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ABSTRACT

Let E° be the 3-dimensional Euclidean space and S be a set with at least two elements. The notions
of an S-parametric figure and the motion of an S-parametric figure in E° are defined. Complete
systems of invariants of an S-parametric figure in E® for the orthogonal group O(3, R) , the special
orthogonal group SO(3, R), Euclidean group M O(3, R), the special Euclidean group M SO(3, R) and
Galileo groups Gal; (3, R) , Gal; (3, R) are obtained.
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1. Introduction

Complete systems of invariants of S-parametric figures v(s) in the Euclidean geometry have been
investigated mainly in the following particular cases: v(s) is an m-tuple, v(s) is a path, v(s) is a curve, y(s)
is a surface and 7(s) is a vector field. Below we give a short survey of papers in this area. For shortness, an
S-parametric figure will be called an S-figure.

Foundations of Euclidean and non-Euclidean geometry are presented in the book [3]. An elementary treatise
of the geometry of a triangle, a polygon and a circle are given in the book [13]. In the book [11], plane Euclidean
geometry, affine transformations in the Euclidean space, finite group isometries of plane Euclidean geometry,
geometry on the sphere are presented. Geometry of sets and measures in Euclidean spaces are considered in the
book [12]. The book [4] presents the discovery of non-Euclidean geometry and the subsequent reformulation
of the foundations of Euclidean geometry as a suspense story.

Let V be a finite dimensional vector space over a field K and 3 be a non-degenerate bilinear form on V.
Denote by O(5, K) the group of all f-orthogonal (that is the form § preserving) transformations of V. Let
MO(B, K) be the group generated by the group O(8, K) and all translations of V. In the paper [5], for the
orthogonal group O(8, K) in the Euclidean, spherical, hyperbolic and de-Sitter geometries, the orbit of m
vectors is characterized by their Gram matrix and an additional subspace. In the book [2, Proposition 9.7.1], for
the group MO(, K) in the Euclidean geometry, the orbit of m vectors is characterized by distances between m-
vectors. A complete system of relations between elements of this complete system is also given in [2, Theorem
9.7.3.4]. In the paper [9], a complete system of invariants of m-tuples in the two-dimensional Euclidean
geometry have obtained. Euclidean invariants of parametric curves appear also in Computer vision theory
and in Computational Geometry. General theory of m-point invariants considered in the invariant theory.

Complete systems of global invariants of paths and curves in the Euclidean space are investigated in papers
[1, 6, 8]. Complete systems of global invariants of parametric figures in the affine space are investigated in the
paper [10]. Galileo invariants are investigated in papers [14, 15, 16, 17].
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Denote by O(3, R) be the group of all the form ¢(z,y) preserving transformations of E3, Put SO(3,R) =
{9 € O3, R)|det(g) =1} ,MO(3,R) = {F: E* - E® | Ft =gz + b,g € O(3,R),b€ E*} ,MSO(3,R) =
{F:E3— E3|Fx=gx+b,g€SO(3,R),bec E*}.

Denote by Gal;(3, R) the group of all transformations F' : E* x R — E® x R of the form F(z,t) = (g(x)
a+tb,t), where a,b € E3 g € O(3,R),t € R. Denote by Gal{ (3,R) the set of all transformations F(z,t)
(g(x) +a+tb,t), where a,b € E3,g € SO(3,R),t € R.

The present paper is devoted to solutions of problems of G-equivalence of S-figures and S x R-figures in
E3 for the groups G = O(3,R),SO(3,R), MO(3, R), MSO(3, R) in terms of G-invariants of an S-figure and
G = Galy(3,R),Gal{ (3, R) in terms of G-invariants of an S x R-figure, respectively. Complete systems of
invariants of an S-figure and an S x R-figure in E® for these groups are obtained. This paper is organized as
follows. In Section 1, some known definitions and results are given. They are used in next sections. In Section
2, complete systems of invariants of a parametric figure in E? for the groups O(3, R) and SO(3, R) are given. In
Section 3, complete systems of invariants of a parametric figure in E? for the groups MO(3, R) and M SO(3, R)
are obtained. In Section 4, complete systems of invariants of a parametric figure in E? for the Galileo groups
Galy(3, R) and Gal{ (3, R) are given.

I+

2. Preliminaries
Let S be a set such that it has at least two elements.
Definition 2.1. A mapping v : S — E® will be called an S-parametric figure (S-figure) in E3.
Denote by (S, E®) the set of all mappings of the S to E3. Let G be a subgroup of the group MO(3, R).

