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Abstract
In this article, we prove some well-known coupled fixed point theorems in 0-complete
metric spaces. Also, we present some corollaries related to our study. In addition to
this, we give an example showing that our results successfully obtain the existence and
uniqueness of the coupled fixed point for 0-complete metric spaces, but the results are not
valid for complete metric spaces. Finally, we apply our results to examine the existence
and uniqueness of a solution of the system of nonlinear integral equations.
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1. Introduction
In 1922, Banach [7] stated a fixed point theorem, which is considered a notable re-

sults in the history of mathematics, and inspired many other important works. Banach’s
fixed point theorem has generalizations, enrichements and modifications in a wide vari-
ety of forms. Some of them are coupled fixed point theorems that are interesting and
difficult to prove. The history of concept of coupled fixed point date back to 1980’s.
It was introduced by Guo and Lakshmikantham [12]. Afterwards, Bhaskar and Laksh-
mikantham [8] introduced the notion of the mixed monotone property and prove some
coupled fixed point theorems. Since these theorems have important applications in many
fields of mathematics, they attracted many authors attention. So, many researchers re-
stated these theorems on different metric spaces as bipolar, modular, partial, cone, e.g.
[1, 3, 9, 10,13–15,17–20,23,24,26,27] and many others.

On the other hand, the recently the concept of orthogonal sets (brieftly, O-sets) was
introduced by Gordji et al. [11]. And they proved Banach’s fixed point theorem in that
study. In addition this, they discussed the existence of solution of differential equation
using their results. For find more details about O-sets and orthogonal metric spaces, the
readers are referred to [2, 4–6,16,21,22,25].

The aim of this article is to present some theorems and corollaries which show existence
and uniqueness coupled fixed point in O-complete metric spaces. And, the existence and
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uniqueness of a solution of the system of nonlinear integral equations is investigated as an
application of this study.

2. Preliminaries
N and R denote the set of positive integers and real numbers, respectively.

Definition 2.1 ([11]). Let X is a nonempty set and ⊥ ⊆ X × X be a binary relation. If
the relation ⊥ satisfies the following condition:

∃x0 ∈ X : (∀y, y⊥x0) or (∀y, x0⊥y)

then X is called an orthogonal set (briefly, O-set) and x0 is called an orthogonal element.
We represent this O-set by (X, ⊥).

Example 2.2 ([11]). Let X = Z. We define m⊥n if there exists k ∈ Z such that m = kn.
It is obvious that 0⊥n for all n ∈ Z. So, (X, ⊥) is an O-set.

Example 2.3 ([11]). Let X = [0, ∞). We define x⊥y if xy ∈ {x, y}. For orthogonal
elements x0 = 0 or x0 = 1, (X, ⊥) is an O-set.

As seen in the above example, x0 is not necessarily unique.

Definition 2.4 ([11]). Let (X, ⊥) be O-set. A sequence {xi}i∈N is called an orthogonal
sequence (briefly, O-sequence) if

(∀i, xi⊥xi+1) or (∀i, xi+1⊥xi).

Definition 2.5 ([11]). The triplet (X, ⊥, d) is called orthogonal metric space if (X, ⊥) is
an O-set and (X, d) is a metric space.

Definition 2.6 ([11]). Let (X, ⊥, d) be an orthogonal metric space. The mapping f : X →
X is called orthogonally continuous (or ⊥-continuous) in x ∈ X if we get f(xi) → f(a)
for each O-sequence {xi}i∈N in X with xi → x as i → ∞. And, the mapping f is called
⊥-continuous on X if f is ⊥-continuous for all x ∈ X.

Definition 2.7 ([11]). Let (X, ⊥, d) be an orthogonal metric space. X is called orthogo-
nally complete (briefly, O-complete) if every Cauchy O-sequence is convergent.

Remark 2.8 ([11]). Every complete metric space is O-complete and the converse is not
true.

