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Abstract

An undirected mathematical graph, G = (V,E) where V is a set of vertices and E =V ×V
is the set of edges, can model a computer network. By this consideration we search for
solutions to real computer network problems with a theoretical approach. This approach
is based on labelling each edge by a subset of a universal set, and then encoding a path
as the union of the labels of its edges. We label each vertex v ∈ V by using a subset of
universal set U , then we present a way to encode shortest paths in the graph G by using a
way optimizing the data. By mathematical approach, it is provable that the labelling method
we introduced eliminates the errors from the shortest paths in the graph. We aim to obtain
the results in a more efficient use of network resources and to reduce network traffic. This
shows how our theoretical approach works in real world network systems.

1. Introduction

We consider an undirected and unweighted regular graph G = (V,E) where V is the set of vertices and E =V ×V is the set of
edges in the graph. This graph may represent a computer network. Therefore, it may be a reasonable approach that a real-time
routing scenario in a computer network can be modeled in a mathematical graph. As a realistic model for a computer network
we choose a graph denoted by a king’s graph. The king’s graph is a graph G = (V,E) with a set of vertices V and a set of edges
E where V = {(i, j)|i ∈ [0,M], j ∈ [0,N],M,N ∈ Z}. The vertices (i, j) and (p,q) are connected in a king’s graph by an edge
if and only if i = p and j = q±1 or i = p±1 and j = q or i = p±1 and j = q±1 (see Figure 1.1).
In literature, some applications of king’s graph such as tracking vehicles [1] has been studied by [2, 3]. In order to produce
solutions to some network problems encoding the verticies [4] or edges [5] have been suggested in literature.
One of the labelling idea denoted by Bloom filter has been studied by [6]. A Bloom filter is a way to compress the data. Bloom
filter has been widely preferred to seek for solutions to network problems [7]-[9]. This is because it saves time and space when
querying the element whether in the set or not. Another application of the Bloom filter is to save space in big sized graphs [10].
Using small spaces in some models is an advantage for saving memory or reducing the network traffic [11]. A wide range of
research of network applications of Bloom filters has been presented in [12]. Bloom filter is a random data structure, therefore
it may produce errors denoted by false positives. These errors can be tolerable in the set, if the probability of false positives is
highly small. Therefore, some applications of the Bloom filter aim to reduce the probability of false positives.
Considering routing scenarios in networks the users may face some delivery problems. For network deliveries using shortest
paths [13] is an advantage to save time and network resources. However, this approach can cause additional network traffic in
practice. In this case, the users may be forced to use any path between two distinct nodes rather than shortest paths. We have
introduced encoding methods for shortest paths without false positives in some graphs [14]-[16]. An encoding method for the
shortest path in king’s graph were considered in [5]. In this paper, we consider the routing scenarios using any path for delivery
in a king’s graph. We build Bloom filters do not produce false positives and uses less space than the Bloom filter obtain in [5].
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Figure 1.1: A king’s graph with computers on each vertex [5].

In this research, we consider to encode any path by using the main idea behind the Bloom filters. This encoding method do
not produce false positives. Note that a computer tends to send the message throughout all connections to it, hence the false
positives in this model are the adjacent edges to path chosen in advance. The Bloom filter in this model of routing has a role of
packet header that is sent with the message between computers. A sender can send messages through any path between two
distinct nodes. We assume that the sender chooses a particular delivery path, encodes it as a Bloom filter, and this Bloom filter
is sent along together with the message. We introduce a certain encoding method for the paths in this paper for this model to
function.

2. Bloom filters for routing models

Bloom filter is a way to represent a subset S with n elements of a universe U [6]. We denote the Bloom filters by β . Each
element in the set U is represented by a binary array of length m. The number of the bits 1 in this binary string is k.
The Bloom filter can be obtained by applying the binary operations to the binary strings of the elements in the set S. This
structure of the Bloom filter is determined by design of the applications. We use bit-wise OR operation in this research like
some other applications of the Bloom filter [17]. Binary OR operation takes the bit 0 and 1, then it produces the bit 1, otherwise
it produces the bit 0.
An element x from the set U can be queried whether in the subset S or not by comparing the Bloom filter of the subset S with
the binary array of the element x in all bits positions. This property of the Bloom filter provides the users to access the set very
quickly.
We may denote the representative binary array of an element by β (x) and the Bloom filter of the set S by β (S). If β (x) 6≤ β (S),
then it can be concluded that x is definitely not in the set S. However, if β (x) ≤ β (S), then we cannot be certain about the
existence of the element x in the set S. Since, the standard implementation of a Bloom filter, the bits 1s are placed in the array
of each element randomly and the Bloom filter of the set S is obtained by adding these binary arrays together.
Because of this randomness, one can obtain that β (x) ≤ β (S) for some elements in the universe. Some of these elements
may seem like an element of the set S, but they may not belong to the set S. These elements are called false positives. The
probability of false positives is obtained after a simple calculation as (1− e