Definition 2.2. Two S-figures v(s) and n(s) in E® are called G-equivalent if there exists g € G such that
n(s) = gv(s),Vs € S. In this case, we write 1(s) = gy(s),Vs € S, or ¥(s) £ n(s),Vs € S.

Definition 2.3. A subset C C ®(S, E®) is called G-invariant if g(u) € C,Vu € C,Vg € G.

Definition 2.4. Let T be a set and it has at least two elements and C be a G-invariant subset of ®(S, ). A
mapping f : C' — T is called G-invarianton C'ifu € C,v € C'and u S, implies f(u) = f(v).

Definition 2.5. Let C be a G-invariant subset of ®(S, E%). A system
{fi(v(s))]i € I} of G-invariants functions of S-figures in C will be called a complete system of G-invariant

functions on C if equalities f;(v(s)) = fi(n(s)),Vi € I, for v(s) € C and 7(s) € C imply ~(s) g n(s),Vs € S.

Let v(s) € ®(9, E?). Denote by 6 the zero vector of E3. Put Z(vy) = {s € S|vy(s) = 6}.

Proposition 2.1. Let G be a subgroup of O(3, R) and ~(s),n(s) be S-figures such that ~(s) g n(s),Vs € S. Then
Z(y) = Z(n).

Proof. It is obvious. O

Proposition 2.2. Let G be a subgroup of O(3, R) and ~(s),n(s) € ®(S, E®) be such that Z(vy) = Z(n). Then v(s) and
n(s) are G-equivalent on S if and only if there exists g € G such that n(s) = gy(s),Vs € S\ Z(7).

Proof. It is obvious. O

Let v(s) € ®(9, E3). Denote by rank(v(s)) the rank of the system {v(s)|s € S} of vectors in the space E3.

Proposition 2.3. Let G be a subgroup of O(3, R). Assume that v(s) and n(s) be S-figures in E3 such that ~(s) g
n(s),¥s € S. Then rank(v(s)) = rank(n(s)).

Proof. It is obvious. O
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3. Complete systems of invariants of an S-figure in E° for the groups O(3, R) and SO(3, R)

Put N3 ={1,2,3}. Denote by W the following 3 x 3 matrix: W = ||w;;|, where w;; = 0,Vi,j € N3,i # j,
w33z = —1land Wi = 1,Vi = 1,2.

Below we wuse the following equality O(3,R)=SO(3,R)USO(3,R)W, where SO(3,R)W =
{g-Wl|ge SO3,R)}. Let <uz,y>=uz-y=uz1y1+22y2 +3ys be the scalar product in FE*, where
x = (z1,22,23) € By = (y1,92,y3) € E>

Let 7(s) be an S-figure in E? such that rank(y(s)) = 3. Then there are elements sy, s, s3 of the set S\ Z(w( )
such that vectors 7(s1),7(s2),7(s3) are linearly independent in E3. Let v(s;) = (vi1(8:), Vi2(s:)), vis(s:)) for

( 711(81) 712(81) 713(81)
i € N3. Denote by A(v(s1),7(s2),7(s3)) the following 3 x 3-matrix [ ~21(s2) 722(s2) 723(s2)
v31(83)  v32(s3) 733(s3)

Proposition 3.1. Let v(s) be an S-figure in E3 such that rank(y(s)) = 3. Assume that elements si, sa, s3 of the set
S\ Z(~(s)) such that vectors y(s1),(s2),y(s3) are linearly independent in E3. Then (A(vy(s1),7v(s2),v(s3))) ! exists.

Proof. Since vectors ~(s1),7(sz2),7(s3) are linearly independent in E?® we have det(A(vy(s1),7(s2),7(s3))) # 0.
This inequality implies an existence of the matrix (A(v(s1),v(s2),7(s3))) " . O

Theorem 3.1. Let y(s) and n(s) be S-figures in E3 such that rank(vy(s)) = 3. Assume that elements sy, s2, s of the set
S\ Z(v(s)) such that vectors 7(31) v(s2),7(s3) are linearly independent in E3.