From the Definition 3.10. in [11], the following definition can be written.

Definition 2.9. Let (X, ⊥) be an O-set. A mappings S : X × X → X is said to be
⊥-preserving if x⊥a and y⊥b implies S(x, y)⊥S(a, b).

3. Main results
In this section, we investigate some coupled fixed point results in orthogonal metric

spaces. These results extend and generalize some new and old well-known coupled fixed
point results.

Theorem 3.1. Let (X, ⊥, d) be an O-complete metric space (not necessarily complete
metric space) and S : X × X → X be ⊥-preserving mapping. If the condition

d(S(x, y), S(a, b)) ≤ kd(x, a) + ld(y, b) (3.1)

holds for all x, y, a, b ∈ X with x⊥a and y⊥b where k, l ≥ 0 and k + l < 1, then S has a
unique coupled fixed point.



Coupled fixed point results ... 621

Proof. From the definition of orthogonality, we can say that there exist orthogonal ele-
ments x0, y0 ∈ X such that

(x0⊥y for all y ∈ X) or (y⊥x0 for all y ∈ X)
and

(y0⊥y for all y ∈ X) or (y⊥y0 for all y ∈ X).
So, we get

x0⊥S(x0, y0) or S(x0, y0)⊥x0

and
y0⊥S(y0, x0) or S(y0, x0)⊥y0

for x0, y0 ∈ X. We set
x1 = S(x0, y0) and y1 = S(y0, x0)
x2 = S(x1, y1) and y2 = S(y1, x1)

...
xi+1 = S(xi, yi) and yi+1 = S(yi, xi)

for i ∈ N. Hence, we get
x0⊥S(x0, y0) = x1 or x1 = S(x0, y0)⊥x0

and
y0⊥S(y0, x0) = y1 or y1 = S(y0, x0)⊥y0.

Since S is ⊥-preserving, we have
x1 = S(x0, y0)⊥S(x1, y1) = x2 or x2 = S(x1, y1)⊥S(x0, y0) = x1

and
y1 = S(y0, x0)⊥S(y1, x1) = y2 or y2 = S(y1, x1)⊥S(y0, x0) = y1.

If we continue in the same way, we get
xi⊥xi+1 or xi+1⊥xi

and
yi⊥yi+1 or yi+1⊥yi

for all i ∈ N. So, {xi}i∈N and {yi}i∈N are O-sequences. Now, we want to see that {xi}i∈N
and {yi}i∈N are Cauchy O-sequences. From (3.1), we get

d(xi, xi+1) = d(S(xi−1, yi−1), S(xi, yi))
≤ kd(xi−1, xi) + ld(yi−1, yi) (3.2)

and similarly
d(yi, yi+1) = d(S(yi−1, xi−1), S(yi, xi))

≤ kd(yi−1, yi) + ld(xi−1, xi) (3.3)

for all i ∈ N and k + l < 1. Let di = d(xi, xi+1) + d(yi, yi+1). From (3.2) and (3.3), we get
di = d(xi, xi+1) + d(yi, yi+1)

≤ kd(xi−1, xi) + ld(yi−1, yi) + kd(yi−1, yi) + ld(xi−1, xi)
= (k + l)(d(xi−1, xi) + d(yi−1, yi))
= (k + l)di−1

for all i ∈ N. Repeating this argument, we have
0 ≤ di ≤ (k + l)di−1 ≤ (k + l)2di−2 ≤ · · · ≤ (k + l)id0 (3.4)
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for all i ∈ N. Let d0 = 0. That is, d0 = d(x0, x1) + d(y0, y1) = 0. So, we get

d(x0, x1) = 0 ⇒ x0 = x1 = S(x0, y0)

and
d(y0, y1) = 0 ⇒ y0 = y1 = S(y0, x0).