−kn
m )k where m is the length of the Bloom filter, n is

the number of elements in the set S and k is the number of bit 1 in the Bloom filter of an element [6].
The probability of false positives can be reduced depending on the number of the bits 1 in the Bloom filter of the set S.Therefore,
the optimum number of the bits 1s denoted by k in the Bloom filter is computed by the formula dln2× m

n e which is obtained by
taking the derivation of the false positives probability formula [12].

3. A way of edge labelling

Suppose G = (V,E) is a king’s graph with a set of vertices V and a set of edges E, and U is a universal set of labels, obviously
V < E in the king’s graph. Consider a labelling such that U =V , and for each e ∈ E, β (e) = {u,v}, where u and v are the
endpoints of the edge e and β (e) is the label of the edge e. That means each vertex in the label of a path is represented by one
bit. Therefore, we may denote this labelling method by a bit-per-vertex labelling.
There are (M +1)(N +1) = MN +M +N +1 vertices in total in a king’s graph of size of M×N. Therefore, the length of
the labels in the graph is MN +M+N +1. A path is a sequence of the consecutive distinct edges and an edge is denoted by
e = {vi,v j} where vi and v j are the end vertices of the edge e. A path P = v0,v1, ...,vn where vi is a vertex and i∈ {0,1,2, ...,n}
is represented by a label that is obtained by applying bitwise OR operation to the labels of the vertices belonging to the path
P. Binary OR operation takes the bits 0 and 1 as inputs and produces a bit 1, if at least one of the input is 1. Otherwise, it
produces a bit 0, when all inputs are 0. The number of the bit 1 in the label of a vertex, an edge and a path are 1,2 and n, which
is the number of veritices in the path, respectively.
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4. Properties of the shortest paths

The edges in a king’s graph has four orientation of compass directions that are north (or south), east (or west), north-east (or
south-west) and north-west (or south-east. For instance, vertical and horizontal edges have the orientation of the way of north
or equally south and east or equally west, respectively. The orientations of the diagonal edges are north-east (south-west) and
north-west (south-east) in a king’s graph.

Lemma 4.1. If a shortest path between the vertices u = (xi,y j) and v = (x(i+m), y( j+n)) consists of horizontal and diagonal
edges, with at least one horizontal edge, then the first components of the vertices have a sequence of xi,x(i+1),x(i+2), ...,x(i+n).
If a shortest path between the vertices u = (xi,y j) and v = (x(i+m),y( j+n)) consists of vertical and diagonal edges, with at least
one vertical edge, then the second components of the vertices have a sequence of yi,y(i+1)y(i+2), ...,y(i+n).

Proof. Suppose a path P between vertices u = (xi,y j) and v = (x(i+m),y( j+n)). The endpoints of the vertical, horizontal and
diagonal edges have a form of {(xi,y j), (xi,y( j+1))}, {(xi,y j),(x(i+1),y j)}, and {(xi,y j),(x(i+1),y( j+1))}, respectively.
There can be found two paths between the vertices (xi,y j) and v = (x(i+1),y( j+1)). One path P1 is the diagonal edge where the
sequence of the vertices in the path is {(xi,y j),(x(i+1),y( j+1))}, and other path P2 consists of one vertical and one horizontal
edge with the sequence of vertices {(xi,y j),(x(i+1),y j),(x(i+1),y( j+1))} or {(xi,y j),(xi,y( j+1)),(x(i+1),y( j+1))}. Therefore,
|P1|< |P2|. This concludes that vertical and horizontal edges do not appear in a shortest path. Besides, if m > 0 and n > 0
where the path lies between the vertices u = (xi,y j) and v = (x(i+m),y( j+n)), then this shortest path contains diagonal edges as
many as possible.