Assume that ~(s) oG n(s),Vs € S.Then following equalities hold for all s € S\ Z(~(s)) and for all i € Nj:

Z((s)) = Z(n(s))
rank(y(s)) = rank(n(s)) (3.1)

(v(si),7(s)) = (n(si), n(s))-

Conversely, assume that the equalities (3.1) hold. Then the matrix (A(n(s1),n(s2),n(s3)))”" exists and the unique
F € O(3, R) exists such that n(s) = Fv(s),Vs € S. In this case, F' has following form: F = ((A(n(s1),n(s2),n(s3)))~* -

A(v(s1),7(52),7(s3))-
O(3,R)

Proof. = Assume that y(s) ~ '~ " n(s),Vs € S. Then there exists F € O(3, R) such that n(s) = Fy(s),Vs € S.

By Proposition 2.1, the equality Z(vy(s)) = Z(n(s)) holds. By Proposition 2.3, the equality rank(y(s)) =
implies the equality rank(vy(s)) = rank(n(s)) = 3.

It is known that the function (v(s;),v(s)) is O(3, R)-invariant for all i € N3,Vs € S. Hence the equivalence

O(3,R)
v(s) ~

-1

n(s),Vs € S, implies following equalities

(v(54),7(s)) = (n(s:),n(s)),Vs € S,Vi € N3.

Hence equalities (3.1) hold.
< Conversely, assume that the equalities (3.1) hold. Let s € S\ Z((s)). Consider vectors «(s) and 7n(s) as
column vectors:

Denote by ~(s)" the transpose of the vector v(s). Let n(s)" be the transpose of 7(s). Consider the
multiplication of matrices v(s;) " and v(s),where i € N3,

7(s)
¥(si) " () = (), v2(50),93(54)) - ( 72(s) ) = ((si),7(5)), Vs € T.
73(s)
Using these equalities, we obtain following equalities for the multiplication of matrices A(y(s1),v(s2),7(s3))
and v(s):
(v(s1),7(5))
A(v(s1),7(s2),7(s3)) - v(s) = | (v(s2),7(5)) |- (3.2)
(7(s3),7(s))
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)
y ] (3.3)
)

Using equalities (v(s;),7(s)) = (n(s:),n(s)),Vs € S\ Z(7(s)), Vi € N3 in Theorem 3.1 and equalities (3.2), (3.3)
we obtain following equalities:

A(v(s1),7(s2),7(s3)) - v(s) = A(n(s1),m(s2),n(s3)) - n(s), Vs € S\ Z(y(s)). (3.4)
The equality Z(v(s)) = Z(n(s)) in (3.1) implies following equalities
7i(s) = mi(s) = 0,Vs € Z(y(s)),Vi € Ns. (3.5)
Equalities (3.4) and (3.5) imply following equalities

A(n(s1):n(s2),n(s3)) - n(s) = A(v(s1),7(s2):7(s3)) - 7(s), Vs € 5. (3-6)
To continue the proof, let us give the following lemma.

Lemma 3.1. Let n(s) be an S-figure in E® such that equalities (3.4) hold. Then
A(n(s1),n(s2),n(s3)) # 0 and A(n(s1),n(s2),1(s3)) " exists.

Proof. By Proposition 3.1, A(vy(s1),7(s2),7(s3)) #0. Assume that A(n(s1),n(sz2),n(s3)) =0. Then
A(n(s1),m(s2),m(s3)) - n(s) =0,Vs € S. This equalities and the equalities (3.6) imply equalities
A(v(s1),7(s2),7(s3)) -v(s) =0,¥s € S. Since A(y(s1),7v(s2),7(s3)) #0, the equalities A(y(s1),7v(s2),7(s3)) -
v(s) =0,Vs € S, imply following equalities ~(s) =0,Vs € S. But these equalities contradicts to the our
supposition rank(y(s)) = 3 in Theorem 3.1. Hence A(n(s1),n(s2),n(s3)) # 0 and A(n(s1),n(s2),n(s3)) ! exists.
The lemma is proved. O

Using the existence of the matrix A(n(s1),n(s2),n(s3))~*

equalities

and the equalities (3.6), we obtain following

n(s) = A(n(s1),n(s2),m(s3)) " - A(v(s1),7(s2),7(s3)) - 7(s), Vs € S. (3.7)

We prove that the matrix A(n(s1),n(s2),n(s3)) " - A(v(s1),v(s2),v(s3)) is orthogonal. For shortness, denote
this matrix by P. Then the equalities (3.7) has the form:

n(s)=P-v(s),Vs€S. (3.8)
Using the equalities (3.1) and (3.8), we obtain following equalities:
(P-v(si), P-ry(s)) = (nsi),m(s)) = (v(s:),7(s)) . Vs € S\ Z(7(s)),Vi € Ns.
Hence
(P-7(s:), P-7(s)) = (7(si),7(s)) , Vs € S\ Z(7(s)),Vi € N3. (3.9)

Let = € E? be an arbitrary element. Since the system of vectors 7(s;),i =1,2,3 is a basis in E3, there
exist numbers r; € R,i = 1,2, 3 such that = r1v(s1) + r2y(s2) + r37y(s3). The equalities (3.9) imply following
equalities:

(P-riy(si), P-(s)) = (riv(si),v(s)), Vs € S\ Z(v(s)), Vi € N3.