These imply that S has coupled fixed point (x0, y0). Let d0 > 0. Then we have

d(xi, xj) ≤ d(xi, xi+1) + d(xi+1, xi+2) + · · · + d(xj−1, xj) (3.5)

and
d(yi, yj) ≤ d(yi, yi+1) + d(yi+1, yi+2) + · · · + d(yj−1, yj) (3.6)

for any positive integer j and i with i ≤ j. From (3.4), (3.5) and (3.6), we have

d(xi, xj) + d(yi, yj) ≤ d(xi, xi+1) + d(yi, yi+1) + d(xi+1, xi+2) + d(yi+1, yi+2)+
· · · + d(xj−1, xj) + d(yj−1, yj)

= di + di+1 + · · · + dj−1

≤ [(k + l)i + (k + l)i+1 + · · · + (k + l)j−1]d0

≤ (k + l)i

1 − (k + l)
d0

for i ≤ j. If we take limit as i, j → ∞, since (k+l)
1−(k+l) < 1, we can say that {xi}i∈N and

{yi}i∈N are Cauchy O-sequences in X. Since (X, ⊥, d) is an O-complete metric space,
there exists u, v ∈ X such that xi → u, yi → v. Then, there exists i0 ∈ N with

d(xi, u) <
ϵ

2
and d(yi, v) <

ϵ

2
(3.7)

for all i ≥ i0 and every ϵ > 0. By choice of u and v, we have u⊥xi or xi⊥u and v⊥yi or
yi⊥v. So, from (3.1) and (3.7), we have

d(S(u, v), u) ≤ d(S(u, v), xi+1) + d(xi+1, u)
= d(S(u, v), S(xi, yi)) + d(xi+1, u)
≤ kd(xi, u) + ld(yi, v) + d(xi+1, u)

< (k + l) ϵ

2
+ ϵ

2
< ϵ

for k + l < 1. It follows that d(S(u, v), u) = 0 and so S(u, v) = u. Similarly, we can show
that S(v, u) = v. Then S has a coupled fixed point (u, v).

To see the uniqueness of coupled fixed point of S, we take another coupled fixed point
(u∗, v∗) ∈ X × X. That is, S(u∗, v∗) = u∗ and S(v∗, u∗) = v∗.

(i) If u⊥u∗ or u∗⊥u and v⊥v∗ or v∗⊥v, from (3.1), we get

d(u, u∗) = d(S(u, v), S(u∗, v∗)) ≤ kd(u, u∗) + ld(v, v∗)

d(v, v∗) = d(S(v, u), S(v∗, u∗)) ≤ kd(v, v∗) + ld(u, u∗)
and therefore

d(u, u∗) + d(v, v∗) ≤ (k + l)(d(u, u∗) + d(v, v∗)).

Since k + l < 1, we get d(u, u∗) + d(v, v∗) = 0 and so u = u∗, v = v∗.
(ii) If not, for the chosen orthogonal elements x0, y0 ∈ X in the first of proof, we have

(x0⊥u, x0⊥u∗) or (u⊥x0, u∗⊥x0)

and
(y0⊥v, y0⊥v∗) or (v⊥y0, v∗⊥y0).
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Therefore, from (3.1), we get

d(u, u∗) = d((S(u, v), S(u∗, v∗))
≤ d(S(u, v), S(x0, y0)) + d(S(x0, y0), S(u∗, v∗))
≤ kd(x0, u) + ld(y0, v) + kd(x0, u∗) + ld(y0, v∗).

As i → ∞, we obtain that d(u, u∗) = 0. So, we have u = u∗. Similarly, we obtain
that

d(v, v∗) = d((S(v, u), S(v∗, u∗))
≤ d(S(v, u), S(y0, x0)) + d(S(y0, x0), S(v∗, u∗))
≤ kd(y0, v) + ld(x0, u) + kd(y0, v∗) + ld(x0, u∗).