Figure 4.1: Vertical and horizontal lines in the king’s graphs

The adjacent vertical edges which have the same first component constitute a vertical line in the graph (see Figure 4.1).
The vertical lines in the graph are parallel to the y-coordinate and one can assign each of them with a number of a point
from x-coordinate such as {x1,x2, ....,xn}. Similarly, the adjacent horizontal edges which have the same second component
constitute a horizontal line in the graph. The horizontal lines are parallel to the x-coordinate, then the number of the lines are
{y1,y2, ....,yn}. Therefore, each edge in the shortest path consisting of horizontal and diagonal edges takes place between the
ordered pair of two consecutive vertical lines and the edges in the shortest path consisting of vertical and diagonal edges takes
place between the ordered pair of two consecutive horizontal lines.
Suppose there are two edges from the shortest path consisting of horizontal and diagonal edges between two consecutive
vertical lines numbered xi and xi+1 where i ∈ {1,2, ...,n} and there is one edge from the shortest path between all other
consecutive vertical lines. The previous edge of the edges lying between the vertical lines xi and xi+1 has the endpoints between
the lines xi−1 and xi . The sequence of the vertical lines containing the endpoints of the these three edges is xi−1,xi,xi+1,xi .
Theoretically, this fragment of the path P contains the edges between the lines xi−1 and xi . Obviously, there can be found a
another path between these two lines which is shorter than the path P which also contain another edges between the lines xi
and xi+1. Similarly, we may suppose the shortest path consisting of vertical and diagonal edges contains two edges between
two horizontal lines yi and yi+1 and there is one edge from the shortest path between all other consecutive horizontal lines.
In a fragment of the path, the endpoints of the adjacent edges belong to the horizontal lines yi−1,yi,yi+1. There is one edge
between the lines yi−1 and yi and two edges between the lines yi and yi+1. However, there is another path containing the edges
between the lines yi−1 and yi and this path is shorter than the path containing two edges between the lines yi and yi+1.

5. Zero false positives zone

We suppose a king’s graph represents a network and each node in the graph represents a computer. The shortest paths between
distinct nodes are used for the message delivery. The sender computer chooses a shortest path to the receiver and the messages
follow this route from the sender to the receiver. The messages are not sent back. Yet, a computer tends to send the message
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through the computers connected to it. Therefore, the false positives in this model are the adjacent edges to the chosen shortest
path.

Theorem 5.1. If a path P is one of the shortest between the vertices u and v in a king’s graph, the label of the path does not
produce a false positive.

Proof. Suppose the edges in a king’s graph are labelled by one-bit-vertex labelling. Consider a shortest path P with the
sequence of vertices v0,v1, ...,vn. The edges in the path P are represented by ek = {vk,v(k+1)} where k ∈ {0,1, . . . ,n}. Suppose
that there is a false positive f = {vi,v j} ∈ E.
Since f is adjacent to the shortest path, either vi ∈ {v0,v1, ...,vn} or v j ∈ {v0,v1, ...,vn}. Suppose vi ∈ {v0,v1, ...,vn} and
vi = {(p,q)} where p ∈ [0,M] and q ∈ [0,N] in a M×N sized king’s graph. Therefore, v j belongs to V ′ = {(p+1,q),(p−
1,q),(p,q+1),(p,q−1),(p+1,q+1),(p−1,q−1),(p+1,q−1),(p−1,q+1)}. A vertex in a shortest path is connected
with two adjacent vertices which belong to the shortest path. Therefore, two adjacent vertices vi−1 and vi+1 to the vertex vi also
belong to V ′. If v j = vi−1 or v j = vi+1, then we can conclude that f is an edge in the shortest path. According to bit-per-vertex
labelling each node is represented by a bit in the Bloom filter of the shortest path. Therefore, it is obtained that β ( f )≤ β (P)
and f is not a false positive.
Suppose v j ∈V ′−{vi−1,vi+1}. The vertices vi−1,vi,vi+1 can belong to consecutive vertical lines xi−1,xi,xi+1. Yet, the other
vertices in V ′−{vi−1,vi+1} also belongs to the lines xi−1,xi,xi+1.
However, if the shortest path consists of horizontal and diagonal edges, then by the Lemma 4.1 the endpoints of the edges in
the shortest path belong to the vertical lines and there is one vertex from the shortest path on each vertical line. Since each
vertex is represented by one bit in the shortest path, βP recognizes that the other vertices whether on the path or not. Therefore,
when v j ∈V ′−{vi−1,vi+1}, then β ( f ) 6≤ β (P) and f is not a false positive.
Similarly, if the shortest path consists of vertical and diagonal edges, then by the Lemma 4.1 the endpoints of the edges
in the shortest path belong to the horizontal lines and there is one vertex from the shortest path on each horizontal line.
Each horizontal line contains one vertex from the shortest path by Lemma 4.1. Therefore, when v j ∈V ′−{vi−1,vi+1}, then
β ( f ) 6≤ β (P) and f is not a false positive.
In conclusion, bit-per-vertex labelling method in king’s graph do not produce any false positives for the shortest paths.