These equalities and the equality = = r1y(s1) 4 r27(s2) 4 r37(s3) imply following equalities:

(Px,P-~y(s)) = (x,7(s)),Vs € S\ Z((s)),Vx € E>.
These equalities imply following equality:

(Pz,P-~(s;)) = (x,7(s;)),Vi € N3,Va € E3. (3.10)
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Let y € E® be an arbitrary element. Since the system of vectors v(s;),i = 1,2,3 is a basis in E3, there exist
numbers a; € R,i = 1,2,3 such that y = a;vy(s1) + a2y(s2) + azy(s3). This equahty and the equalities (3.10)
imply following equalities:

(Pz, Py) = (x,y) Vo € E® Yy € E®.

This equality means that P = A(n(s1),n(s2),n(s3)) ™" - A(v(s1),v(s2),v(s3)) is an orthogonal matrix.

We prove the uniqueness of a a matrix F' € O(3, R) such that 7(s) = Fy(s),Vs € S. Assume that a matrix
F € O(3, R) exists such that n(s) = Fy(s),Vs € S. These equalities and the equalities (3.8) imply following
equalities:

F-~(s)=P-v(s),Vs € S.
These equalities imply following equalities
F-~(s;) = P-~v(s;),Yi € Ns. (3.11)

Let z € E3 be an arbitrary element. Since the system of vectors ~(s;),i =1,2,3, is a basis in E3, there
exist numbers r; € R, i = 1,2, 3, such that z = r1v(s1) + r27y(s2) + r3y(s3). The equalities (3.11) imply following
equalities: Fz = Px,Vz € E3. This equalities imply that F = P . Hence the unique matrix F exists such that
n(s) = Fv(s),Vs € S. The equality F = P implies that F = A(n(s1),n(s2),n(s3)) " - A(v(s1),v(s2),v(s3)). The
uniqueness of ' is proved. O

Let F' € O(3, R). Then it is known that det(F) = 1 or detF = —1.

Corollary 3.1. Let y(s) and n(s) be S-figures in E® such that rank(~(s)) = 3. Assume that elements s, s2, s3 of the set
S\ Z(~(s)) such that vectors y(s1),v(s2),v(s3) are linearly independent in E3.

Assume that there exists F € O(3, R) such that det(F') =1 and n(s) = F~y(s),Vs € S.Then the following equalities
hold for all s € S\ Z(~y(s)) and for all i € N3:

(o) = rank(n(s)
rank(v(s)) = ra
((50):7(s)) = (n(s:),m(s)) (3.12)

det(A(y(s1),7(s2),7(s3))) = det(A(n(s1), n(s2),1(s3)))

Conwversely, assume that the equalities (3.12) hold. Then the unique F € O(3,R) exists such that det(F) =1 and
n(s) = F~(s),Vs € S. In this case, F has the following form:

F = ((A(n(s1),m(s2),m(s3))) 7" Ay(s1),7(52),7(s3))-

Proof. == Assume that there exists F'€ O(3,R) such that det(F)=1 and n(s)=F~(s),Vse S. By
Theorem 3.1, the last equality implies equalities (3.1). The equality det(F') =1 and the equality
n(s) = Fy(s),Vs € S imply the following equality det(A(n(s1),n(s2),n(s3))) = det(A(Fy(s1), Fy(s2), Fy(s3))) =
det(F)det(A(y(s1),7(s2),7(s3))) =
det(A(7(s1),7(s2),7(s3))). Hence det(A(n(s1),n(s2),n(s3))) = det(A(y(s1),7(s2),7(s3))). This equality and
equalities (3.1) imply the equalities (3.12).