As i → ∞, we get d(v, v∗) = 0. So, we have v = v∗.
This meaning that (u, v) = (u∗, v∗). Then, S has a unique coupled fixed point in X. □

The corollary that can be easily obtained by taking equal the constants in Theorem 3.1
is given below.

Corollary 3.2. Let (X, ⊥, d) be an O-complete metric space (not necessarily complete
metric space) and S : X × X → X be ⊥-preserving mapping. If the condition

d(S(x, y), S(a, b)) ≤ k

2
(d(x, a) + d(y, b)) (3.8)

holds for all x, y, a, b ∈ X with x⊥a and y⊥b where 0 ≤ k < 1, then S has a unique coupled
fixed point.

The following theorem is coupled fixed point theorem of generalized Kannan type map-
ping in orthogonal metric spaces.

Theorem 3.3. Let (X, ⊥, d) be an O-complete metric space (not necessarily complete
metric space) and S : X × X → X be ⊥-preserving mapping. If the condition

d(S(x, y), S(a, b)) ≤ kd(S(x, y), x) + ld(S(a, b), a) (3.9)

holds for all x, y, a, b ∈ X with x⊥a and y⊥b where k, l ≥ 0 and k + l < 1, then S has a
unique coupled fixed point.

Proof. We consider O-sequences {xi}i∈N and {yi}i∈N which have the same properties in
the proof of Theorem 3.1. Then we say that xi+1 = S(xi, yi), yi+1 = S(yi, xi) and

xi⊥xi+1 or xi+1⊥xi,

yi⊥yi+1 or yi+1⊥yi

for all i ∈ N. Let k
1−l = α and 1

1−k = β. From (3.9), we have

d(xi, xi+1) = d(S(xi−1, yi−1), S(xi, yi))
≤ d(S(xi−1, yi−1), xi−1) + ld(S(xi, yi), xi)
= kd(xi, xi−1) + ld(xi+1, xi).

Then we get
d(xi, xi+1) ≤ αd(xi−1, xi)

with α < 1. Repeating this process, we get

d(xi, xi+1) ≤ αid(x0, x1)
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for all i ∈ N. Then we obtain that
d(xi, xj) ≤ d(xi, xi+1) + d(xi+1, xi+2) + · · · + d(xj−1, xj)

≤ [αi + αi+1 + · · · + αj−1]d(x0, x1)

≤ αi

1 − α
d(x0, x1)

for any positive integer i and j with i ≤ j. If we take limit as i, j → ∞, since α < 1,
then {xi}i∈N is a Cauchy O-sequences. Similarly, we easily show that {yi}i∈N is a Cauchy
O-sequences in X. Since (X, ⊥, d) is an O-complete metric space, there exists u, v ∈ X
such that xi → u, yi → v. By choice of u and v, we have u⊥xi or xi⊥u and v⊥yi or yi⊥v.
So, from (3.9), we get

d(S(u, v), u) ≤ d(S(u, v), xi+1) + d(xi+1, u)
= d(S(u, v), S(xi, yi)) + d(xi+1, u)
≤ kd(S(u, v), u) + ld(S(xi, yi), xi) + d(xi+1, u)

which implies
d(S(u, v), u) ≤ αd(xi+1, xi) + βd(xi+1, u)

≤ α(d(xi+1, u) + d(u, xi)) + βd(xi+1, u)

for α < 1 and β < 1. Letting i → ∞, then we get d(S(u, v), u) = 0 and so S(u, v) = u.
Similarly, we obtain that S(v, u) = v. Then (u, v) is a coupled fixed point of S.

Now, we see the uniqueness of coupled fixed point of S. We take another coupled fixed
point (u∗, v∗) ∈ X × X. That is, S(u∗, v∗) = u∗ and S(v∗, u∗) = v∗.

(i) If u⊥u∗ or u∗⊥u and v⊥v∗ or v∗⊥v, from (3.9), we get
d(u, u∗) = d(S(u, v), S(u∗, v∗))

≤ kd(S(u, v), u) + ld(S(u∗, v∗), u∗)
= kd(u, u) + ld(u∗, u∗)
= 0.

