·
n∏

j=0,j ̸=k

((
1 − d − eβ̄j

)
eĀj

eα + deβ̄j
)

=
(
b − adeα + (ad − b)eβ

) n∏
k=0

((
1 − d − eβ̄k

)
eĀk

eα + deβ̄k
)

.

For the above equality, we further get

Dn+2e(n+2)α + Dn+1e(n+1)α + · · · + D1eα + D0 = 0, (4.11)

where Ds(s = 0, 1, · · · , n + 2) are polynomials in a, b, d, eĀk , eβ̄k , ak(k = 0, 1, · · · , n). Ap-
plying Lemma 2.4 to (4.11), Ds ≡ 0(s = 0, 1, · · · , n + 2). In particular,

D0 =
n∑

k=0
ak(b − a)d(−eβ̄k)

(
1 − (1 − d)eβ

) ∏
j=0,j ̸=k

deβ̄j −
(
b + (ad − b)eβ

) n∏
k=0

deβ̄k

=
n∑

k=0
ak(a − b)

(
1 − (1 − d)eβ

) n∏
k=0

deβ̄k −
(
b + (ad − b)eβ

) n∏
k=0

deβ̄k

= −
(
b + (ad − b)eβ

) n∏
k=0

deβ̄k
,

which ensures that b + (ad − b)eβ = 0. Note that b − ad = c(b − a)
c − a

̸= 0, we have that

eβ = b

b − ad
. (4.12)

Substituting it into Dn+2, it gives

Dn+2 =
n∑

k=0

ak(b − a)deĀk

(−d)
n∏

j=0,j ̸=k

(
1 − d − eβ̄j

)
eĀj

+ ad

n∏
k=0

(
1 − d − eβ̄k

)
eĀk

=

(
n∑

k=0

ak(b − a)d(−d)
(

1 − d − b

b − ad

)n

+ ad

(
1 − d − b

b − ad

)n+1
)

n∏
k=0

eĀk

= ad

(
1 − d − b

b − ad

)n+1 n∏
k=0

eĀk

= 0.
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By ad ̸= 0, 1 − d − b

b − ad
= 0. Together with (4.12), we have

eβ = 1 − d.

Substituting it into (4.9), we get
b − a

1 − d

n∑
k=0

akeĀk
eα = a + b − ad − aeα

2 − d − eα
. (4.13)

For simplicity, we denote U = b − a

1 − d

∑n
k=0 akeĀk , it is easy to check that T (r, U) = S(r, eα).

By the assumption that P (f) ̸≡ 0, U ̸= 0. (4.13) can be rewritten as the following equality.
Ue2α = ((2 − d)U + a) eα + ad − b − a,

which yields 2T (r, eα) = T (r, eα) + S(r, eα), a contradiction.
Case 2. deg(β) > deg(α) ≥ 0. In this case, deg(β) ≥ 1, T (r, eα) = o(T (r, eβ)). By the

similar discussion as showed in Case 1, one has T (r, f) = O(T (r, eβ)). And (4.10) can be
rewritten as

Dn+2e(n+2)β + Dn+1e(n+1)β + · · · + D1eβ + D0 = 0, (4.14)
where Ds ∈ S(eβ). Applying Lemma 2.4 to (4.14), Ds ≡ 0 for s = 0, 1, · · · , n + 2. For the
term D0, we know

D0 =
n∑

k=0
ak(b − a)deᾱk(1 − deα)

n∏
j=0,j ̸=k

(1 − d)eᾱj − (b − adeα)
n∏

k=0
(1 − d)eᾱk

=
n∑

k=0
ak(b − a)d(1 − deα)(1 − d)n

n∏
k=0

eᾱk − (b − adeα) (1 − d)n+1
n∏

k=0
eᾱk

= (adeα − b) (1 − d)n+1
n∏

k=0
eᾱk

.