< Assume that the equalities (3.12) hold. These equalities imply equalities (3.1). Then, by
Theorem 3.1, there exists F € O(3,R) such that 7(s) = Fy(s),Vs € S. This equality and the equality
det(A(v(s1),7(s2),v(s3))) = det(A(n(s1),m(s2),m(s3))) in the equalities (3.12) imply following equality
det(A(7(s1),7(s2),7(s3))) = det(A(Fy(s1), Fy(s2), Fy(s3))) = det(F)det(A(v(s1),7(s2),7(s3))).  Since ~ vectors
v(s1),v(s2),7(s3) are linearly independent, following inequality det(A(y(s1),7v(s2),7(s3))) # 0 holds. This
inequality, the equality
det(A(v(s1),7(s2),v(s3))) = det(A(n(s1),n(s2),n(s3))) in the equalities (3.12) and the equality
det(A(y(s1),7(s2),7(s3))) = det(F)det(A(y(s1), 7(82) 7(53))) imply the equality det(F)=1. By Theorem
3.1, F has the following form:F = ((A(n(s1),n(s2),n(s3))) ™1 - A(v(s1),v(s2), v(sn))- O

Corollary 3.2. Let y(s) and n(s) be S-figures in E* such that rank(~(s)) = 3. Assume that elements s, s, s3 of the set
S\ Z(~y(s)) such that vectors y(s1),v(s2),v(s3) are linearly independent in E3.

Assume that there exists F' € O(3, R) such that det(F') = —1 and n(s) = F~y(s),Vs € S.Then the following equalities
hold for all s € S\ Z(v(s)) and for all i € N3:

£
rank(y(s)) = rank(n(s

V(si),7(s)) = (n(si), n(s)) (3.13)
det(A(7v(s1),7(52),7(s3))) = —det(A(n(s1),n(s2), n(s3)))
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Conversely, assume that the equalities (3.13) hold. Then the unique F € O(3, R) exists such that det(F) = —1 and
n(s) = Fvy(s),Vs € S. In this case, F has the following form: F = ((A(n(s1),n(s2),n(s3))) "1 - A(y(s1),v(s2),7(s3)).

Proof. A proof is similar to the proof of Corollary 3.1 and it is omitted. O

Let v(s) an S-figure in E? such that rank(y(s)) = m, where m =1 or m = 2. In these cases, analogues of
Theorem 3.1, Corollary 3.1 and Corollary 3.2 easy have obtained. They are omitted.

4. Complete systems of invariants of a S-figure in E? for the groups M O(3, R) and
MSO(3,R)

Denote by Tr(3,R) the group of all translations of E3. Let G=0O(3,R) or G = SO(3,R). Denote by
G x Tr(3, R) the group of all transformations of E* generated by groups G and T (3, R).

Proposition 4.1. Let G = O(3, R) or G = SO(3, R). Assume that ~(s) and n(s) be two S-figures in E® and s € S.
Then ~(s) ™5™ 1(s),vs € S if and only if

(4(5) = 2(50)) & (0(s) = n(50)), ¥s € S\ {so}. In the case, ~(s)
a € E3 such that n(s) = Fy(s) + a,Vs € S, where a = n(sg) — Fy(so).

GxTrimB) n(s),Vs € S, there exist F € O(3, R) and

Proof. = Assume that v(s) RIS n(s),Vs € S. Then there exists F' € G and a € E? such that n(s) = Fy(s) +

a,Vs € S. In particularly, for s = sy, we have n(sg) = Fy(so) + a. This equality implies a = 1(so) — Fy(so). This
equality and equalities n(s) = Fy(s) + a,Vs € S, imply equalities n(s) = Fy(s) + n(so) — Fy(s0), Vs € S. These
equalities imply equalities 7(s) — n(so) = Fy(s) — Fy(so) = F(v(s) —¥(s0)),Vs € S. These equalities imply

(+(s) = 7(50)) < (n(s) = m(s0). ¥s € S\ {s0}.
< Assume that (v(s) — v(so)) £ (n(s) —n(so),¥s € S\ {so}. Then there exists F' € G such that n(s) — n(sg) =

F(v(s) —7(s0)), Vs € S\ {so}. Put a =n(so) — Fy(so). This equality and equalities 71(s) —n(so) = F(y(s) —
7(80)), Vs € S\ {so} imply equalities n(s) = F'y(s) + a,Vs € S. Hence ~(s) GHTR) n(s),Vs € S. O
Let ~(s) and 7( MO 1 (s),¥s € § if and only if

s) be S-figures in E? and s € S. By Proposition 4.1, v(s)
S-figures v(s) — v(so) and n(s) — n(so) are O(3, R)-equivalent on the set S\ {so}. Assume that S-figures v(s) —
v(s0) and 7n(s) — n(so) are O(3, R)-equivalent on the set S\ {so}. Then rank(y(s) —v(so)) = rank(n(s) — n(so)).
Let v(s) be an S-figure in E3 and so € S. For the S-figure (v(s) —v(so)) following cases are possible:
rank(y(s) —v(so)) = 0 or rank(y(s) — v(so)) = m, where m € Njs.
Assume that rank(v(s) —~v(sg)) =0 and rank(n(s) —n(se)) =0. Then ~(s) =~(sg),Vs € S and n(s) =