Hence we get u = u∗. Similarly, we get v = v∗.
(ii) If not, for the chosen orthogonal elements x0, y0 ∈ X in the first of proof, we get

(x0⊥u, x0⊥u∗) or (u⊥x0, u∗⊥x0)
and

(y0⊥v, y0⊥v∗) or (v⊥y0, v∗⊥y0).
Therefore, from (3.9), we get

d(u, u∗) = d((S(u, v), S(u∗, v∗))
≤ d(S(u, v), S(x0, y0)) + d(S(x0, y0), S(u∗, v∗))
≤ kd(S(u, v), u) + ld(S(x0, y0), x0) + kd(S(x0, y0), x0) + ld(S(u∗, v∗), u∗)
= (k + l)d(x1, x0)
≤ (k + l)(d(x1, u) + d(u, x0)).

If we take limit as i → ∞, we get d(u, u∗) = 0. Hence we have u = u∗. Similarly,
we get v = v∗.

This meaning that (u, v) = (u∗, v∗). Therefore, S has a unique coupled fixed point in
X. □

The corollary that can be easily obtained by taking equal the constants in Theorem 3.3
is given below.
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Corollary 3.4. Let (X, ⊥, d) be an O-complete metric space (not necessarily complete
metric space) and S : X × X → X be ⊥-preserving mapping. If the condition

d(S(x, y), S(a, b)) ≤ k

2
(d(S(x, y), x) + d(S(a, b), a))

holds for all x, y, a, b ∈ X with x⊥a and y⊥b where 0 ≤ k < 1, then S has a unique coupled
fixed point.

The following theorem is coupled fixed point theorem of generalized Chatterjea type
mapping in orthogonal metric spaces.

Theorem 3.5. Let (X, ⊥, d) be an O-complete metric space (not necessarily complete
metric space) and S : X × X → X be ⊥-preserving mapping. If the condition

d(S(x, y), S(a, b)) ≤ kd(S(x, y), a) + ld(S(a, b), x) (3.10)

holds for all x, y, a, b ∈ X with x⊥a and y⊥b where k, l ≥ 0 and k + l < 1, then S has a
unique coupled fixed point.

Proof. We choose the O-sequences {xi}i∈N and {yi}i∈N like in the proof Theorem 3.1.
Then we say that xi+1 = S(xi, yi), yi+1 = S(yi, xi) and

xi⊥xi+1 or xi+1⊥xi,

yi⊥yi+1 or yi+1⊥yi

for all i ∈ N. From (3.10), we have

d(xi, xi+1) = d(S(xi−1, yi−1), S(xi, yi))
≤ d(S(xi−1, yi−1), xi) + ld(S(xi, yi), xi−1)
= kd(xi, xi) + ld(xi+1, xi−1)
≤ ld(xi+1, xi) + ld(xi, xi−1).

This implies that

d(xi, xi+1) ≤ l

1 − l
d(xi−1, xi)

with l
1−l < 1. Then, the proof continues similarly to the proof of Theorem 3.3. Thus,

{xi}i∈N is a Cauchy 0-sequence. From O-completeness of X, there exists u, v ∈ X such
that xi → u, yi → v. By choice of u and v, we get u⊥xi or xi⊥v and v⊥yi or yi⊥v. So,
from (3.10), we get

d(S(u, v), u) ≤ d(S(u, v), xi+1) + d(xi+1, u)
= d(S(u, v), S(xi, yi)) + d(xi+1, u)
≤ kd(S(u, v), xi) + ld(S(xi, yi), u) + d(xi+1, u)
≤ kd(S(u, v), u) + kd(u, xi) + ld(S(xi, yi), u) + (l + 1)d(xi+1, u).

If we take limit as i → ∞, then we get

d(S(u, v), u) ≤ kd(S(u, v), u).