Since ad ̸= 0 and d ̸= 1, D0 = 0 implies

eα = b

ad
. (4.15)

Substituting it into Dn+2, it gives

Dn+2 =
n∑

k=0
ak(b − a)deB̄k(1 − d)

n∏
j=0,j ̸=k

(d − eᾱj )eB̄j + (b − ad)
n∏

k=0
(d − eα)eB̄k

=
(

n∑
k=0

ak(b − a)d(1 − d) + (b − ad)(d − eα)
)

n∏
k=0

eB̄k(d − eα)n

= (b − ad)
(

d − b

ad

) n∏
k=0

eB̄k
(

d − b

ad

)n

.

Owing to (b − ad) ̸= 0, we deduce from Dn+2 = 0 that d = b

ad
. Together with (4.15),

eα = d. Substituting it into (4.9), we get

(a − b)
n∑

k=0
akeB̄k

eβ
(
eβ − d − 1

)
= (b − ad)eβ − ad2 + b. (4.16)

Set V = (a − b)
∑n

k=0 akeB̄k
. As one knows b − ad ̸≡ 0, from the above equality, V ̸≡ 0

and T (r, V ) = S(r, eβ). Then (4.16) has the following form:
V e2β = ((d + 1)V + b − ad) eβ − ad2 + b,

which yields 2T (r, eβ) = T (r, eβ) + S(r, eβ), a contradiction.
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Case 3. deg(β) = deg(α) ≥ 0.

Subcase 3.1. deg(β) = deg(α) = 0. In this case, eα and eβ are nonzero constants.
Together with (4.7), f(z) is a periodic function of period η. By the definition of P (f), we
have

P (f) =
n∑

k=0
akf̄k =

n∑
k=0

akf = 0,

which contradicts to the assumption that P (f) ̸≡ 0.

Subcase 3.2. deg(β) = deg(α) ≥ 1. Obviously, T (r, eβ) = O(T (r, eα)). (4.6) gives

T (r, f) = O(T (r, eα)).

Set γ(z) = β(z) − α(z), z ∈ Cm where γ(z) satisfies deg(γ) ≤ deg(α) = deg(β). If

deg(γ) < deg(α), obviously, T (r, eγ) = o (T (r, eα)) . By (4.10),
n∑

k=0
ak(b − a)d

(
eĀk

eα − eB̄k+γeα
)

(1 − (1 − d)eγeα − deα)

·
n∏

j=0,j ̸=k

(
(1 − d)eĀj

eα − eĀj+B̄j+γe2α + deB̄j+γeα
)

= (b − adeα + (ad − b)eγeα)
n∏

k=0

(
(1 − d)eĀk

eα − eĀk+B̄k+γe2α + deB̄k+γeα
)

.

Furthermore, we get

D2n+3e(2n+3)α + D2n+2e(2n+2)α + · · · + Dn+1e(n+1)α = 0, (4.17)

where Ds(s = n + 1, · · · , 2n + 3) are small functions of eα. Applying Lemma 2.4 to (4.17),
we obtain Ds ≡ 0(s = n + 1, · · · , 2n + 3). In particular, for the term D2n+3 one has

D2n+3 = ((ad − b)eγ − ad)
n∏

k=0

(
−eĀk+B̄k+γ

)
= 0.

Owing to (ad − b) = c(a − b)
c − a

̸= 0, eγ = ad

ad − b
, namely, eα = ad − b

ad
eβ. Thus, (4.9) gives

n∑
k=0

ak
1

H0eB̄keβ − H1
= H2

2
eβ − H2

, (4.18)

where
H0 = 1 − b

ad
, H1 = 1 − b − bd

ad
, H2 = a

a − b
.

Note that H0, H1, H2 are small functions of eβ and

H0 = 1 − b

ad
= c(a − b)

a(c − b)
̸= 0, H2 = a

a − b
̸= 0.

Multiplying by
(
eβ − H2

)∏n
k=0

(
H0eB̄k

eβ − H1
)

on both sides of (4.18), we get
n∑

k=0
ak

(
eβ − H2

) n∏
j=0,j ̸=k

(
H0eB̄j

eβ − H1
)

= H2
2

n∏
k=0

(
H0eB̄k

eβ − H1
)

, (4.19)

which equivalents to

En+1e(n+1)β + Enenβ + · · · + E1eβ + E0 = 0, (4.20)
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where Es(s = 0, 1, · · · , n + 1) are polynomials in H0, H1, H2, eB̄k
, ak(k = 0, 1, · · · , n).