1(so),Vs € S. In this case, it is obvious that ~(s) MOGH) n(s). Moreover they are MO(3, R)-equivalent to the
S-figure w(s), where w(s) =0,Vs € S.

Consider the case rank(y(s) — v(so)) = rank(n(s) — n(so)) = 3. In this case, there exists a subset {s1, s2, s3} of
S such that vectors v(s1) — v(s0),7(s2) —¥(s0),v(s3) — 7(s0) are linearly independent.

The following theorem follows from Proposition 4.1 and Theorem 3.1.

Theorem 4.1. Let ~(s) and n(s) be S-figures in E® and sq € S. Assume that rank(y(s) —(so)) =3 and a

subset {s1,s2,s3} of S\ Z(v(s) —~(s0)) such that vectors v(s1) —v(so0),v(s2) —v(s0),v(s3) —¥(s0) are linearly
independent.

Assume that ~(s) MO

iENg.'

n(s),Vs € S.Then following equalities hold for all s € S\ Z(v(s) —~(so)), and for all

rank(y(s) —7(s0)) = rank(n(s) = n(so)) (4.1)

{ Z(v(s) —(s0)) = Z(n(s) — n(s0))
(v(si) —v(50),7(s) —¥(s0)) = (n(si) —n(s0),n(s) — n(s0))-

Conwversely, assume that the equalities (4.1) hold. Then the matrix (A(n(s1) —n(so),n(s2) — n(s0),n(s3) —n(s0)))~*
exists, the unique F € O(3, R) exists and the unique a € E3 exists such that 77(3) = F~(s) + a,Vs € S. In this case, I’
has following form: F = ((A(n(s1) — n(so), n(s2) — n(s0)sm(ss) —n(s0))) " - Aly(s1) — ¥(s0)s 7(52) — 7(50), 7(55) —
Y(s0)) and a = n(so) — Fy(so).
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Remark 4.1. By Proposition 4.1, Theorem 4.1 implies easy an analogue of Theorem 4.1 for the group M SO(3, R).
This result is omitted.

5. Complete systems of invariants of a parametric figure in the space-time E* x R for the
groups Gal,(3, R) and Gal{ (3, R)

Let B> x R = {(m, t)|r e B3 te R} be space-time. Let S be a set such that it has at least two elements and R
be the field of real numbers. Put S x R = {(s,r)|s € S, € R}.

Definition 5.1. A mapping~y:S x R — E? will be called S x R — figure in E3. It is denoted as follows: (s, t),
where s € S,t € R.

Denote by ®(S x R, E3) the set of all mappings of the S x R to E3.

Definition 5.2. The subset {(y(s,t),t)|t € R,s € S)} of E® x R, where 7(s,t) is a S x R-figure in E* will be
called a motion of the set S in the space-time E? x R.

Theorem 3.1 implies following theorem:

Theorem 5.1. Let (s, t) and n(s,t) be S x R-figures in E3 such that rank(vy(s,t)) = 3. Assume that elements
(s1,t1), (82, t2), (s3,¢3) of the set (S x R)\ Z(y(s,t)) such that vectors ~(s1,t1),v(s2,t2),v(ss,t3) are linearly
independent in E3.

Assume that v(s,t) &R n(s,t),¥(s,t) € S x R.Then following equalities hold for all (s,t) € S x R\ Z(~(s,t)) and

foralli € Ns:

Z(y(s,1)) = Z(n(s,1))
rank(vy(s,t)) = rank(n(s,t)) (5.1)

<7(5i>ti)37(57t)> < ( 2] l)a (Sat»'

Conversely, assume that the equalities (5.1) hold. Then the matrix (A(n(s1,t1),n(s2,t2),m(s3,t3))) ! exists and the
unique F' € O(3, R) exists such that n(s,t) = Fvy(s,t),¥(s,t) € S x R. In this case, F has following form: F =
((A(n(s1,t1),m(s2, t2),m(s3,t3))) ™" - A(y(s1,t1),7(s2, 2), 7(53), t3)-

Let v(s,t) be an S x R-figure in E®. For fixed so € 9, the set {7(so,t),t € R} will be called an R — path in E®.