Since k < 1, it follows that d(S(u, v), u) = 0 ⇒ S(u, v) = u. Similarly, we can show that
S(v, u) = v. Then (u, v) is a coupled fixed point of S. The proof of the uniqueness of
coupled fixed point can be easily obtained similarly to the other results. Then, S has a
unique coupled fixed point in X.

□

The corollary that can be easily obtained by taking equal the constants in Theorem 3.5
is given below.
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Corollary 3.6. Let (X, ⊥, d) be an O-complete metric space (not necessarily complete
metric space) and S : X × X → X be ⊥-preserving mapping. If the condition

d(S(x, y), S(a, b)) ≤ k

2
(d(S(x, y), a) + d(S(a, b), x))

holds for all x, y, a, b ∈ X with x⊥a and y⊥b where 0 ≤ k < 1, then S has a unique coupled
fixed point.

Example 3.7. Let X = {0, 1, 2, · · · } and define x⊥y if 0 < y − x. So, (X, ⊥) is an O-
set. We consider Euclidian metric d on X. (X, ⊥, d) is an O-complete metric space. Let
S : X × X → X be a mapping defined by

S(x, y) =
{

x+y
3 , x < y

0, otherwise

for x, y ∈ X. It is obvious that S is ⊥-preserving on X. Let x⊥a and y⊥b. We consider
the following four cases:

Case 1: If x < y and a < b, then S(x, y) = x+y
3 and S(a, b) = a+b

3 for all
x, y, a, b ∈ X.

Case 2: If x < y and a ≥ b, then S(x, y) = x+y
3 and S(a, b) = 0 for all x, y, a, b ∈ X.

Case 3: If x > y and a < b, then S(x, y) = 0 and S(a, b) = a+b
3 for all x, y, a, b ∈ X.

Case 4: If x > y and a ≥ b, then S(x, y) = 0 and S(a, b) = 0 for all x, y, a, b ∈ X.

For these four cases, the condition

|S(x, y) − S(a, b)| ≤ k

2
(|x − a| + |y − b|). (3.11)

is satisfied for 0 ≤ k < 1 and all x, y, a, b ∈ X. From Corollary 3.2, S has a unique fixed
point (0, 0). If (X, ⊥) is not 0-set, then the condition (3.11) is not satisfied. To show this,
we take four point such as x = 1, y = 2, a = 1 and b = 0. For each 0 ≤ k < 1, we get

|S(1, 2) − S(1, 0)| = 1 >
k

2
(|1 − 2| + |1 − 0|) = k.

On the otherhand, in this example, if we take the mapping S : X×X → X as S(x, y) = x+y
2

for 0-set X, then the condition

|S(x, y) − S(a, b)| ≤ 1
2

(|x − a| + |y − b|).

holds for k = 1. So, (0, 0) and (1, 1) are two coupled fixed points of S. This meaning that
the coupled fixed point of S is not unique. In this case, conditions k < 1 and k + 1 in
Corollary 3.2 and Theorem 3.1, respectively, are the most favorable conditions to ensure
the uniqueness of the coupled fixed point.

4. Application to nonlinear integral equations
In this section, using Theorem 3.1, we show that there exists a unique solution of the

following system of the integral equations

x(t) =
∫ T

0
f(t, x(s), y(s))ds

(4.1)

y(t) =
∫ T

0
f(t, y(s), x(s))ds
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where T > 0, t ∈ [0, T ] and f : [0, T ] × R × R → R. The class of R-valued continuous
functions on the interval [0, T ] is denoted by C([0, T ],R).

Theorem 4.1. Let f : [0, T ] × R × R → R be a mapping. We suppose that the following
conditions hold:

(i) f is a continuous mapping,

(ii) there exist k, l ≥ 0 with k + l < 1 such that

0 ≤ f(t, a, b) − f(t, x, y) ≤ 1
T

(k(a − x) + l(b − y))

for all x, y, a, b ∈ R, x, y, a, b ≥ 0 with a − x ≥ 0, b − y ≥ 0 and for all t ∈ [0, T ].