Applying Lemma 2.4 to (4.20), Es ≡ 0(s = 0, 1, · · · , n + 1). On the other hand, we see
that

E0 =
n∑

k=0
ak(−H1)n(−H2) − H2

2 (−H1)n+1 = −H2
2 (−H1)n+1 = 0,

which ensures H1 = 0 since H2 ̸= 0. By (4.19), we get

(H4 − H0H2
2 )eβ = H2H4,

where H4 =
∑n

k=0 ake−B̄k . Together with H0H2 ̸= 0, H4 ̸= 0 and (H4 − H0H2
2 ) ̸= 0, a

contradiction.
If deg(γ) = deg(α) = deg(β), then (4.10) can be rewritten as

n∑
k=0

ak(b − a)d
(
eĀk

eα − eB̄k
eβ
) (

1 − (1 − d)eβ − deα
)

·
n∏

j=0,j ̸=k

[(
1 − d − eB̄j

eβ
)

eĀj
eα + deB̄j

eβ
]

=
[
b − adeα + (ad − b)eβ

] n∏
k=0

[(
1 − d − eB̄k

eβ
)

eĀk
eα + deB̄k

eβ
]

.

From the above equality, we get
χ∑

k=0
Dkelkα+skβ = 0, (4.21)

where 0 ≤ lk ≤ n + 2, 0 ≤ sk ≤ n + 2(k = 0, 1, · · · , χ) and Dk(k = 0, 1, · · · , χ) are
polynomials in a, b, d, eĀk

, eB̄k
, ak(k = 0, 1, · · · , n). We thus have

T (r, Dk) = o(T (r, eα)) = o(T (r, eβ))(k = 0, 1, · · · , χ).
We know that the coefficients of the equation(4.21) are not all zeros. For the term

e(n+2)α+(n+1)β, its coefficient −ad
∏n

k=0

(
−eB̄k

eĀk
)

is not zero since ad ̸= 0. For the term

e(n+1)α+(n+2)β, its coefficient(ad − b)
∏n

k=0

(
−eB̄k

eĀk
)

is not zero since ad − b ̸= 0.

Next, we assume that deg(liα + siβ − ljα − sjβ) = deg(α) = deg(β) for all 0 ≤
i ≤ χ, 0 ≤ j ≤ χ. Let φk = Dkelkα+skβ(k = 0, 1, · · · , χ). Thus,

∑χ
k=0 φk = 0.

From basic linear algebra, we deduce that there exist j ∈ {0, 1, 2, · · · , χ} and a set
κ ⊂ {0, 1, · · · , j − 1, j + 1, · · · , χ} such that

φj =
∑
k∈κ

λkφk, (4.22)

where λk(k ∈ κ) are some nonzero complex numbers and {φk|k ∈ κ} is linearly indepen-
dent. Dividing both of the two sides of (4.22) by φj , we have

1 =
∑
k∈κ

λk
φk

φj
=
∑
k∈κ

λk
Dk

Dj
e(lk−lj)α+(sk−sj)β.

It is not difficult to verify that the zeros and poles of
{

λk
Dk

Dj
e(lk−lj)α+(sk−sj)β

}
and their

Wronskian determinant come only from the zeros and poles of Dk(k ∈ κ) and Dj . Then
by Lemma 2.6 we have that

T (r, λk
Dk

Dj
e(lk−lj)α+(sk−sj)β) ≤ O

∑
k∈κ

T (r, Dk) + T (r, Dj)

 = o(T (r, eα)).



88 M. Wang, Z. Liu

This is a contradiction for deg(liα + siβ − ljα − sjβ) = deg(α) = deg(β). Hence there
exist two distinct integers i, j ∈ {0, 1, 2, · · · , m} such that deg(liα + siβ − ljα − sjβ) <
deg(α) = deg(β). Noting that li − lj ̸= 0 and si − sj ̸= 0.