6. Practical performance of bit-per-vertex encoding method

The edges in a graph G can be encoded by one bit. Therefore, in a Bloom filter of a shortest path each edge is represented by
one bit 1 and each bit has a particular bit position in the Bloom filter. Therefore, this encoding method also do not produce a
false positive.
Obviously, the length of the Bloom filter is |E| and the number of the bits 1s k in the Bloom filter is the number of edges in
the path P. The number of edges in a king’s graph |G|, where the size of the graph is M×N, is 4MN +M +N. By using
bit-per-vertex encoding method, the length of the Bloom filter is obtained as |V |= MN +M+N +1. Obviously, in a king’s
graph |V |< |E|. Hence, the space is saved with the parameters used for coding edges in our method for the king’s graphs.
Besides, if the standard Bloom filter is used for encoding the edges with the parameters that we have obtained with bit-per-vertex
encoding, then we probably obtain false positives. The probability of false positives is [6] by the formula (1− e

−kn
m )k where m

is length of Bloom filter, n is the number of edges in a shortest path between two distinct nodes and k is the number of the bits
1s in the Bloom filters of the edges.
In our model, m = |V | and k = 2. If we take n as its maximum value. This is max(M,N) where the size of the king’s graph is
M×N, when the shortest path is one of the the number shortest path lying between one corner to opposite corner of a king’s
graph. In order to obtain less probability of false positives, we recalculate k by using the formula dln2× m

n e, [11]. By this
formula, optimum k is obtained with the maximum number of edges in a shortest path and the length of Bloom filters of the
edges.

Size of a king’s graph m = (M+1)2 Optimum k n = max(M,M) Probability of false positives
2×2 9 ≈ 3 2 ≈ 0,115

10×10 121 ≈ 8 10 ≈ 0,002
18×18 361 ≈ 14 18 ≈ 0,000065
25×25 676 ≈ 18 25 ≈ 0,0000022
30×30 961 ≈ 22 30 ≈ 2,07090265e−7

Table 1: The probabilities of false positives are obtained by using parameters from different sizes of graphs

Therefore k is dln2× M2+2M+1
M e with the parameters of our model where the size of the graph is M×M, the optimum k

depends on the size of the king’s graph. This results that the more the size of the graph increases, the more the value of the k
rises. For example; k ≈ 2, when the king’s graph has a size of 1×1. Obviously, k > 2 in the other sizes of the king’s graphs.
However, real-world network models have bigger sizes than 1×1 sized king’s graph. In the encoding method we introduce k
is 2 in the Bloom filters of edges in any size of the king’s graph. This is another advantage of bit-per-vertex encoding.
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We can conclude that if the edges in a king’s graph would have been encoded by standard Bloom filter with optimum parameters
of our model, then the probability of the false positives would be calculated with (1− e

−kn
m )k. We list some examples of

probabilities of false positives obtained from different sizes of graphs (see Table 1).
Another encoding method introduced in [5] do not produce false positives for shortest paths in king’s graphs. The length of the
Bloom filter in that study is 12× (M×N) where the size of the king’s graph is M×N. It can be seen that 12× (M×N)≤
MN+M+N+1 when M = N = 22. Therefore, one may think the method introduced in [5] which offers 12× (M×N) length
Bloom filter saves more space than bit-per-vertex encoding method in the big size of king’s graph where M > 22 and N ≥ 22.
However, in literature the practicable size of a Bloom filter m has been chosen as 256 [13]. Hence, bit-per-vertex coding works
for bigger sizes of king’s graph models with more advantages than the other encoding methods, if m is chosen from 256 up to
506.

7. Conclusion

In this research we have chosen a graph with V < E that is a realistic network model and we have built labels for the edges in
this graph. The labels have reasonably small length. This property of the labels is an advantages, if the network users have a
small space to store the data. Additionally, the bit-per-vertex labelling do not produce false positives for shortest paths. This is
another advantage for some routing scenarios taking the mathematical graphs as a network model. We show that if a Bloom
filter is built with some assumptions, then it is possible to obtain a model using less space without false positives. The encoding
method and routing model we have introduced in this paper can work, when the graph is regular and has an overall shape of a
king’s graph. For the future work, we aim to generalize this encoding idea to arbitrary graphs. The shape of graph in this paper
has been chosen specifically, it is regular and undirected. This graph has its specific geometric structure. Therefore, the coding
structure can be changed for other types of graphs. Also, we may extend the work in neutrosophic environment for future
studies.
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