Then the system of integral equations (4.1) has a unique solution.

Proof. X = {x ∈ C([0, T ],R) : x(t) ≥ 0, ∀t ∈ [0, T ]}. We consider the orthogonality
relationship in X by

x⊥y ⇔ y(t) − x(t) ≥ 0, ∀t ∈ [0, T ].

We take an arbitrary t and define

d(x, y) = sup
t∈[0,T ]

|x(t) − y(t)|

for all x, y ∈ X. We can easily say that (X, d) is a metric space. We want to show the
0-completeness of X. We consider a Cauchy O-sequence {xi}i∈N ⊆ X. It is easily say that
{xi}i∈N is convergent to a point u ∈ C([0, T ],R). Then, we show that u ∈ X. We take
arbitrary t ∈ [0, T ]. From definition of ⊥, we can say that xi⊥xi+1 for each i ∈ N. Since
xi(t) ≥ 0 for all i ∈ N, this sequence converges to u(t). This implies that u(t) ≥ 0. Since
t ∈ [0, T ] is arbitrary, u ≥ 0 and so u ∈ X. Now, we define a mapping S : X × X → X by

S(x, y)(t) =
∫ T

0
f(t, x(s), y(s))ds

for each t ∈ [0, T ], x, y ∈ X. The fixed point of S is the solution of (4.1). Firstly, we
obtain that S is ⊥-preserving. For all x, y, a, b ∈ X with x⊥a, y⊥b and t ∈ [0, T ], from
(ii), we get

0 ≤ f(t, a(s), b(s)) − f(t, x(s), y(s))

which implies

f(t, x(s), y(s)) ≤ f(t, a(s), b(s)).

So, we get

S(x, y)(t) =
∫ T

0
f(t, x(s), y(s))ds

≤
∫ T

0
f(t, a(s), b(s))ds

= S(a, b)(t).
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It follows that S(a, b)(t) − S(x, y)(t) ≥ 0. So, we get S(x, y)⊥S(a, b). From condition (ii),
for all x, y, a, b ∈ X with x⊥a, y⊥b and t ∈ [0, T ], we get

|S(a, b)(t) − S(x, y)(t)| =
∣∣∣∣∣
∫ T

0
f(t, a(s), b(s))ds −

∫ T

0
f(t, x(s), y(s))ds

∣∣∣∣∣
=

∫ T

0
|f(t, a(s), b(s)) − f(t, x(s), y(s))| ds

≤ 1
T

∫ T

0
(k|a(s) − x(s)| + l|b(s) − y(s)|)ds

≤ 1
T

∫ T

0
(k sup

r∈[0,T ]
|a(r) − x(r)| + l sup

r∈[0,T ]
|b(r) − y(r)|)ds

= k sup
r∈[0,T ]

|a(r) − x(r)| + l sup
r∈[0,T ]

|b(r) − y(r)|.

This meaning that
sup

r∈[0,T ]
|S(a, b)(t) − S(x, y)(t)| ≤ k sup

r∈[0,T ]
|a(r) − x(r)| + l sup

r∈[0,T ]
|b(r) − y(r)|.

Then, for x⊥a, y⊥b and k + l < 1, we get
d(S(x, y), S(a, b)) ≤ kd(x, a) + ld(y, b).

Therefore, from Theorem 3.1, (4.1) has a unique solution. □

5. Conclusions
In this paper, some coupled fixed point theorems, which extend and generalize new and

old well-known coupled fixed point results, are obtained in orthogonal metric spaces and
some related results are given. Also, an application in the system of nonlinear integral
equations is presented, which demonstrate the validity of the hypotheses and degree of
utility of the proposed results for orthogonal metric spaces.
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manuscript.
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