By the similar method as in Theorem 1.7,

eβ = Hetα,

where H = e((si−sj)β−(lj−li)α)/(si−sj) ∈ S(eα) ∩ S(eα) and t = lj−li
si−sj

(t ̸= 1). Without loss

of generality, we may suppose |t| ≤ 1 for otherwise we may consider eα =
(
eβ/H

)1/t
.

Suppose that t = q/p > 0, where p, q are positive co-prime integers and q < p.
We denote eα̃ = eα/p, then eβ = Hetα = Heqα̃ and T (r, eα) = pT (r, eα̃). Therefore
a, b, d, H, eĀk

, eB̄k
, ak(k = 0, 1, · · · , n) are all small functions with respect to eα̃. From that

we rewrite (4.10) as

n∑
k=0

ak(b − a)d
(
eĀk

epα̃ − HeB̄k
eqα̃
) (

1 − (1 − d)Heqα̃ − depα̃
)

·
n∏

j=0,j ̸=k

(
(1 − d)eĀj

epα̃ − eĀj+B̄j
He(p+q)α̃ + dHeB̄j

eqα̃
)

=
(
b − adepα̃ + (ad − b)Heqα̃

)
·

n∏
k=0

(
(1 − d)eĀk

epα̃ − eĀk+B̄k
He(p+q)α̃ + dHeB̄k

eqα̃
)

.

Furthermore, we have

Ee(n+2)pα̃+(n+1)qα̃ + P0(eα̃) = 0, (4.23)

where E ∈ S(eα̃) is a polynomial in a, b, d, H, eĀk
, eB̄k

, ak(k = 0, 1, · · · , n) and P0(eα̃) is a
polynomial in eα̃ of degree at most (n + 1)p + (n + 2)q with coefficients being small with
respect to eα̃. Applying Lemma 2.4 to (4.23), E ≡ 0. Since ad ̸= 0, we have

E = adHn+1
n∏

k=0
eĀK

eB̄k ̸= 0

a contradiction.

Suppose that t = −q/p < 0, where p, q are positive co-prime integers and q ≤ p. Set
eα̃ = eα/p, then eβ = Hetα = He−qα̃. From (4.10), we have

n∑
k=0

ak(b − a)d
(
eĀk

epα̃ − HeB̄k
e−qα̃

) (
1 − (1 − d)He−qα̃ − depα̃

)
·

n∏
j=0,j ̸=k

(
(1 − d)eĀj

epα̃ − eĀj+B̄j
He(p−q)α̃ + dHeB̄j

e−qα̃
)

=
(
b − adepα̃ + (ad − b)He−qα̃

)
·

n∏
k=0

(
(1 − d)eĀk

epα̃ − eĀk+B̄k
He(p−q)α̃ + dHeB̄k

e−qα̃
)

.
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Multiplying by e(n+2)qα̃ on both sides of the above equation, we obtain
n∑

k=0
ak(b − a)d

(
eĀk

e(p+q)α̃ − HeB̄k
) (

eqα̃ − (1 − d)H − de(p+q)α̃
)

·
n∏

j=0,j ̸=k

(
(1 − d)eĀj

e(p+q)α̃ − eĀj+B̄j
Hepα̃ + dHeB̄j

)
=
(
beqα̃ − ade(p+q)α̃ + (ad − b)H

)
·

n∏
k=0

(
(1 − d)eĀk

e(p+q)α̃ − eĀk+B̄k
Hepα̃ + dHeB̄k

)
.

We conclude that
Ee(n+2)(p+q)α̃ + P0(eα̃) = 0. (4.24)

where E ∈ S(eα̃) and P0(eα̃) is a polynomial in eα̃ of degree at most (n + 1)p + (n + 2)q
with coefficients being small with respect to eα̃. Applying Lemma 2.4 to (4.24),E ≡ 0.
On the other hand,

E =
n∑

k=0
ak(b − a)deĀk(−d)

n∏
j=0,j ̸=k

(1 − d)eĀj + ad
n∑

k=0
(1 − d)eĀk

= (1 − d)n
n∏

k=0
eĀk

(
n∑

k=0
ak(a − b)d2 + ad

)

= (1 − d)n
n∏

k=0
eĀk

ad ̸= 0,

a contradiction. That completes the proof of Theorem 1.9.
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