Definition 5.3. Two S x R-figures (s, t) and 7(s,t) in E? are called Gal,(3, R)-equivalent if there exists g €

O(3,R), a € E3,b € E® such that n(s,t) = gv(s,t) + ta+ b,Vs € S,Vt € R. In this case, we write (s, t) Gati 31
n(s, ).

Definition 5.4. Two S x R-figures v(s,t) and 7(s,t) in E? are called Gal; (3, R)-equivalent if there exists g €

Ga
SO(3,R), a € E3,b € E3 such that (s, t) = gy(s,t) + ta + b,Vs € S,Vt € R. In this case, we write (s, t) g (35

n(s,1).
Definition 5.5. Two motions (v(s,t),t) and (n(s, t),t) of S-figures (s, t) and 7(s,t) in E? are called Gal, (3, R)-
equivalent if there exists g € O(3, R), a,b € E? such that (n(s,t),t) = (gv(s,t) + ta+ b,t),Vs € S,Vt € R. In this

LR ((s,1),1).

Definition 5.6. . Two motions (y(s, t),t) and (1(s, t),t) of S-figures (s, t) and n(s, t) in E3 are called Gal (3, R)-
equivalent if there exists g € SO(3, R), a,b € E? such that (n(s,t),t) = (gv(s,t) + ta+ b,t),Vs € S,Vt € R. In this

G (s, 1), 1).

Definitions 5.3 and 5.5 imply that two S x R-figures (s, t) and n(s,t) in E? are Gal; (3, R)-equivalent if and
only if two motions (v(s,t),t) and (n(s,t),t) of S-figures (s, t) and n(s, t) in E® are Gal, (3, R)-equivalent.

Definitions 5.4 and 5.6 imply that two S x R-figures (s, t) and 7(s, t) in E® are Gal{ (3, R)-equivalent if and
only if two motions (y(s,t),t) and (1(s,t),t) of S x R-figures (s, t) and n(s,t) in E® are Gal{ (3, R)-equivalent.

case, we write (y(s,t),t)

case, we write (y(s,1),t)

Theorem 5.2. Assume that (s, t) and n(s,t) be two S x R-figures in E3 and so € S such that R-paths ~(so,t) and
n(so,t) have following forms ~(so,t) = c1 + tea and n(so,t) = dy + tds for some vectors ci,cq,dy,dy in E3. Then
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~(s,1) n(s,t),¥(s,t) € S x R if and only if (y(s,t) —v(s0,t)) ~ ) (n(s,t) —n(so,1)),¥(s,t) € S x R. In
the case (s, t) Gaha(3:5) n(s,t),¥(s,t) € S x R, there exist F € O(3, R) and vectors ay,as of E® such that n(s,t) =
Fry(s,t) 4+ a1 + tag,¥(s,t) € S x R, where a; + taz = n(so,t) — Fy(so,t) = (d1 — Fey) +t(dy — Fea),Vt € R.

Proof. = Assume that (s, t) Gals (3.1 n(s,t),¥(s,t) € S x R. Then there exists F' € O(3, R) and vectors a1, as of
E3suchthatn(s,t) = Fy(s,t) + a1 + tas,V(s,t) € S x R.Inparticularly, for s = sy, we have n(so,t) = Fy(so,t) +
a1 + tas. This equality implies a; + tas = (s, t) — Fy(so,t). This equality and equalities 7(s,t) = Fy(s,t) +
a1 + tag,V(s,t) € S x R imply equalities 7(s,t) = Fy(s,t) + n(so,t) — Fy(s0,t),Y(s,t) € S x R. These equalities
imply equalities 7(s,t) — n(so,t) = Fy(s,t) — Fy(so,t) = F(y(s,t) —v(s0,t)),¥(s,t) € S x R. These equalities

imply (7(s,t) — ¥(s0)) "% (n(s,) — n(s0)), ¥(s,) € S x R.

< Conversely, assume that (v(s,t) — v(so,t)) o (n(s,t) —n(so,t)),¥(s,t) € S x R. Then there exists F €

O(3, R) such that n(s,t) — n(so,t) = F(v(s,t) —v(s0,t)),V(s,t) € S x R. This equality implies following equality
n(s,t) = Fy(s,t) +n(so,t) — Fy(s0,t),V(s,t) € S x R. This equality and the above equalities y(sg,t) = ¢1 + tca
and 7(so,t) = dq + td> imply following equalities 7(s,t) = Fy(s,t) + d1 +tda + F(c1 +tea) = Fy(s,t) + (di +
Fey) 4+ t(dz + Fey). Since (dy 4+ Fep) and (dy + Feyp) are vectors of E® the equality n(s,t) = Fy(s,t) + (di +

Fey) + t(ds + Fes) means that v(s, 1) ““C) (s,0),¥(s, 1) € S x R. 0

Let (s, t) and 5)(s, t) be S x R-figuresin E® and (so,t) € S x R. By Theorem 5.2, (s, t) "™ n(s,1),¥(s,1)

S x Rif and only if S x R-figures (s,t) — v(so,t) and 7(s,t) — n(so, t) are O(3, R)-equivalent on the set S x R.
Assume that S x R-figures ~(s,t) — v(so,t) and n(s,t) — n(so,t) are O(3, R)-equivalent on the set S x R. Then
rank(y(s,t) — 7(s0,1)) = rank(n(s, ) - n(s0,1).

Let v(s,t) be a S x R-figure in E® and (so,t) € S x R. For the S x R-figure (v(s,t) — v(so,t)) following cases
are possible: rank(vy(s,t) — v(so,t)) = 0 or rank(~y(s,t) — v(so,t)) = m, where m € Ns.

Assume that rank(v(s,t) — v(so,t)) = 0 and rank(n(s,t) — n(so,t)) = 0. Then v(s,t) = v(so,t),V(s,t) € S X R,

and 7(s,t) = n(so,t),¥(s,t) € S x R. In this case, it is obvious that (s, ) Gali (3.5)
Gali1(3, R)-equivalent to the S x R-figure w(s,t), where w(s,t) = 0,V(s,t) € S X R.
Below we consider the case rank(y(s,t) — v(so,t)) = rank(n(s,t) — n(so,t)) = 3. In this case, there exists a
subset {(81, tl), (827 tg), (837 tg)} of S such that vectors ’}/(817 tl) — ’}/(S()7 tl), ’y(Sg, tg) — ’)/(50, tg),’y(Sg, t3) — ’7(80, t3)
are linearly independent.
The following theorem follows from Theorems 5.1, and 5.2.

n(s,t). Moreover they are

Theorem 5.3. Let (s, t) and n(s,t) be S x R-figures in E and sq € S such that R-paths ~y(so,t) and n(so,t)
have following forms ~(so,t) = c1 + tcg and n(so,t) = di + tda for some vectors ci,co,dy,dy in E3. Assume that
rank(y(s,t) —v(so,t)) = 3 and a subset {(s1,t1), (s2,%2), (s3,t3)} of (S x R)\ Z(v(s) —(s0)) such that vectors
v(s1,t1) —Y(s0,t1), (52, t2) — ¥(s0, t2),7(83, t3) — Y(s0, t3) are linearly independent.

Assume that ~(s,t) Gali (3.5) n(s,t),¥(s,t) € S x R. Then, following equalities hold: for all (s,t) € (S x R)\
Z(y(s,t) —(so,t)) and for all i € Nj:

Z(v(s,t) = v(s0,1)) = Z(n(s,t) — n(so0,t))
rank(y(s,t) —v(s0,t)) = rank(n(s,t) — n(so, 1)) (5.2)
(v(sirti) —v(s0,ti), v(s,1) — (50, 1)) = (n(si,ti) — n(s0,ti),n(s,t) — n(s0,1))-

Conversely, assume that the equalities (5.2) hold. Then the matrix (A(n(s1,t1) —n(so,t1),n(s2,t2) —
n(so0,t2),n(s3,t3) — n(so,t3))) "' exists, the unique F € O(3,R) exists and the unmique function a(t) exists
such that a(t) € E3,Vt € R and n(s,t) = Fy(s,t) + a(t),¥(s,t) € S x R. In this case, F has following form:
F = ((A(n(s1,t1) = n(so,t1),n(s2,t2) — 1(s0,t2),1(s3,t3) — n(s0,3))) " - A(y(s1, 1) — V(0. t1), (52, t2) —
~v(s0,t2),7(83,t3) — ¥(s0,t3)) and a(t) = n(so,t) — Fy(so,t) = (d1 — Fe1) + t(de — Feg).

Remark 5.1. Analogues of Theorems 5.2, and 5.3 for the group Gal (3, R) also are true. They are omitted.
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